1
|
Muraro PA, Mariottini A, Greco R, Burman J, Iacobaeus E, Inglese M, Snowden JA, Alexander T, Amato MP, Bø L, Boffa G, Ciccarelli O, Cohen JA, Derfuss T, Farge D, Freedman MS, Gaughan M, Heesen C, Kazmi M, Kirzigov K, Ljungman P, Mancardi G, Martin R, Mehra V, Moiola L, Saccardi R, Tintoré M, Stankoff B, Sharrack B. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis and neuromyelitis optica spectrum disorder - recommendations from ECTRIMS and the EBMT. Nat Rev Neurol 2025:10.1038/s41582-024-01050-x. [PMID: 39814869 DOI: 10.1038/s41582-024-01050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/18/2025]
Abstract
Autologous haematopoietic stem cell transplantation (AHSCT) is a treatment option for relapsing forms of multiple sclerosis (MS) that are refractory to disease-modifying therapy (DMT). AHSCT after failure of high-efficacy DMT in aggressive forms of relapsing-remitting MS is a generally accepted indication, yet the optimal placement of this approach in the treatment sequence is not universally agreed upon. Uncertainties also remain with respect to other indications, such as in rapidly evolving, severe, treatment-naive MS, progressive MS, and neuromyelitis optica spectrum disorder (NMOSD). Furthermore, treatment and monitoring protocols, rehabilitation and other supportive care before and after AHSCT need to be optimized. To address these issues, we convened a European Committee for Treatment and Research in Multiple Sclerosis Focused Workshop in partnership with the European Society for Blood and Marrow Transplantation Autoimmune Diseases Working Party, in which evidence and key questions were presented and discussed by experts in these diseases and in AHSCT. Based on the workshop output and subsequent written interactions, this Consensus Statement provides practical guidance and recommendations on the use of AHSCT in MS and NMOSD. Recommendations are based on the available evidence, or on consensus when evidence was insufficient. We summarize the key evidence, report the final recommendations, and identify areas for further research.
Collapse
Affiliation(s)
- Paolo A Muraro
- Department of Brain Sciences, Faculty of Medicine, Imperial College, London, UK.
| | - Alice Mariottini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Careggi University Hospital, Florence, Italy
| | - Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Joachim Burman
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ellen Iacobaeus
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Tobias Alexander
- Department of Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Rheumatology Research Centre, Berlin - A Leibniz Institute, Berlin, Germany
| | - Maria Pia Amato
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Lars Bø
- Department of Neurology, Haukeland University Hospital, and Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Giacomo Boffa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Olga Ciccarelli
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Institute for Health and Care Research, University College London Hospitals Biomedical Research Centre, London, UK
| | - Jeffrey A Cohen
- Mellen Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tobias Derfuss
- Departments of Neurology and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University of Basel, Basel, Switzerland
| | - Dominique Farge
- Internal Medicine Unit (UF04) CRMR MATHEC, Maladies auto-immunes et thérapie cellulaire; Saint-Louis Hospital, AP-HP, Paris-Cite University, Paris, France
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Mark S Freedman
- University of Ottawa, Department of Medicine Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Maria Gaughan
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Majid Kazmi
- Guy's and St Thomas' NHS Trust, King's College Hospital NHS Trust, London, UK
- London Bridge Hospital, London, UK
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Kirill Kirzigov
- Nikolay Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Per Ljungman
- Department. of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Karolinska Comprehensive Cancer Center, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Gianluigi Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
- Cellerys AG Schlieren, Schlieren, Switzerland
| | - Varun Mehra
- Guy's and St Thomas' NHS Trust, King's College Hospital NHS Trust, London, UK
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia, Department of Neurology, Barcelona, Spain
- Vall d'Hebron University Hospital, Vall d Hebron Research Institute, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Universitat de Vic (UVIC-UCC), Vic, Spain
| | - Bruno Stankoff
- Sorbonne Université, ICM, Paris Brain Institute, CNRS, Inserm, Paris, France
- Neurology Department, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Basil Sharrack
- Department of Neuroscience, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Sheffield NIHR Translational Neuroscience BRC, University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
Mariottini A, Boncompagni R, Cozzi D, Simonetti E, Repice AM, Damato V, Giordano M, Miele V, Nozzoli C, Massacesi L. Thymic hyperplasia after autologous hematopoietic stem cell transplantation in multiple sclerosis: a case series. Front Immunol 2024; 15:1478777. [PMID: 39654894 PMCID: PMC11625664 DOI: 10.3389/fimmu.2024.1478777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Reactivation of thymopoiesis in adult patients with autoimmune disorders treated with autologous haematopoietic stem cell transplantation (AHSCT) is supported by studies exploring immunoreconstitution. Radiological evidence of thymic hyperplasia after AHSCT was previously reported in patients with systemic sclerosis, but, to our knowledge, it has not been described in multiple sclerosis (MS), where premature thymic involution has been observed and immunosenescence might be accelerated by disease-modifying treatments (DMTs). Participants and methods monocentric case series including MS patients who performed a chest CT scan for clinical purposes after having received AHSCT (BEAM/ATG regimen) for aggressive MS failing DMTs. Chest CT exams were reviewed by a thoracic radiologist: thymic hyperplasia was defined as a rounded mass in the thymic loggia with a density around 40 Hounsfield Units (HU) and thickness >1.3 cm. Results Fifteen MS patients were included; the median time interval between AHSCT and chest CT scan was 2 (range 1-18) months. All the patients were free from new inflammatory events and DMTs over a median follow-up of 36 months (range 12-84) after AHSCT. Thymic hyperplasia was detected in 3/15 (20%) cases in an exam taken 1 to 3 months after AHSCT; all these patients were females, and aged 30 to 40 years. Lung infections and secondary autoimmunity were diagnosed in 5 and 1 cases, respectively, none of which showed thymic hyperplasia. No associations between thymic hyperplasia and clinical-demographic characteristics or post-AHSCT outcomes were observed. Conclusions Thymic hyperplasia was detected in 20% of MS patients recently treated with AHSCT. These results are consistent with previous immunological studies showing that AHSCT promotes thymus reactivation in MS patients, further supporting de-novo thymopoiesis as a cornerstone of immune reconstitution after AHSCT in this population.
Collapse
Affiliation(s)
- Alice Mariottini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Neurology II Department, University Hospital Careggi, Florence, Italy
| | - Riccardo Boncompagni
- Cell Therapy and Transfusion Medicine Unit, University Hospital Careggi, Florence, Italy
| | - Diletta Cozzi
- Department of Emergency Radiology, University Hospital Careggi, Florence, Italy
| | - Edoardo Simonetti
- Cell Therapy and Transfusion Medicine Unit, University Hospital Careggi, Florence, Italy
| | - Anna Maria Repice
- Neurology II Department, University Hospital Careggi, Florence, Italy
| | - Valentina Damato
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Neurology II Department, University Hospital Careggi, Florence, Italy
| | - Mirella Giordano
- Cell Therapy and Transfusion Medicine Unit, University Hospital Careggi, Florence, Italy
| | - Vittorio Miele
- Department of Emergency Radiology, University Hospital Careggi, Florence, Italy
| | - Chiara Nozzoli
- Cell Therapy and Transfusion Medicine Unit, University Hospital Careggi, Florence, Italy
| | - Luca Massacesi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Neurology II Department, University Hospital Careggi, Florence, Italy
| |
Collapse
|
3
|
Mariottini A, Stack EH, Nair G, Nozzoli C, Wu T, Marchi L, Boncompagni R, Repice AM, Fainardi E, Pasquale FD, Carlesi E, Saccardi R, Jacobson S, Massacesi L. Spinal cord size as promising biomarker of disability outcomes after hematopoietic stem cell transplantation in multiple sclerosis. Mult Scler Relat Disord 2024; 88:105745. [PMID: 38996712 DOI: 10.1016/j.msard.2024.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Biomarkers predictive of disability outcomes in individual multiple sclerosis (MS) patients undergoing autologous haematopoietic stem cell transplantation (AHSCT) are currently lacking. As correlations between spinal cord atrophy and clinical disability in MS were previously described, in this study spinal cord size was investigated in MS patients treated with AHSCT, exploring whether baseline spinal cord volume may predict disability progression after AHSCT. METHODS relapsing-remitting (RR-) and secondary-progressive (SP-) MS patients treated with AHSCT (BEAM/ATG regimen) at a single academic centre in Florence, who performed at least two standardized brain magnetic resonance imaging (MRIs) scans (acquired between one-year pre-AHSCT to 5 years after AHSCT) were included. Cervical spinal cord atrophy was estimated as upper cervical spinal cord cross-sectional area (SCCSA). Brain volume loss (BVL) was analysed at the same timepoints. RESULTS Eleven (8 RR-; 3 SP-) MS patients were included. Over a median follow-up of 66 (range 37 - 100) months, no relapses nor brain MRI activity were observed; disability progressed in 2 cases (both SP-MS). Baseline SCCSA was associated with EDSS change between pre- and one-year post-AHSCT. Compared to patients who stabilized, patients who progressed after AHSCT tended to have lower SCCSA at C4 level at baseline and year 1 after AHSCT. Longitudinal changes in SCCSA or BVL did not correlate with EDSS change. CONCLUSIONS Baseline pre-AHSCT SCCSA, but not its longitudinal changes nor BVL, predicted EDSS change within the two years following AHSCT. SCCSA may represent a biomarker of treatment response and a promising screening tool for assessing patient eligibility for high-impact treatments such as AHSCT.
Collapse
Affiliation(s)
- Alice Mariottini
- Department of Neurofarba, University of Florence, Florence, Italy; Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Centre, Careggi University Hospital, Florence, Italy
| | - Emily H Stack
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892 USA
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892 USA
| | - Chiara Nozzoli
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Tianxia Wu
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892 USA
| | - Leonardo Marchi
- Department of Neurofarba, University of Florence, Florence, Italy
| | - Riccardo Boncompagni
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Anna Maria Repice
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Centre, Careggi University Hospital, Florence, Italy
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy; Neuroradiology Unit, Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Francesca Di Pasquale
- Diagnostic Imaging Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Edoardo Carlesi
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, Florence, Italy
| | - Riccardo Saccardi
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Steven Jacobson
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892 USA
| | - Luca Massacesi
- Department of Neurofarba, University of Florence, Florence, Italy; Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Centre, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
4
|
Manni A, Oggiano F, Palazzo C, Panetta V, Gargano CD, Mangialardi V, Guerra T, Iaffaldano A, Caputo F, Iaffaldano P, Ruggieri M, Trojano M, Paolicelli D. Clinical and biological predictors of Cladribine effectiveness in Multiple Sclerosis: A real-world, single Centre study considering a two-year interval from year-2 dosing. J Neurol Sci 2024; 462:123070. [PMID: 38850773 DOI: 10.1016/j.jns.2024.123070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVES Cladribine tablets (CLAD) for adult patients with highly active relapsing multiple sclerosis (RMS) have been available in Italy since 2018. We aimed to assess predictors of no-evidence-of-disease-activity-3 (NEDA-3) status after 24 months of the last dose of CLAD. RESULTS We included 88 patients (70.5% female, mean age at CLAD start 35.4 ± 11.4). Eighteen patients were treatment naïve, 48 switched to CLAD from a First line Disease Modifying Drug (DMD), and 22 from Second line DMDs. All patients were observed for a median follow-up time of 2.4 (1-4) years after the last dose of CLAD. Forty-nine patients (55.7%) showed NEDA at the last available follow-up. Naïve patients (p = 0.001), those with a lower number of previous DMDs (p < 0.001) and, even though not significantly, those switching from first line DMDs (p = 0.069) were more likely NEDA3 at the last available follow-up. In a subgroup of 30 patients (34%), Serum Light Neurofilaments (sNFL) levels showed a decrease from baseline to the 24 months of follow-up, statistically significant from baseline to the sixth month, and from the first to the second year detection. sNFL levels at 12th month showed a strong inverse correlation with the time to NEDA3 loss. CONCLUSIONS Our experience provides information for the 2-years after the last dose of CLAD, confirming a higher effectiveness of CLAD when placed early in the treatment algorithm. Given the ongoing expansion of the therapeutic landscape in MS, sNfL could support individualized decision-making, used as blood-based biomarker for CLAD responses in clinical practice.
Collapse
Affiliation(s)
- A Manni
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy.
| | - F Oggiano
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy.
| | - C Palazzo
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy.
| | - V Panetta
- L'altrastatistica srl -Consultancy & Training- Biostatistics office, Rome, Cap 00174, Italy.
| | - C D Gargano
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy.
| | - V Mangialardi
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - T Guerra
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - A Iaffaldano
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - F Caputo
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - P Iaffaldano
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy.
| | - M Ruggieri
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy.
| | - M Trojano
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy.
| | - D Paolicelli
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
5
|
Marchi L, Mariottini A, Viti V, Bianchi A, Nozzoli C, Repice AM, Boncompagni R, Ginestroni A, Damato V, Barilaro A, Chiti S, Saccardi R, Fainardi E, Massacesi L. Leptomeningeal enhancement in multiple sclerosis: a focus on patients treated with hematopoietic stem cell transplantation. Front Neurol 2024; 15:1373385. [PMID: 38899059 PMCID: PMC11186296 DOI: 10.3389/fneur.2024.1373385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Background Leptomeningeal enhancement (LME) is considered an MRI marker of leptomeningeal inflammation in inflammatory neurological disorders, including multiple sclerosis (MS). To our knowledge, no disease-modifying therapies (DMTs) have been demonstrated to affect LME number or morphology so far. Methods Monocentric study investigating the frequency and number of LME in a cohort of people with (pw)MS who performed a 3 T brain MRI with a standardized protocol (including a post-contrast FLAIR sequence), and exploring the impact of autologous hematopoietic stem cell transplantation (AHSCT) on this marker. In a longitudinal pilot study, consecutive MRIs were also analyzed in a subgroup of pwMS, including patients evaluated both pre- and post-AHSCT. Results Fifty-five pwMS were included: 24/55 (44%) had received AHSCT (AHSCT group) and 31 other treatments (CTRL group). At least one LME was identified in 19/55 (35%) cases (42 and 29% in the AHSCT and CTRL groups, respectively; p = 0.405). In the AHSCT group, LME number correlated with age at AHSCT (R = 0.50; p = 0.014), but not with age at post-treatment MRI. In the longitudinal pilot study (n = 8), one LME disappeared following AHSCT in 1/4 patients, whereas LME number was unchanged in the remaining four pwMS from the CTRL group. Discussion These results suggest that AHSCT may affect development and persistence of LME, strengthening the indication for early use of effective therapies bioavailable within the central nervous system (CNS), and therefore potentially targeting compartmentalized inflammation.
Collapse
Affiliation(s)
- Leonardo Marchi
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
| | - Alice Mariottini
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Center, Careggi University Hospital, Florence, Italy
| | - Vittorio Viti
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
| | - Andrea Bianchi
- Neuroradiology Unit, Careggi University Hospital, Florence, Italy
| | - Chiara Nozzoli
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Anna Maria Repice
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Center, Careggi University Hospital, Florence, Italy
| | - Riccardo Boncompagni
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | | | - Valentina Damato
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Center, Careggi University Hospital, Florence, Italy
| | - Alessandro Barilaro
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Center, Careggi University Hospital, Florence, Italy
| | - Stefano Chiti
- Health Physics Unit, Careggi University Hospital, Florence, Italy
| | - Riccardo Saccardi
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Enrico Fainardi
- Neuroradiology Unit, Careggi University Hospital, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Luca Massacesi
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Center, Careggi University Hospital, Florence, Italy
| |
Collapse
|
6
|
Gakis G, Angelopoulos I, Panagoulias I, Mouzaki A. Current knowledge on multiple sclerosis pathophysiology, disability progression assessment and treatment options, and the role of autologous hematopoietic stem cell transplantation. Autoimmun Rev 2024; 23:103480. [PMID: 38008300 DOI: 10.1016/j.autrev.2023.103480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that affects nearly 2.8 million people each year. MS distinguishes three main types: relapsing-remitting MS (RRMS), secondary progressive MS (SPMS) and primary progressive MS (PPMS). RRMS is the most common type, with the majority of patients eventually progressing to SPMS, in which neurological development is constant, whereas PPMS is characterized by a progressive course from disease onset. New or additional insights into the role of effector and regulatory cells of the immune and CNS systems, Epstein-Barr virus (EBV) infection, and the microbiome in the pathophysiology of MS have emerged, which may lead to the development of more targeted therapies that can halt or reverse neurodegeneration. Depending on the type and severity of the disease, various disease-modifying therapies (DMTs) are currently used for RRMS/SPMS and PPMS. As a last resort, and especially in highly active RRMS that does not respond to DMTs, autologous hematopoietic stem cell transplantation (AHSCT) is performed and has shown good results in reducing neuroinflammation. Nevertheless, the question of its potential role in preventing disability progression remains open. The aim of this review is to provide a comprehensive update on MS pathophysiology, assessment of MS disability progression and current treatments, and to examine the potential role of AHSCT in preventing disability progression.
Collapse
Affiliation(s)
- Georgios Gakis
- Laboratory of Immunohematology, Medical School, University of Patras, Patras, Greece
| | - Ioannis Angelopoulos
- Laboratory of Immunohematology, Medical School, University of Patras, Patras, Greece
| | - Ioannis Panagoulias
- Laboratory of Immunohematology, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
7
|
Mariottini A, Lotti A, Innocenti C, Repice AM, Nozzoli C, Boncompagni R, Fainardi E, Saccardi R, Massacesi L. Effect of the COVID-19 pandemic on disease activity in multiple sclerosis patients treated with hematopoietic stem cell transplantation. Eur J Neurol 2023; 30:3362-3366. [PMID: 37483174 DOI: 10.1111/ene.15989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND AND PURPOSE It is still debated whether the COVID-19 pandemic affected disease activity in people with autoimmune diseases, including multiple sclerosis (MS). The aim of this study, therefore, was to explore the impact of COVID-19 in people with MS (pwMS) not receiving continuative disease-modifying therapy (DMT) after previous treatment with autologous hematopoietic stem cell transplantation (AHSCT). MATERIALS AND METHODS We included pwMS treated with AHSCT who were in disease remission without receiving DMTs during the pandemic and who were followed up at our centre during the study period. Data on SARS-CoV-2 infection and vaccination were recorded, with details of adverse events and clinical-radiological disease activity. RESULTS A total of 36 pwMS (31 females; 86%) were included, of whom 23 (64%) had relapsing-remitting (RR-MS) and 13 had secondary progressive MS (SP-MS). Thirty-three pwMS (92%) received anti-SARS-CoV-2 mRNA vaccines. Thirteen patients (36%) developed mild to moderate COVID-19 a median (range) of 58 (4-224) months after AHSCT; seven (54%) of these patients were not yet vaccinated. Transient neurological symptoms after vaccination or infection were reported in 9% and 36% of the patients, respectively. The rate of new inflammatory events (relapses or asymptomatic magnetic resonance imaging [MRI] activity) after AHSCT increased from 0.006 (one asymptomatic new lesion/159 patient-years) before the pandemic to 0.083 (five relapses plus two cases of asymptomatic MRI activity/84 patient-years) since the pandemic start (p = 0.004). CONCLUSIONS People with MS with a history of highly active disease, who are untreated or receiving moderate-efficacy DMTs might be more vulnerable to disease reactivation, possibly elicited by exogenous triggers. Careful monitoring and further investigation are warranted to ascertain whether special precautions are needed in these cases.
Collapse
Affiliation(s)
- Alice Mariottini
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Centre, Careggi University Hospital, Florence, Italy
| | - Antonio Lotti
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
| | - Chiara Innocenti
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Anna Maria Repice
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Centre, Careggi University Hospital, Florence, Italy
| | - Chiara Nozzoli
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Riccardo Boncompagni
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Enrico Fainardi
- Neuroradiology Unit, Careggi University Hospital, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Riccardo Saccardi
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Luca Massacesi
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Centre, Careggi University Hospital, Florence, Italy
| |
Collapse
|
8
|
Mariottini A, De Matteis E, Cencioni MT, Muraro PA. Haematopoietic Stem Cell Transplantation for the Treatment of Multiple Sclerosis: Recent Advances. Curr Neurol Neurosci Rep 2023; 23:507-520. [PMID: 37589918 PMCID: PMC10468923 DOI: 10.1007/s11910-023-01290-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
PURPOSE OF REVIEW Autologous haematopoietic stem cell transplantation (AHSCT) is increasingly considered a treatment option for patients with multiple sclerosis (MS), an autoimmune demyelinating and degenerative disease of the central nervous system (CNS). AHSCT persistently suppresses inflammation and improves the disease course in large proportions of patients with relapsing-remitting (RR) MS. Aim of this article is to review the relevant new knowledge published during the last 3 years. RECENT FINDINGS Laboratory studies reported confirmatory and new insights into the immunological and biomarker effects of AHSCT. Retrospective clinical studies confirmed excellent outcomes in RRMS, showing possible superior effectiveness over standard therapies and suggesting a possible benefit in early secondary progressive (SP) MS with inflammatory features. New data on risks of infertility and secondary autoimmunity were also reported. Further evidence on the high effectiveness and acceptable safety of AHSCT strengthens its position as a clinical option for aggressive RRMS. Further research is needed to better define its role in treatment-naïve and progressive forms of MS, ideally within randomised clinical trials (RCTs).
Collapse
Affiliation(s)
- Alice Mariottini
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
| | - Eleonora De Matteis
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Paolo A Muraro
- Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
9
|
Serum Neurofilament Light Chain as Biomarker for Cladribine-Treated Multiple Sclerosis Patients in a Real-World Setting. Int J Mol Sci 2023; 24:ijms24044067. [PMID: 36835478 PMCID: PMC9961994 DOI: 10.3390/ijms24044067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/22/2023] Open
Abstract
Serum neurofilament light chain (sNfL) is an intensely investigated biomarker in multiple sclerosis (MS). The aim of this study was to explore the impact of cladribine (CLAD) on sNfL and the potential of sNfL as a predictor of long-term treatment response. Data were gathered from a prospective, real-world CLAD cohort. We measured sNfL at baseline (BL-sNfL) and 12 months (12Mo-sNfL) after CLAD start by SIMOA. Clinical and radiological assessments determined fulfilment of "no evidence of disease activity" (NEDA-3). We evaluated BL-sNfL, 12M-sNfL and BL/12M sNfL ratio (sNfL-ratio) as predictors for treatment response. We followed 14 patients for a median of 41.5 months (range 24.0-50.0). NEDA-3 was fulfilled by 71%, 57% and 36% for a period of 12, 24 and 36 months, respectively. We observed clinical relapses in four (29%), MRI activity in six (43%) and EDSS progression in five (36%) patients. CLAD significantly reduced sNfL (BL-sNfL: mean 24.7 pg/mL (SD ± 23.8); 12Mo-sNfL: mean 8.8 pg/mL (SD ± 6.2); p = 0.0008). We found no correlation between BL-sNfL, 12Mo-sNfL and ratio-sNfL and the time until loss of NEDA-3, the occurrence of relapses, MRI activity, EDSS progression, treatment switch or sustained NEDA-3. We corroborate that CLAD decreases neuroaxonal damage in MS patients as determined by sNfL. However, sNfL at baseline and at 12 months failed to predict clinical and radiological treatment response in our real-world cohort. Long-term sNfL assessments in larger studies are essential to explore the predictive utility of sNfL in patients treated with immune reconstitution therapies.
Collapse
|
10
|
Dynamics of Inflammatory and Neurodegenerative Biomarkers after Autologous Hematopoietic Stem Cell Transplantation in Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms231810946. [PMID: 36142860 PMCID: PMC9503241 DOI: 10.3390/ijms231810946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Autologous hematopoietic stem cell transplantation (aHSCT) is a highly efficient treatment of multiple sclerosis (MS), and hence it likely normalizes pathological and/or enhances beneficial processes in MS. The disease pathomechanisms include neuroinflammation, glial cell activation and neuronal damage. We studied biomarkers that in part reflect these, like markers for neuroinflammation (C-X-C motif chemokine ligand (CXCL) 9, CXCL10, CXCL13, and chitinase 3-like 1 (CHI3L1)), glial perturbations (glial fibrillary acidic protein (GFAP) and in part CHI3L1), and neurodegeneration (neurofilament light chain (NfL)) by enzyme-linked immunosorbent assays (ELISA) and single-molecule array assay (SIMOA) in the serum and cerebrospinal fluid (CSF) of 32 MS patients that underwent aHSCT. We sampled before and at 1, 3, 6, 12, 24 and 36 months after aHSCT for serum, as well as before and 24 months after aHSCT for CSF. We found a strong increase of serum CXCL10, NfL and GFAP one month after the transplantation, which normalized one and two years post-aHSCT. CXCL10 was particularly increased in patients that experienced reactivation of cytomegalovirus (CMV) infection, but not those with Epstein-Barr virus (EBV) reactivation. Furthermore, patients with CMV reactivation showed increased Th1 phenotype in effector memory CD4+ T cells. Changes of the other serum markers were more subtle with a trend for an increase in serum CXCL9 early post-aHSCT. In CSF, GFAP levels were increased 24 months after aHSCT, which may indicate sustained astroglia activation 24 months post-aHSCT. Other CSF markers remained largely stable. We conclude that MS-related biomarkers indicate neurotoxicity early after aHSCT that normalizes after one year while astrocyte activation appears increased beyond that, and increased serum CXCL10 likely does not reflect inflammation within the central nervous system (CNS) but rather occurs in the context of CMV reactivation or other infections post-aHSCT.
Collapse
|
11
|
The current standing of autologous haematopoietic stem cell transplantation for the treatment of multiple sclerosis. J Neurol 2022; 269:3937-3958. [PMID: 35399125 PMCID: PMC8995166 DOI: 10.1007/s00415-022-11063-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/01/2022]
Abstract
AbstractAutologous haematopoietic stem cell transplantation (aHSCT) is gaining traction as a valuable treatment option for patients affected by severe multiple sclerosis (MS), particularly the relapsing–remitting form. We describe the current literature in terms of clinical trials, observational and retrospective studies, as well as immune reconstitution following transplantation, with a focus on the conditioning regimens used for transplantation. The evidence base predominantly consists of non-randomised, uncontrolled clinical trials or data from retrospective or observational cohorts, i.e. very few randomised or controlled trials. Most often, intermediate-intensity conditioning regimens are used, with promising results from both myeloablative and lymphoablative strategies, as well as from regimens that are low and high intensity. Efficacy of transplantation, which is likely secondary to immune reconstitution and restored immune tolerance, is, therefore, not clearly dependent on the intensity of the conditioning regimen. However, the conditioning regimen may well influence the immune response to transplantation. Heterogeneity of conditioning regimens among studies hinders synthesis of the articles assessing post-aHSCT immune system changes. Factors associated with better outcomes were lower Kurtzke Expanded Disability Status Scale, relapsing–remitting MS, younger age, and shorter disease duration at baseline, which supports the guidance for patient selection proposed by the European Society for Blood and Marrow Transplantation. Interestingly, promising outcomes were described for patients with secondary progressive MS by some studies, which may be worth taking into account when considering treatment options for patients with active, progressive disease. Of note, a significant proportion of patients develop autoimmune disease following transplantation, with alemtuzumab-containing regimens associated with the highest incidence.
Collapse
|