1
|
Gonzalez-Cano SI, Peña-Rosas U, Muñoz-Arenas G, Torres-Cinfuentes DM, Treviño S, Moran-Raya C, Flores G, Guevara J, Diaz A. Neuroprotective Effect of Curcumin-Metavanadate in the Hippocampus of Aged Rats. Synapse 2025; 79:e70008. [PMID: 39748146 DOI: 10.1002/syn.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/02/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025]
Abstract
Brain aging is a multifactorial process that includes a reduction in the biological and metabolic activity of individuals. Oxidative stress and inflammatory processes are characteristic of brain aging. Given the current problems, the need arises to implement new therapeutic approaches. Polyoxidovanadates (POV), as well as curcumin, have stood out for their participation in a variety of biological activities. This work aimed to evaluate the coupling of metavanadate and curcumin (Cuma-MV) on learning, memory, redox balance, neuroinflammation, and cell death in the hippocampal region (CA1 and CA3) and dentate gyrus (DG) of aged rats. Rats 18 months old were administered a daily dose of curcumin (Cuma), sodium metavanadate (MV), or Cuma-MV for two months. The results demonstrated that administration of Cuma-MV for 60 days in aged rats improved short- and long-term recognition memory, decreased reactive oxygen species, and substantially improved lipoperoxidation in the hippocampus. Furthermore, the activity of superoxide dismutase and catalase increased in animals treated with Cuma-MV. It is important to highlight that the treatment with Cuma-MV exhibited a significantly greater effect than the treatments with MV or Cuma in all the parameters evaluated. Finally, we conclude that Cuma-MV represents a potential therapeutic option in the prevention and treatment of cognitive decline associated with aging.
Collapse
Affiliation(s)
| | - Ulises Peña-Rosas
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Guadalupe Muñoz-Arenas
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | | | - Samuel Treviño
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Carolina Moran-Raya
- Institute of Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Gonzalo Flores
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Jorge Guevara
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alfonso Diaz
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| |
Collapse
|
2
|
Zhang Z, Liang W, Zheng X, Zhong Q, Hu H, Huo X. Kindergarten dust heavy metal(loid) exposure associates with growth retardation in children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118341-118351. [PMID: 37910347 DOI: 10.1007/s11356-023-30278-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Heavy metal contamination from electronic waste recycling sites is present in dust found in indoor kindergartens located in e-waste recycling areas, and its potential impact on child health is a significant concern. The association between heavy metal(loid)s and the child developmental indicators is still unclear. In 2019 and 2020, we enrolled 325 and 319 children in an e-waste recycling town, respectively. Corresponding 61 and 121 dust samples were collected from roads, houses, and kindergartens in the two years. The median concentrations of metals, including Cr, Ni, Cu, Zn, and Pb exceeded the allowable limits. The highest amount of cumulative enrichment (cEF) was observed in indoor kindergarten dust (cEF = 112.3400), followed by house dust (cEF = 76.6950) and road dust (cEF = 39.7700). Children residing in the e-waste town had below-average height and weight compared to their Chinese peers. Based on linear regression analysis, the daily intake of Cd, V, Mn, and Pb in indoor kindergarten dust was found to be negatively associated with head circumference (HeC) (P < 0.05). Similarly, the daily intake of As, Cd, and Ba in indoor kindergarten dust was found to be negatively associated with chest circumference (ChC) (P < 0.05). In addition, the daily intake of As, Cd, and Ba in indoor kindergarten dust was negatively correlated with body mass index (BMI), as per the results of the study (P < 0.05). Cross-product term analysis revealed a negative correlation between daily intake of heavy metal(loid)s and HeC, ChC, and BMI, with age and sex serving as influencing factors. In conclusion, exposure to heavy metal(loid)s in indoor kindergarten dust increases the risk of growth retardation and developmental delay in children.
Collapse
Affiliation(s)
- Zhuxia Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Wanting Liang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Hongfei Hu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
3
|
Olopade JO, Mustapha OA, Fatola OI, Ighorodje E, Folarin OR, Olopade FE, Omile IC, Obasa AA, Oyagbemi AA, Olude MA, Thackray AM, Bujdoso R. Neuropathological profile of the African Giant Rat brain (Cricetomys gambianus) after natural exposure to heavy metal environmental pollution in the Nigerian Niger Delta. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120496-120514. [PMID: 37945948 DOI: 10.1007/s11356-023-30619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Pollution by heavy metals is a threat to public health because of the adverse effects on multiple organ systems including the brain. Here, we used the African giant rat (AGR) as a novel sentinel host to assess the effect of heavy metal accumulation and consequential neuropathology upon the brain. For this study, AGR were collected from distinct geographical regions of Nigeria: the rain forest region of south-west Nigeria (Ibadan), the central north of Nigeria (Abuja), and in oil-polluted areas of south Nigeria (Port-Harcourt). We found that zinc, copper, and iron were the major heavy metals that accumulated in the brain and serum of sentinel AGR, with the level of iron highest in animals from Port-Harcourt and least in animals from Abuja. Brain pathology, determined by immunohistochemistry markers of inflammation and oxidative stress, was most severe in animals from Port Harcourt followed by those from Abuja and those from Ibadan were the least affected. The brain pathologies were characterized by elevated brain advanced oxidation protein product (AOPP) levels, neuronal depletion in the prefrontal cortex, severe reactive astrogliosis in the hippocampus and cerebellar white matter, demyelination in the subcortical white matter and cerebellar white matter, and tauopathies. Selective vulnerabilities of different brain regions to heavy metal pollution in the AGR collected from the different regions of the country were evident. In conclusion, we propose that neuropathologies associated with redox dyshomeostasis because of environmental pollution may be localized and contextual, even in a heavily polluted environment. This novel study also highlights African giant rats as suitable epidemiological sentinels for use in ecotoxicological studies.
Collapse
Affiliation(s)
- James Olukayode Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Oluwaseun Ahmed Mustapha
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
| | - Olanrewaju Ifeoluwa Fatola
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ejiro Ighorodje
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Oluwabusayo Racheal Folarin
- Department of Biomedical Laboratory Science, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Irene Chizubelu Omile
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adedunsola Ajike Obasa
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Matthew Ayokunle Olude
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
| | - Alana Maureen Thackray
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| |
Collapse
|