1
|
Alberro A, Bravo-Miana RDC, Gs Iñiguez S, Iribarren-López A, Arroyo-Izaga M, Matheu A, Muñoz-Culla M, Otaegui D. Age-Related sncRNAs in Human Hippocampal Tissue Samples: Focusing on Deregulated miRNAs. Int J Mol Sci 2024; 25:12872. [PMID: 39684581 DOI: 10.3390/ijms252312872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Small non-coding RNAs (sncRNAs), particularly microRNAs (miRNAs), play an important role in transcriptome regulation by binding to mRNAs and post-transcriptionally inhibiting protein production. This regulation occurs in both physiological and pathological conditions, where the expression of many miRNAs is altered. Previous reports by our group and others have demonstrated that miRNA expression is also altered during aging. However, most studies have analyzed human peripheral blood samples or brain samples from animal models, leaving a gap in knowledge regarding miRNA expression in the human brain. In this work, we analyzed the expression of sncRNAs from coronal sections of human hippocampal samples, a tissue with a high vulnerability to deleterious conditions such as aging. Samples from young (n = 5, 27-49 years old), old (n = 8, 58-88 years old), and centenarian (n = 3, 97, 99, and 100 years old) individuals were included. Our results reveal that sncRNAs, particularly miRNAs, are differentially expressed (DE) in the human hippocampus with aging. Besides, miRNA-mediated regulatory networks revealed significant interactions with mRNAs deregulated in the same hippocampal samples. Surprisingly, 80% of DE mRNA in the centenarian vs. old comparison are regulated by hsa-miR-192-5p and hsa-miR-3135b. Additionally, validated hsa-miR-6826-5p, hsa-let-7b-3p, hsa-miR-7846, and hsa-miR-451a emerged as promising miRNAs that are deregulated with aging and should be further investigated.
Collapse
Affiliation(s)
- Ainhoa Alberro
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Rocío Del Carmen Bravo-Miana
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Saioa Gs Iñiguez
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
| | - Andrea Iribarren-López
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Marta Arroyo-Izaga
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country (UPV/EHU), Bioaraba, 01006 Vitoria-Gasteiz, Spain
| | - Ander Matheu
- Cellular Oncology Group, Oncology Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Frailty and Healthy Ageing Research Area of CIBER (CIBERfes), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Maider Muñoz-Culla
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- Department of Basic Psychological Processes and Their Development, University of the Basque Country (UPV/EHU), 20018 San Sebastián, Spain
| | - David Otaegui
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
2
|
Shao H, Guan R, Chen Z, Kong R, Zhang C, Gu H. Circular RNA circ_0022707 impedes the progression of preeclampsia via the miR-3135b/GHR/PI3K/Akt axis. Funct Integr Genomics 2024; 24:208. [PMID: 39499344 DOI: 10.1007/s10142-024-01490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/05/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
Preeclampsia (PE) is a severe pregnancy complication linked to maternal and fetal health, yet its underlying causes and pathogenesis remain elusive. Circular RNA (circRNA), a form of non-coding RNA, is implicated in the progression of PE; nevertheless, the specific mechanism is not fully elucidated. This study aimed to identify and validate circRNAs that are pivotal in the pathophysiology of PE. Firstly, we constructed a ceRNA network using datasets from the GEO database and identified circ_0022707 as our study target. Then, using qRT-PCR analysis, we validated that circ_0022707 was downregulated in preeclamptic placentas compared to those of normal pregnant women. In situ hybridization assays revealed that circ_0022707 existed in placental villous trophoblast cells. Additionally, Pearson correlation analysis revealed a negative relationship between the expression of circ_0022707 and PE-related indicators (systolic and diastolic blood pressure, along with 24-h proteinuria levels). Furthermore, gain-of-function experiments confirmed that circ_0022707 could promote trophoblast cell proliferation and cell cycle progression while suppressing apoptosis. In vivo experiments using a preeclampsia-like mouse model also demonstrated that circ_0022707 administration could mitigate preeclampsia-like symptoms. Mechanistically, we confirmed that circ_0022707 functions through the miR-3135b/GHR/PI3K/Akt pathway in trophoblast cells. Overall, our study has provided insight into the important function of circ_002707 in the development of PE, enhancing our understanding of the disease's mechanism and proposing a viable therapeutic strategy for PE.
Collapse
Affiliation(s)
- Huijing Shao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Rui Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Ruijiao Kong
- Department of Laboratory and Diagnosis, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Caihong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Hang Gu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Yang B, Hu S, Jiang Y, Xu L, Shu S, Zhang H. Advancements in Single-Cell RNA Sequencing Research for Neurological Diseases. Mol Neurobiol 2024; 61:8797-8819. [PMID: 38564138 DOI: 10.1007/s12035-024-04126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Neurological diseases are a major cause of the global burden of disease. Although the mechanisms of the occurrence and development of neurological diseases are not fully clear, most of them are associated with cells mediating neuroinflammation. Yet medications and other therapeutic options to improve treatment are still very limited. Single-cell RNA sequencing (scRNA-seq), as a delightfully potent breakthrough technology, not only identifies various cell types and response states but also uncovers cell-specific gene expression changes, gene regulatory networks, intercellular communication, and cellular movement trajectories, among others, in different cell types. In this review, we describe the technology of scRNA-seq in detail and discuss and summarize the application of scRNA-seq in exploring neurological diseases, elaborating the corresponding specific mechanisms of the diseases as well as providing a reliable basis for new therapeutic approaches. Finally, we affirm that scRNA-seq promotes the development of the neuroscience field and enables us to have a deeper cellular understanding of neurological diseases in the future, which provides strong support for the treatment of neurological diseases and the improvement of patients' prognosis.
Collapse
Affiliation(s)
- Bingjie Yang
- Department of Neurology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuqi Hu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China
| | - Yiru Jiang
- Department of Neurology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lei Xu
- Department of Neurology, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang, China
| | - Song Shu
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Zhang
- Department of Neurology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Yan Y, Wang Z, Liu X, Han S, Li J, Zhang Y, Zhao L. Identification of brain endothelial cell-specific genes and pathways in ischemic stroke by integrated bioinformatical analysis. Brain Circ 2023; 9:228-239. [PMID: 38284111 PMCID: PMC10821689 DOI: 10.4103/bc.bc_40_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Ischemic stroke (IS) is a life-threatening condition with limited treatment options; thus, finding the potential key genes for novel therapeutic targets is urgently needed. This study aimed to explore novel candidate genes and pathways of brain microvessel endothelial cells (ECs) in IS by bioinformatics analysis. MATERIALS AND METHODS The gene expression profiles of brain tissues or brain ECs in IS mice were downloaded from the online gene expression omnibus (GEO) to obtain the differentially expressed genes (DEGs) by R software. Functional enrichment analyses were used to cluster the functions and signaling pathways of the DEGs, while DEG-associated protein-protein interaction network was performed to identify hub genes. The target microRNAs and competitive endogenous RNA networks of key hub genes were constructed by Cytoscape. RESULTS Totally 84 DEGs were obtained from 6 brain tissue samples and 4 brain vascular EC samples both from IS mice in the datasets GSE74052 and GSE137482, with significant enrichment in immune responses, such as immune system processes and T-cell activation. Eight hub genes filtered by Cytoscape were validated by two other GEO datasets, wherein key genes of interest were verified by reverse transcription-polymerase chain reaction using an in vitro ischemic model of EC cultures. Our data indicated that AURKA and CENPF might be potential therapeutic target genes for IS, and Malat1/Snhg12/Xist-miR-297b-3p-CENPF, as well as Mir17 hg-miR-34b-3p-CENPF, might be RNA regulatory pathways to control IS progression. CONCLUSIONS Our work identified two brain EC-specific expressed genes in IS, namely, AURKA and CENPF, as potential gene targets for IS treatment. In addition, we presented miR-297b-3p/miR-34b-3p-CENPF as the potential RNA regulatory axes to prevent pathogenesis of IS.
Collapse
Affiliation(s)
- Yi Yan
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Zhaohui Wang
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Xiao Liu
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Song Han
- Department of Neurobiology, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Junfa Li
- Department of Neurobiology, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Neurobiology, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Li Zhao
- Department of Neurobiology, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Zhu D, Zhu Y, Liu L, He X, Fu S. Metabolomic analysis of vascular cognitive impairment due to hepatocellular carcinoma. Front Neurol 2023; 13:1109019. [PMID: 37008043 PMCID: PMC10062391 DOI: 10.3389/fneur.2022.1109019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/26/2022] [Indexed: 03/18/2023] Open
Abstract
IntroductionScreening for metabolically relevant differentially expressed genes (DEGs) shared by hepatocellular carcinoma (HCC) and vascular cognitive impairment (VCI) to explore the possible mechanisms of HCC-induced VCI.MethodsBased on metabolomic and gene expression data for HCC and VCI, 14 genes were identified as being associated with changes in HCC metabolites, and 71 genes were associated with changes in VCI metabolites. Multi-omics analysis was used to screen 360 DEGs associated with HCC metabolism and 63 DEGs associated with VCI metabolism.ResultsAccording to the Cancer Genome Atlas (TCGA) database, 882 HCC-associated DEGs were identified and 343 VCI-associated DEGs were identified. Eight genes were found at the intersection of these two gene sets: NNMT, PHGDH, NR1I2, CYP2J2, PON1, APOC2, CCL2, and SOCS3. The HCC metabolomics prognostic model was constructed and proved to have a good prognostic effect. The HCC metabolomics prognostic model was constructed and proved to have a good prognostic effect. Following principal component analyses (PCA), functional enrichment analyses, immune function analyses, and TMB analyses, these eight DEGs were identified as possibly affecting HCC-induced VCI and the immune microenvironment. As well as gene expression and gene set enrichment analyses (GSEA), a potential drug screen was conducted to investigate the possible mechanisms involved in HCC-induced VCI. The drug screening revealed the potential clinical efficacy of A-443654, A-770041, AP-24534, BI-2536, BMS- 509744, CGP-60474, and CGP-082996.ConclusionHCC-associated metabolic DEGs may influence the development of VCI in HCC patients.
Collapse
Affiliation(s)
- Dan Zhu
- Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yamei Zhu
- Deptartment of Infectious Diseases, Wuhua Ward, 920th Hospital of Joint Logistics Support Force of Chinese PLA, Kunming, Yunnan, China
| | - Lin Liu
- Dalian Hunter Information Consulting Co. LTD, Dalian, China
| | - Xiaoxue He
- Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shizhong Fu
- Deptartment of Infectious Diseases, Wuhua Ward, 920th Hospital of Joint Logistics Support Force of Chinese PLA, Kunming, Yunnan, China
- *Correspondence: Shizhong Fu ;
| |
Collapse
|
6
|
Fan K, Dong Y, Li T, Li Y. Cuproptosis-associated CDKN2A is targeted by plicamycin to regulate the microenvironment in patients with head and neck squamous cell carcinoma. Front Genet 2023; 13:1036408. [PMID: 36699463 PMCID: PMC9868476 DOI: 10.3389/fgene.2022.1036408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), the most common malignancy of the head and neck, has an overall 5-year survival rate of <50%. Genes associated with cuproptosis, a newly identified copper-dependent form of cell death, are aberrantly expressed in various tumours. However, their role in HNSCC remains unknown. In this study, bioinformatic analysis revealed that the cuproptosis-related gene CDKN2A was correlated with the malignant behaviour of HNSCC. Kaplan-Meier (KM) curves showed that patients with high CDKN2A expression had a better prognosis. Multiomic analysis revealed that CDKN2A may be associated with cell cycle and immune cell infiltration in the tumour microenvironment and is important for maintaining systemic homeostasis in the body. Furthermore, molecular docking and molecular dynamics simulations suggested strong binding between plicamycin and CDKN2A. And plicamycin inhibits the progression of HNSCC in cellular assays. In conclusion, this study elucidated a potential mechanism of action of the cuproptosis-associated gene CDKN2A in HNSCC and revealed that plicamycin targets CDKN2A to improve the prognosis of patients.
Collapse
|
7
|
Liu M, Sun X, Chen B, Dai R, Xi Z, Xu H. Insights into Manganese Superoxide Dismutase and Human Diseases. Int J Mol Sci 2022; 23:ijms232415893. [PMID: 36555531 PMCID: PMC9786916 DOI: 10.3390/ijms232415893] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Redox equilibria and the modulation of redox signalling play crucial roles in physiological processes. Overproduction of reactive oxygen species (ROS) disrupts the body's antioxidant defence, compromising redox homeostasis and increasing oxidative stress, leading to the development of several diseases. Manganese superoxide dismutase (MnSOD) is a principal antioxidant enzyme that protects cells from oxidative damage by converting superoxide anion radicals to hydrogen peroxide and oxygen in mitochondria. Systematic studies have demonstrated that MnSOD plays an indispensable role in multiple diseases. This review focuses on preclinical evidence that describes the mechanisms of MnSOD in diseases accompanied with an imbalanced redox status, including fibrotic diseases, inflammation, diabetes, vascular diseases, neurodegenerative diseases, and cancer. The potential therapeutic effects of MnSOD activators and MnSOD mimetics are also discussed. Targeting this specific superoxide anion radical scavenger may be a clinically beneficial strategy, and understanding the therapeutic role of MnSOD may provide a positive insight into preventing and treating related diseases.
Collapse
Affiliation(s)
- Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Xueyang Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Boya Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
- Correspondence: (Z.X.); (H.X.)
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
- Correspondence: (Z.X.); (H.X.)
| |
Collapse
|
8
|
Chen B, Luo Y, Kang X, Sun Y, Jiang C, Yi B, Yan X, Chen Y, Shi R. Development of a prognostic prediction model based on a combined multi-omics analysis of head and neck squamous cell carcinoma cell pyroptosis-related genes. Front Genet 2022; 13:981222. [PMID: 36246601 PMCID: PMC9557126 DOI: 10.3389/fgene.2022.981222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
This study aimed to understand the prognosis of patients with head and neck squamous cell carcinoma (HNSCC) and to develop and validate a prognostic model for HNSCC based on pyroptosis-associated genes (PAGs) in nasopharyngeal carcinoma. The Cancer Genome Atlas database was used to identify differentially expressed PAGs. These genes were analyzed using the Kyoto Encyclopedia of Genes and Genomes functional annotation analyses and Gene Ontology analyses. The NLR family pyrin domain containing 1 (NLRP1) gene, charged multivesicular body protein 7 (CHMP7) gene, and cytochrome C (CYCS) gene were used to create a prognostic model for HNSCC. The results of the Kaplan-Meier (K-M) and Cox regression analyses indicated that the developed model served as an independent risk factor for HNSCC. According to the K-M analysis, the overall survival of high-risk patients was lower than that of low-risk patients. The hazard ratios corresponding to the risk scores determined using the multivariate and univariate Cox regression analyses were 1.646 (95% confidence interval (CI): 1.189–2.278) and 1.724 (95% CI: 1.294–2.298), respectively, and the area under the receiver operator characteristic curve was 0.621. The potential mechanisms associated with the functions of the identified genes were then identified, and the tumor microenvironment and levels of immune cell infiltration achieved were analyzed. The immune infiltration analysis revealed differences in the distribution of Th cells, tumor-infiltrating lymphocytes, regulatory T cells, follicular helper T cells, adipose-derived cells, interdigitating dendritic cells, CD8+ T cells, and B cells. However, validating bioinformatics analyses through biological experiments is still recommended. This study developed a prognostic model for HNSCC that included NLRP1, CHMP7, and CYCS.
Collapse
Affiliation(s)
- Bin Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yuanbo Luo
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xueran Kang
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yuxing Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Chenyan Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Bin Yi
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xiaojun Yan
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Runjie Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Ninth People’s Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Runjie Shi,
| |
Collapse
|
9
|
Ma J, Zhu M, Ye X, Wu B, Wang T, Ma M, Li T, Zhang N. Prognostic microRNAs associated with phosphoserine aminotransferase 1 in gastric cancer as markers of bone metastasis. Front Genet 2022; 13:959684. [PMID: 36061202 PMCID: PMC9437321 DOI: 10.3389/fgene.2022.959684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/25/2022] [Indexed: 01/30/2023] Open
Abstract
This study analyzed PSAT1-targeted miRNAs as a prognostic predictor for gastric cancer. The relationship between the clinical manifestations of gastric cancer in patients and phosphoserine aminotransferase 1 (PSAT1) was analyzed using correlation analysis. PSAT1 was highly expressed in gastric cancer, and its low expression was associated with a poor prognosis. By pan-cancer analysis, PSAT1 could affect the tumor immune microenvironment by immune infiltration analysis. Nine microRNAs targeting PSAT1 and associated with gastric cancer were screened by miRwalk and microRNA expression in TCGA tumor tissues. Six microRNAs were obtained by survival curve analysis, including hsa-miR-1-3p, hsa-miR-139-5p, hsa-miR-145-5p, hsa-miR-195-5p, hsa-miR-218-5p, and hsa-miR-497-5p. Based on the above six microRNAs, a model for bone metastasis prediction in gastric cancer prediction was constructed. An analysis of a decision curve was performed based on the microRNAs obtained to predict bone metastasis from gastric cancer. It had a positive area under the curve (AUC) value of 0.746, and the decision curve analysis (DCA) indicated that it was clinically significant. Dual-luciferase reporter genes indicated that hsa-miR-497-5p and PSAT1 were targeted, and qRT-PCR results confirmed that hsa-miR-497-5p could down-regulate PSAT1 expression. MicroRNAs targeting the regulation of PSAT1 expression can well predict the prognosis of gastric cancer.
Collapse
Affiliation(s)
- Jingwei Ma
- The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Meng Zhu
- College of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiaofeng Ye
- The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Bo Wu
- The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Tao Wang
- The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Muyuan Ma
- The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Tao Li
- The Second Department of Surgical Oncology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Ning Zhang
- Department of Pathology, General Hospital of Ningxia Medical University, Ningxia, China
- *Correspondence: Ning Zhang,
| |
Collapse
|