1
|
Rouse TC, Ni AM, Huang C, Cohen MR. Topological insights into the neural basis of flexible behavior. Proc Natl Acad Sci U S A 2023; 120:e2219557120. [PMID: 37279273 PMCID: PMC10268229 DOI: 10.1073/pnas.2219557120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/28/2023] [Indexed: 06/08/2023] Open
Abstract
It is widely accepted that there is an inextricable link between neural computations, biological mechanisms, and behavior, but it is challenging to simultaneously relate all three. Here, we show that topological data analysis (TDA) provides an important bridge between these approaches to studying how brains mediate behavior. We demonstrate that cognitive processes change the topological description of the shared activity of populations of visual neurons. These topological changes constrain and distinguish between competing mechanistic models, are connected to subjects' performance on a visual change detection task, and, via a link with network control theory, reveal a tradeoff between improving sensitivity to subtle visual stimulus changes and increasing the chance that the subject will stray off task. These connections provide a blueprint for using TDA to uncover the biological and computational mechanisms by which cognition affects behavior in health and disease.
Collapse
Affiliation(s)
- Tevin C. Rouse
- Division of Biological Sciences, Department of Neurobiology, University of Chicago, Chicago, IL60637
| | - Amy M. Ni
- Dietrich School of Arts and Sciences, Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA15260
| | - Chengcheng Huang
- Dietrich School of Arts and Sciences, Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA15260
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA15260
| | - Marlene R. Cohen
- Division of Biological Sciences, Department of Neurobiology, University of Chicago, Chicago, IL60637
| |
Collapse
|
2
|
Perceptual awareness negativity: a physiological correlate of sensory consciousness. Trends Cogn Sci 2021; 25:660-670. [PMID: 34172384 DOI: 10.1016/j.tics.2021.05.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/21/2022]
Abstract
Much research on the neural correlates of consciousness (NCC) has focused on two evoked potentials, the P3b and the visual or auditory awareness negativity (VAN, AAN). Surveying a broad range of recent experimental evidence, we find that repeated failures to observe the P3b during conscious perception eliminate it as a putative NCC. Neither the VAN nor the AAN have been dissociated from consciousness; furthermore, a similar neural signal correlates with tactile consciousness. These awareness negativities can be maximal contralateral to the evoking stimulus, are likely generated in underlying sensory cortices, and point to the existence of a generalized perceptual awareness negativity (PAN) reflecting the onset of sensory consciousness.
Collapse
|
3
|
Maier A, Tsuchiya N. Growing evidence for separate neural mechanisms for attention and consciousness. Atten Percept Psychophys 2021; 83:558-576. [PMID: 33034851 PMCID: PMC7886945 DOI: 10.3758/s13414-020-02146-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 11/08/2022]
Abstract
Our conscious experience of the world seems to go in lockstep with our attentional focus: We tend to see, hear, taste, and feel what we attend to, and vice versa. This tight coupling between attention and consciousness has given rise to the idea that these two phenomena are indivisible. In the late 1950s, the honoree of this special issue, Charles Eriksen, was among a small group of early pioneers that sought to investigate whether a transient increase in overall level of attention (alertness) in response to a noxious stimulus can be decoupled from conscious perception using experimental techniques. Recent years saw a similar debate regarding whether attention and consciousness are two dissociable processes. Initial evidence that attention and consciousness are two separate processes primarily rested on behavioral data. However, the past couple of years witnessed an explosion of studies aimed at testing this conjecture using neuroscientific techniques. Here we provide an overview of these and related empirical studies on the distinction between the neuronal correlates of attention and consciousness, and detail how advancements in theory and technology can bring about a more detailed understanding of the two. We argue that the most promising approach will combine ever-evolving neurophysiological and interventionist tools with quantitative, empirically testable theories of consciousness that are grounded in a mathematically formalized understanding of phenomenology.
Collapse
Affiliation(s)
- Alexander Maier
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| | - Naotsugu Tsuchiya
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, VIC, Australia
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, 565-0871, Japan
- Advanced Telecommunications Research Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan
| |
Collapse
|
4
|
Pedersini CA, Lingnau A, Sanchez-Lopez J, Cardobi N, Savazzi S, Marzi CA. Visuo-spatial attention to the blind hemifield of hemianopic patients: Can it survive the impairment of visual awareness? Neuropsychologia 2020; 149:107673. [PMID: 33186572 DOI: 10.1016/j.neuropsychologia.2020.107673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/13/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022]
Abstract
The general aim of this study was to assess the effect produced by visuo-spatial attention on both behavioural performance and brain activation in hemianopic patients following visual stimulus presentation to the blind hemifield. To do that, we tested five hemianopic patients and six age-matched healthy controls in an MRI scanner during the execution of a Posner-like paradigm using a predictive central cue. Participants were instructed to covertly orient attention toward the blind or sighted hemifield in different blocks while discriminating the orientation of a visual grating. In patients, we found significantly faster reaction times (RT) in valid and neutral than invalid trials not only in the sighted but also in the blind hemifield, despite the impairment of consciousness and performance at chance. As to the fMRI signal, in valid trials we observed the activation of ipsilesional visual areas (mainly lingual gyrus - area 19) during the orientation of attention toward the blind hemifield. Importantly, this activation was similar in patients and controls. In order to assess the related functional network, we performed a psychophysiological interactions (PPI) analysis that revealed an increased functional connectivity (FC) in patients with respect to controls between the ipsilesional lingual gyrus and ipsilateral fronto-parietal as well as contralesional parietal regions. Moreover, the shift of attention from the blind to the sighted hemifield revealed stronger FC between the contralesional visual areas V3/V4 and ipsilateral parietal regions in patients than controls. These results indicate a higher cognitive effort in patients when paying attention to the blind hemifiled or when shifting attention from the blind to the sighted hemfield, possibly as an attempt to compensate for the visual loss. Taken together, these results show that hemianopic patients can covertly orient attention toward the blind hemifield with a top-down mechanism by activating a functional network mainly including fronto-parietal regions belonging to the dorsal attentional network.
Collapse
Affiliation(s)
- Caterina A Pedersini
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Angelika Lingnau
- Faculty of Psychology, Education and Sport Science, Institute of Psychology, University of Regensburg, Germany; Centre For Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | - Javier Sanchez-Lopez
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicolo Cardobi
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Silvia Savazzi
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy
| | - Carlo A Marzi
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy
| |
Collapse
|
5
|
Förster J, Koivisto M, Revonsuo A. ERP and MEG correlates of visual consciousness: The second decade. Conscious Cogn 2020; 80:102917. [PMID: 32193077 DOI: 10.1016/j.concog.2020.102917] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/14/2020] [Accepted: 03/07/2020] [Indexed: 01/04/2023]
Abstract
The first decade of event-related potential (ERP) research had established that the most consistent correlates of the onset of visual consciousness are the early visual awareness negativity (VAN), a posterior negative component in the N2 time range, and the late positivity (LP), an anterior positive component in the P3 time range. Two earlier extensive reviews ten years ago had concluded that VAN is the earliest and most reliable correlate of visual phenomenal consciousness, whereas LP probably reflects later processes associated with reflective/access consciousness. This article provides an update to those earlier reviews. ERP and MEG studies that have appeared since 2010 and directly compared ERPs between aware and unaware conditions are reviewed, and important new developments in the field are discussed. The result corroborates VAN as the earliest and most consistent signature of visual phenomenal consciousness, and casts further doubt on LP as an ERP correlate of phenomenal consciousness.
Collapse
Affiliation(s)
- Jona Förster
- Division of Cognitive Neuroscience and Philosophy, University of Skövde, Sweden.
| | - Mika Koivisto
- Department of Psychology, University of Turku, Finland; Turku Brain and Mind Centre, University of Turku, Finland
| | - Antti Revonsuo
- Division of Cognitive Neuroscience and Philosophy, University of Skövde, Sweden; Department of Psychology, University of Turku, Finland; Turku Brain and Mind Centre, University of Turku, Finland
| |
Collapse
|
6
|
Mashour GA, Roelfsema P, Changeux JP, Dehaene S. Conscious Processing and the Global Neuronal Workspace Hypothesis. Neuron 2020; 105:776-798. [PMID: 32135090 PMCID: PMC8770991 DOI: 10.1016/j.neuron.2020.01.026] [Citation(s) in RCA: 428] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/31/2019] [Accepted: 01/22/2020] [Indexed: 10/24/2022]
Abstract
We review the central tenets and neuroanatomical basis of the global neuronal workspace (GNW) hypothesis, which attempts to account for the main scientific observations regarding the elementary mechanisms of conscious processing in the human brain. The GNW hypothesis proposes that, in the conscious state, a non-linear network ignition associated with recurrent processing amplifies and sustains a neural representation, allowing the corresponding information to be globally accessed by local processors. We examine this hypothesis in light of recent data that contrast brain activity evoked by either conscious or non-conscious contents, as well as during conscious or non-conscious states, particularly general anesthesia. We also discuss the relationship between the intertwined concepts of conscious processing, attention, and working memory.
Collapse
Affiliation(s)
- George A Mashour
- Center for Consciousness Science, Neuroscience Graduate Program, and Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Pieter Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, Amsterdam, the Netherlands
| | - Jean-Pierre Changeux
- CNRS UMR 3571, Institut Pasteur, 75724 Paris, France; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France; Kavli Institute for Brain & Mind, University of California, San Diego, La Jolla, CA, USA.
| | - Stanislas Dehaene
- Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France; Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France.
| |
Collapse
|
7
|
Deng Y, Choi I, Shinn-Cunningham B, Baumgartner R. Impoverished auditory cues limit engagement of brain networks controlling spatial selective attention. Neuroimage 2019; 202:116151. [PMID: 31493531 DOI: 10.1016/j.neuroimage.2019.116151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/02/2019] [Accepted: 08/31/2019] [Indexed: 12/30/2022] Open
Abstract
Spatial selective attention enables listeners to process a signal of interest in natural settings. However, most past studies on auditory spatial attention used impoverished spatial cues: presenting competing sounds to different ears, using only interaural differences in time (ITDs) and/or intensity (IIDs), or using non-individualized head-related transfer functions (HRTFs). Here we tested the hypothesis that impoverished spatial cues impair spatial auditory attention by only weakly engaging relevant cortical networks. Eighteen normal-hearing listeners reported the content of one of two competing syllable streams simulated at roughly +30° and -30° azimuth. The competing streams consisted of syllables from two different-sex talkers. Spatialization was based on natural spatial cues (individualized HRTFs), individualized IIDs, or generic ITDs. We measured behavioral performance as well as electroencephalographic markers of selective attention. Behaviorally, subjects recalled target streams most accurately with natural cues. Neurally, spatial attention significantly modulated early evoked sensory response magnitudes only for natural cues, not in conditions using only ITDs or IIDs. Consistent with this, parietal oscillatory power in the alpha band (8-14 Hz; associated with filtering out distracting events from unattended directions) showed significantly less attentional modulation with isolated spatial cues than with natural cues. Our findings support the hypothesis that spatial selective attention networks are only partially engaged by impoverished spatial auditory cues. These results not only suggest that studies using unnatural spatial cues underestimate the neural effects of spatial auditory attention, they also illustrate the importance of preserving natural spatial cues in assistive listening devices to support robust attentional control.
Collapse
Affiliation(s)
- Yuqi Deng
- Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Inyong Choi
- Communication Sciences & Disorders, University of Iowa, Iowa City, IA, 52242, USA
| | - Barbara Shinn-Cunningham
- Biomedical Engineering, Boston University, Boston, MA, 02215, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Robert Baumgartner
- Biomedical Engineering, Boston University, Boston, MA, 02215, USA; Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
8
|
Weller PD, Rabovsky M, Abdel Rahman R. Semantic Knowledge Enhances Conscious Awareness of Visual Objects. J Cogn Neurosci 2019; 31:1216-1226. [PMID: 30938592 DOI: 10.1162/jocn_a_01404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
It is becoming increasingly established that information from long-term memory can influence early perceptual processing, a finding that is in line with recent theoretical approaches to cognition such as the predictive coding framework. Notwithstanding, the impact of semantic knowledge on conscious perception and the temporal dynamics of such an influence remain unclear. To address this question, we presented pictures of novel objects to participants as the second of two targets in an attentional blink paradigm. We found that associating newly acquired semantic knowledge to objects increased overall conscious detection in comparison to objects associated with minimal knowledge while controlling for object familiarity. Additionally, event-related brain potentials revealed a corresponding modulation beginning 100 msec after stimulus presentation in the P1 component. Furthermore, the size of this modulation was correlated with participant's subjective reports of conscious perception. These findings suggest that semantic knowledge can shape the contents of consciousness by affecting early stages of perceptual processing.
Collapse
|
9
|
Noah S, Mangun GR. Recent evidence that attention is necessary, but not sufficient, for conscious perception. Ann N Y Acad Sci 2019; 1464:52-63. [PMID: 30883785 DOI: 10.1111/nyas.14030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 12/27/2018] [Accepted: 01/25/2019] [Indexed: 11/26/2022]
Abstract
Early descriptions of attention in the psychological literature highlighted its interdependence with conscious awareness. As the study of attention developed, consciousness and attention began to be considered separable phenomena, experimentally and theoretically. In recent years, an energetic debate has developed concerning the extent to which the two phenomena are related. One school of thought considers the two to be doubly dissociable, whereas the other considers them to be necessarily linked. In this review, we highlight experimental findings from the last 5 years that contribute to the leading consensus view: attention is necessary, but not sufficient, for conscious perception. We review studies that show attention operating in conjunction with unconscious information, and other evidence linking attention necessarily to conscious perception. By drawing upon evidence that attention comprises many cognitive and neural processes, we argue that by studying how different forms of attention are related to conscious perception, it is possible to gain new insights about the neural states or processes that are necessary for conscious perception to occur.
Collapse
Affiliation(s)
- Sean Noah
- Department of Psychology, and Center for Mind and Brain, University of California, Davis, California
| | - George R Mangun
- Department of Psychology, and Center for Mind and Brain, University of California, Davis, California
| |
Collapse
|
10
|
Havenith MN, Zijderveld PM, van Heukelum S, Abghari S, Tiesinga P, Glennon JC. The Virtual-Environment-Foraging Task enables rapid training and single-trial metrics of rule acquisition and reversal in head-fixed mice. Sci Rep 2019; 9:4790. [PMID: 30886236 PMCID: PMC6423024 DOI: 10.1038/s41598-019-41250-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/27/2019] [Indexed: 01/02/2023] Open
Abstract
Behavioural flexibility is an essential survival skill, yet our understanding of its neuronal substrates is still limited. While mouse research offers unique tools to dissect the neuronal circuits involved, the measurement of flexible behaviour in mice often suffers from long training times, poor experimental control, and temporally imprecise binary (hit/miss) performance readouts. Here we present a virtual-environment task for mice that tackles these limitations. It offers fast training of vision-based rule reversals (~100 trials per reversal) with full stimulus control and continuous behavioural readouts. By generating multiple non-binary performance metrics per trial, it provides single-trial estimates not only of response accuracy and speed, but also of underlying processes like choice certainty and alertness (discussed in detail in a companion paper). Based on these metrics, we show that mice can predict new task rules long before they are able to execute them, and that this delay varies across animals. We also provide and validate single-trial estimates of whether an error was committed with or without awareness of the task rule. By tracking in unprecedented detail the cognitive dynamics underlying flexible behaviour, this task enables new investigations into the neuronal interactions that shape behavioural flexibility moment by moment.
Collapse
Affiliation(s)
- Martha N Havenith
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands.
| | - Peter M Zijderveld
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands
| | - Sabrina van Heukelum
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands
| | - Shaghayegh Abghari
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands
| | - Paul Tiesinga
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands
| | - Jeffrey C Glennon
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg, 29 6525EN, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Sanchez-Lopez J, Savazzi S, Pedersini CA, Cardobi N, Marzi CA. Neural Correlates of Visuospatial Attention to Unseen Stimuli in Hemianopic Patients. A Steady-State Visual Evoked Potential Study. Front Psychol 2019; 10:198. [PMID: 30787901 PMCID: PMC6372529 DOI: 10.3389/fpsyg.2019.00198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/21/2019] [Indexed: 11/13/2022] Open
Abstract
The relationship between attention and awareness is a topic of great interest in cognitive neuroscience. Some studies in healthy participants and hemianopic patients have shown dissociation between these two processes. In contrast, others confirmed the classic notion that the two processes are mutually exclusive. To try and cast further light on this fascinating dilemma, in the present study we have investigated the neural mechanisms of visual spatial attention when perceptual awareness is totally lacking. To do that, we monitored with steady-state visual evoked potentials (SSVEPs) the neurophysiological correlates of endogenous spatial attention to unseen stimuli presented to the blind field of hemianopic patients. Behaviourally, stimulus detection (a brief change in the orientation of a gabor grating) was absent in the blind hemifield while in the sighted field there was a lower, but non-significant, performance in hit rate with respect to a healthy control group. Importantly, however, in both blind and sighted hemifield of hemianopics (as well as in healthy participants) SSVEP recordings showed an attentional effect with higher frequency power in the attended than unattended condition. The scalp distribution of this effect was broadly in keeping with the location of the dorsal system of endogenous spatial attention. In conclusion, the present results provide evidence that the neural correlates of spatial attention are present regardless of visual awareness and this is in accord with the general hypothesis of a possible dissociation between attention and awareness.
Collapse
Affiliation(s)
- Javier Sanchez-Lopez
- Psychology and Physiology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Silvia Savazzi
- Psychology and Physiology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy.,National Institute of Neuroscience, Verona, Italy
| | - Caterina Annalaura Pedersini
- Psychology and Physiology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicolò Cardobi
- Psychology and Physiology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carlo Alberto Marzi
- Psychology and Physiology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,National Institute of Neuroscience, Verona, Italy
| |
Collapse
|
12
|
Smout CA, Mattingley JB. Spatial Attention Enhances the Neural Representation of Invisible Signals Embedded in Noise. J Cogn Neurosci 2018; 30:1119-1129. [PMID: 29791299 DOI: 10.1162/jocn_a_01283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent evidence suggests that voluntary spatial attention can affect neural processing of visual stimuli that do not enter conscious awareness (i.e., invisible stimuli), supporting the notion that attention and awareness are dissociable processes [Wyart, V., Dehaene, S., & Tallon-Baudry, C. Early dissociation between neural signatures of endogenous spatial attention and perceptual awareness during visual masking. Frontiers in Human Neuroscience, 6, 1-14, 2012; Watanabe, M., Cheng, K., Murayama, Y., Ueno, K., Asamizuya, T., Tanaka, K., et al. Attention but not awareness modulates the BOLD signal in the human V1 during binocular suppression. Science, 334, 829-831, 2011]. To date, however, no study has demonstrated that these effects reflect enhancement of the neural representation of invisible stimuli per se, as opposed to other neural processes not specifically tied to the stimulus in question. In addition, it remains unclear whether spatial attention can modulate neural representations of invisible stimuli in direct competition with highly salient and visible stimuli. Here we developed a novel EEG frequency-tagging paradigm to obtain a continuous readout of human brain activity associated with visible and invisible signals embedded in dynamic noise. Participants ( n = 23) detected occasional contrast changes in one of two flickering image streams on either side of fixation. Each image stream contained a visible or invisible signal embedded in every second noise image, the visibility of which was titrated and checked using a two-interval forced-choice detection task. Steady-state visual-evoked potentials were computed from EEG data at the signal and noise frequencies of interest. Cluster-based permutation analyses revealed significant neural responses to both visible and invisible signals across posterior scalp electrodes. Control analyses revealed that these responses did not reflect a subharmonic response to noise stimuli. In line with previous findings, spatial attention increased the neural representation of visible signals. Crucially, spatial attention also increased the neural representation of invisible signals. As such, the present results replicate and extend previous studies by demonstrating that attention can modulate the neural representation of invisible signals that are in direct competition with highly salient masking stimuli.
Collapse
|
13
|
Berkovitch L, Del Cul A, Maheu M, Dehaene S. Impaired conscious access and abnormal attentional amplification in schizophrenia. NEUROIMAGE-CLINICAL 2018; 18:835-848. [PMID: 29876269 PMCID: PMC5988039 DOI: 10.1016/j.nicl.2018.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 11/25/2022]
Abstract
Previous research suggests that the conscious perception of a masked stimulus is impaired in schizophrenia, while unconscious bottom-up processing of the same stimulus, as assessed by subliminal priming, can be preserved. Here, we test this postulated dissociation between intact bottom-up and impaired top-down processing and evaluate its brain mechanisms using high-density recordings of event-related potentials. Sixteen patients with schizophrenia and sixteen controls were exposed to peripheral digits with various degrees of visibility, under conditions of either focused attention or distraction by another task. In the distraction condition, the brain activity evoked by masked digits was drastically reduced in both groups, but early bottom-up visual activation could still be detected and did not differ between patients and controls. By contrast, under focused top-down attention, a major impairment was observed: in patients, contrary to controls, the late non-linear ignition associated with the P3 component was reduced. Interestingly, the patients showed an essentially normal attentional amplification of the P1 and N2 components. These results suggest that some but not all top-down attentional amplification processes are impaired in schizophrenia, while bottom-up processing seems to be preserved. An elevated consciousness threshold is observed in schizophrenia. Under unattended conditions, brain activity was similarly reduced in schizophrenic patients and controls. Under attended conditions, the late ignition associated with the P3 component is impaired in patients. In schizophrenia, top-down attentional amplification is abnormal while bottom-up processing is essentially spared.
Collapse
Affiliation(s)
- L Berkovitch
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif-sur-Yvette, France; Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 place Jussieu, 75252 Paris Cedex 05, France.
| | - A Del Cul
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Psychiatrie d'Adultes, 75013 Paris, France; Inserm, CNRS, APHP, Institut du Cerveau et de la Moelle (ICM), Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, 75013 Paris, France
| | - M Maheu
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif-sur-Yvette, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - S Dehaene
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif-sur-Yvette, France; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| |
Collapse
|
14
|
Berkovitch L, Dehaene S, Gaillard R. Disruption of Conscious Access in Schizophrenia. Trends Cogn Sci 2017; 21:878-892. [DOI: 10.1016/j.tics.2017.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022]
|
15
|
White matter microstructure of attentional networks predicts attention and consciousness functional interactions. Brain Struct Funct 2017; 223:653-668. [PMID: 28905109 DOI: 10.1007/s00429-017-1511-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
Attention is considered as one of the pre-requisites of conscious perception. Phasic alerting and exogenous orienting improve conscious perception of near-threshold information through segregated brain networks. Using a multimodal neuroimaging approach, combining data from functional MRI (fMRI) and diffusion-weighted imaging (DWI), we investigated the influence of white matter properties of the ventral branch of superior longitudinal fasciculus (SLF III) in functional interactions between attentional systems and conscious perception. Results revealed that (1) reduced integrity of the left hemisphere SLF III was predictive of the neural interactions observed between exogenous orienting and conscious perception, and (2) increased integrity of the left hemisphere SLF III was predictive of the neural interactions observed between phasic alerting and conscious perception. Our results combining fMRI and DWI data demonstrate that structural properties of the white matter organization determine attentional modulations over conscious perception.
Collapse
|
16
|
Tallon-Baudry C, Campana F, Park HD, Babo-Rebelo M. The neural monitoring of visceral inputs, rather than attention, accounts for first-person perspective in conscious vision. Cortex 2017; 102:139-149. [PMID: 28651745 DOI: 10.1016/j.cortex.2017.05.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/02/2017] [Accepted: 05/24/2017] [Indexed: 01/20/2023]
Abstract
Why should a scientist whose aim is to unravel the neural mechanisms of perception consider brain-body interactions seriously? Brain-body interactions have traditionally been associated with emotion, effort, or stress, but not with the "cold" processes of perception and attention. Here, we review recent experimental evidence suggesting a different picture: the neural monitoring of bodily state, and in particular the neural monitoring of the heart, affects visual perception. The impact of spontaneous fluctuations of neural responses to heartbeats on visual detection is as large as the impact of explicit manipulations of spatial attention in perceptual tasks. However, we propose that the neural monitoring of visceral inputs plays a specific role in conscious perception, distinct from the role of attention. The neural monitoring of organs such as the heart or the gut would generate a subject-centered reference frame, from which the first-person perspective inherent to conscious perception can develop. In this view, conscious perception results from the integration of visual content with first-person perspective.
Collapse
Affiliation(s)
- Catherine Tallon-Baudry
- Laboratoire de Neurosciences Cognitives, Département d'études cognitives, Ecole Normale Supérieure (ENS), PSL Research University, INSERM, Paris, France.
| | - Florence Campana
- Laboratoire de Neurosciences Cognitives, Département d'études cognitives, Ecole Normale Supérieure (ENS), PSL Research University, INSERM, Paris, France; The Dynamic Perception Lab, Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Hyeong-Dong Park
- Laboratoire de Neurosciences Cognitives, Département d'études cognitives, Ecole Normale Supérieure (ENS), PSL Research University, INSERM, Paris, France; Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Mariana Babo-Rebelo
- Laboratoire de Neurosciences Cognitives, Département d'études cognitives, Ecole Normale Supérieure (ENS), PSL Research University, INSERM, Paris, France
| |
Collapse
|
17
|
Colás I, Triviño M, Chica AB. Interference Control Modulations Over Conscious Perception. Front Psychol 2017; 8:712. [PMID: 28539899 PMCID: PMC5424266 DOI: 10.3389/fpsyg.2017.00712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/21/2017] [Indexed: 12/02/2022] Open
Abstract
The relation between attention and consciousness has been a controversial topic over the last decade. Although there seems to be an agreement on their distinction at the functional level, no consensus has been reached about attentional processes being or not necessary for conscious perception. Previous studies have explored the relation of alerting and orienting systems of attention and conscious perception, but the impact of the anterior executive attention system on conscious access remains unexplored. In the present study, we investigated the behavioral interaction between executive attention and conscious perception, testing control mechanisms both at stimulus-level representation and after error commission. We presented a classical Stroop task, manipulating the proportion of congruent and incongruent trials, and analyzed the effect of reactive and proactive control on the conscious perception of near-threshold stimuli. Reactive control elicited under high proportion congruent conditions influenced participants’ decision criterion, whereas proactive control elicited under low proportion congruent conditions was ineffective in modulating conscious perception. In addition, error commission affected both perceptual sensitivity to detect near-threshold information and response criterion. These results suggest that reactivation of task goals through reactive control strategies in conflict situations impacts decision stages of conscious processing, whereas interference control elicited by error commission impacts both perceptual sensitivity and decision stages of conscious processing. We discuss the implications of our results for the gateway hypothesis about attention and consciousness, as they showed that interference control (both at stimulus-level representation and after error commission) can modulate the conscious access of near-threshold stimuli.
Collapse
Affiliation(s)
- Itsaso Colás
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicología Experimental, Centro de Investigación Mente Cerebro y Comportamiento, Universidad de GranadaGranada, Spain
| | - Mónica Triviño
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicología Experimental, Centro de Investigación Mente Cerebro y Comportamiento, Universidad de GranadaGranada, Spain.,Servicio de Neuropsicología, Hospital Universitario San RafaelGranada, Spain
| | - Ana B Chica
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicología Experimental, Centro de Investigación Mente Cerebro y Comportamiento, Universidad de GranadaGranada, Spain
| |
Collapse
|
18
|
Synchronization of fronto-parietal beta and theta networks as a signature of visual awareness in neglect. Neuroimage 2016; 146:341-354. [PMID: 27840240 DOI: 10.1016/j.neuroimage.2016.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/25/2016] [Accepted: 11/04/2016] [Indexed: 12/31/2022] Open
Abstract
In the neglect syndrome, the perceptual deficit for contra-lesional hemi-space is increasingly viewed as a dysfunction of fronto-parietal cortical networks, the disruption of which has been described in neuroanatomical and hemodynamic studies. Here we exploit the superior temporal resolution of electroencephalography (EEG) to study dynamic transient connectivity of fronto-parietal circuits at early stages of visual perception in neglect. As reflected by inter-regional phase synchronization in a full-field attention task, two functionally distinct fronto-parietal networks, in beta (15-25Hz) and theta (4-8Hz) frequency bands, were related to stimulus discrimination within the first 200 ms of visual processing. Neglect pathology was specifically associated with significant suppressions of both beta and theta networks engaging right parietal regions. These connectivity abnormalities occurred in a pattern that was distinctly different from what was observed in right-hemisphere lesion patients without neglect. Also, both beta and theta abnormalities contributed additively to visual awareness decrease, quantified in the Behavioural Inattention Test. These results provide evidence for the impairment of fast dynamic fronto-parietal interactions during early stages of visual processing in neglect pathology. Also, they reveal that different modes of fronto-parietal dysfunction contribute independently to deficits in visual awareness at the behavioural level.
Collapse
|
19
|
Chica AB, Bayle DJ, Botta F, Bartolomeo P, Paz-Alonso PM. Interactions between phasic alerting and consciousness in the fronto-striatal network. Sci Rep 2016; 6:31868. [PMID: 27555378 PMCID: PMC4995394 DOI: 10.1038/srep31868] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/27/2016] [Indexed: 11/24/2022] Open
Abstract
Only a small fraction of all the information reaching our senses can be the object of conscious report or voluntary action. Although some models propose that different attentional states (top-down amplification and vigilance) are necessary for conscious perception, few studies have explored how the brain activations associated with different attentional systems (such as top-down orienting and phasic alerting) lead to conscious perception of subsequent visual stimulation. The aim of the present study was to investigate the neural mechanisms associated with endogenous spatial attention and phasic alertness, and their interaction with the conscious perception of near-threshold stimuli. The only region demonstrating a neural interaction between endogenous attention and conscious perception was the thalamus, while a larger network of cortical and subcortical brain activations, typically associated with phasic alerting, was highly correlated with participants' conscious reports. Activation of the anterior cingulate cortex, supplementary motor area, frontal eye fields, thalamus, and caudate nucleus was related to perceptual consciousness. These data suggest that not all attentional systems are equally effective in enhancing conscious perception, highlighting the importance of thalamo-cortical circuits on the interactions between alerting and consciousness.
Collapse
Affiliation(s)
- Ana B. Chica
- Department of Experimental Psychology, and Brain, Mind, and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - Dimitri J. Bayle
- Sport and Movement Research Center (CeRSM, EA 2931), Université Paris Ouest-La Défense, Nanterre, France
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, and Université Pierre et Marie Curie-Paris 6, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), F-75013 Paris, France
| | - Fabiano Botta
- Department of Experimental Psychology, and Brain, Mind, and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - Paolo Bartolomeo
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, and Université Pierre et Marie Curie-Paris 6, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), F-75013 Paris, France
| | | |
Collapse
|
20
|
Babiloni C, Marzano N, Soricelli A, Cordone S, Millán-Calenti JC, Del Percio C, Buján A. Cortical Neural Synchronization Underlies Primary Visual Consciousness of Qualia: Evidence from Event-Related Potentials. Front Hum Neurosci 2016; 10:310. [PMID: 27445750 PMCID: PMC4927634 DOI: 10.3389/fnhum.2016.00310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/08/2016] [Indexed: 11/13/2022] Open
Abstract
This article reviews three experiments on event-related potentials (ERPs) testing the hypothesis that primary visual consciousness (stimulus self-report) is related to enhanced cortical neural synchronization as a function of stimulus features. ERP peak latency and sources were compared between "seen" trials and "not seen" trials, respectively related and unrelated to the primary visual consciousness. Three salient features of visual stimuli were considered (visuospatial, emotional face expression, and written words). Results showed the typical visual ERP components in both "seen" and "not seen" trials. There was no statistical difference in the ERP peak latencies between the "seen" and "not seen" trials, suggesting a similar timing of the cortical neural synchronization regardless the primary visual consciousness. In contrast, ERP sources showed differences between "seen" and "not seen" trials. For the visuospatial stimuli, the primary consciousness was related to higher activity in dorsal occipital and parietal sources at about 400 ms post-stimulus. For the emotional face expressions, there was greater activity in parietal and frontal sources at about 180 ms post-stimulus. For the written letters, there was higher activity in occipital, parietal and temporal sources at about 230 ms post-stimulus. These results hint that primary visual consciousness is associated with an enhanced cortical neural synchronization having entirely different spatiotemporal characteristics as a function of the features of the visual stimuli and possibly, the relative qualia (i.e., visuospatial, face expression, and words). In this framework, the dorsal visual stream may be synchronized in association with the primary consciousness of visuospatial and emotional face contents. Analogously, both dorsal and ventral visual streams may be synchronized in association with the primary consciousness of linguistic contents. In this line of reasoning, the ensemble of the cortical neural networks underpinning the single visual features would constitute a sort of multi-dimensional palette of colors, shapes, regions of the visual field, movements, emotional face expressions, and words. The synchronization of one or more of these cortical neural networks, each with its peculiar timing, would produce the primary consciousness of one or more of the visual features of the scene.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of RomeRome, Italy; Department of Neuroscience, IRCCS San Raffaele PisanaRome, Italy
| | - Nicola Marzano
- Department of Integrated Imaging, IRCCS SDN Naples, Italy
| | - Andrea Soricelli
- Department of Integrated Imaging, IRCCS SDNNaples, Italy; Department of Motor Sciences and Healthiness, University of Naples ParthenopeNaples, Italy
| | - Susanna Cordone
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome Rome, Italy
| | - José Carlos Millán-Calenti
- Gerontology Research Group, Department of Medicine, Faculty of Health Sciences, University of A Coruña A Coruña, Spain
| | | | - Ana Buján
- Gerontology Research Group, Department of Medicine, Faculty of Health Sciences, University of A Coruña A Coruña, Spain
| |
Collapse
|
21
|
Moutard C, Dehaene S, Malach R. Spontaneous Fluctuations and Non-linear Ignitions: Two Dynamic Faces of Cortical Recurrent Loops. Neuron 2015; 88:194-206. [DOI: 10.1016/j.neuron.2015.09.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Size (mostly) doesn't matter: the role of set size in object substitution masking. Atten Percept Psychophys 2015; 76:1620-9. [PMID: 24924848 DOI: 10.3758/s13414-014-0692-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Conscious detection and discrimination of a visual target stimulus can be prevented by the presentation a spatially nonoverlapping, but temporally trailing, visual masking stimulus. This phenomenon, known as object substitution masking (OSM), has long been associated with spatial attention, with diffuse attention seemingly being key for the effect to be observed. Recently, this hypothesis has been questioned. We sought to provide a definitive test of the involvement of spatial attention in OSM by using an eight-alternative forced choice task under a range of mask durations, set sizes, and target/distractor spatial configurations. The results provide very little evidence that set size, and thus the distribution of spatial attention, interacts with masking magnitude. These findings have implications for understanding the mechanisms underlying OSM and the relationship between consciousness and attention.
Collapse
|
23
|
Affiliation(s)
- Bruno G Breitmeyer
- Department of Psychology & Center of Neuro-engineering and Cognitive Science, University of Houston, USA.
| | | | - Michael Niedeggen
- Experimental Psychology and Neuropsychology, Freie Universität Berlin, Germany
| |
Collapse
|
24
|
Dehaene S, Charles L, King JR, Marti S. Toward a computational theory of conscious processing. Curr Opin Neurobiol 2013; 25:76-84. [PMID: 24709604 DOI: 10.1016/j.conb.2013.12.005] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/01/2013] [Accepted: 12/05/2013] [Indexed: 11/30/2022]
Abstract
The study of the mechanisms of conscious processing has become a productive area of cognitive neuroscience. Here we review some of the recent behavioral and neuroscience data, with the specific goal of constraining present and future theories of the computations underlying conscious processing. Experimental findings imply that most of the brain's computations can be performed in a non-conscious mode, but that conscious perception is characterized by an amplification, global propagation and integration of brain signals. A comparison of these data with major theoretical proposals suggests that firstly, conscious access must be carefully distinguished from selective attention; secondly, conscious perception may be likened to a non-linear decision that 'ignites' a network of distributed areas; thirdly, information which is selected for conscious perception gains access to additional computations, including temporary maintenance, global sharing, and flexible routing; and finally, measures of the complexity, long-distance correlation and integration of brain signals provide reliable indices of conscious processing, clinically relevant to patients recovering from coma.
Collapse
Affiliation(s)
- Stanislas Dehaene
- Collège de France, F-75005 Paris, France; Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, U992, F-91191 Gif/Yvette, France; NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, F-91191 Gif/Yvette, France; Université Paris 11, Orsay, France.
| | - Lucie Charles
- Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, U992, F-91191 Gif/Yvette, France; NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, F-91191 Gif/Yvette, France; Université Paris 11, Orsay, France
| | - Jean-Rémi King
- Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, U992, F-91191 Gif/Yvette, France; NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, F-91191 Gif/Yvette, France; Université Paris 11, Orsay, France
| | - Sébastien Marti
- Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, U992, F-91191 Gif/Yvette, France; NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, F-91191 Gif/Yvette, France; Université Paris 11, Orsay, France
| |
Collapse
|
25
|
Lou B, Li Y, Philiastides MG, Sajda P. Prestimulus alpha power predicts fidelity of sensory encoding in perceptual decision making. Neuroimage 2013; 87:242-51. [PMID: 24185020 DOI: 10.1016/j.neuroimage.2013.10.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/08/2013] [Accepted: 10/18/2013] [Indexed: 11/26/2022] Open
Abstract
Pre-stimulus α power has been shown to correlate with the behavioral accuracy of perceptual decisions. In most cases, these correlations have been observed by comparing α power for different behavioral outcomes (e.g. correct vs incorrect trials). In this paper we investigate such covariation within the context of behaviorally-latent fluctuations in task-relevant post-stimulus neural activity. Specially we consider variations of pre-stimulus α power with post-stimulus EEG components in a two alternative forced choice visual discrimination task. EEG components, discriminative of stimulus class, are identified using a linear multivariate classifier and only the variability of the components for correct trials (regardless of stimulus class, and for nominally identical stimuli) are correlated with the corresponding pre-stimulus α power. We find a significant relationship between the mean and variance of the pre-stimulus α power and the variation of the trial-to-trial magnitude of an early post-stimulus EEG component. This relationship is not seen for a later EEG component that is also discriminative of stimulus class and which has been previously linked to the quality of evidence driving the decision process. Our results suggest that early perceptual representations, rather than temporally later neural correlates of the perceptual decision, are modulated by pre-stimulus state.
Collapse
Affiliation(s)
- Bin Lou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yun Li
- Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | | | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
26
|
Temporal expectation enhances contrast sensitivity by phase entrainment of low-frequency oscillations in visual cortex. J Neurosci 2013; 33:4002-10. [PMID: 23447609 DOI: 10.1523/jneurosci.4675-12.2013] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although it is increasingly accepted that temporal expectation can modulate early perceptual processing, the underlying neural computations remain unknown. In the present study, we combined a psychophysical paradigm with electrophysiological recordings to investigate the putative contribution of low-frequency oscillatory activity in mediating the modulation of visual perception by temporal expectation. Human participants judged the orientation of brief targets (visual Gabor patterns tilted clockwise or counterclockwise) embedded within temporally regular or irregular streams of noise-patches used as temporal cues. Psychophysical results indicated that temporal expectation enhanced the contrast sensitivity of visual targets. A diffusion model indicated that rhythmic temporal expectation modulated the signal-to-noise gain of visual processing. The concurrent electrophysiological data revealed that the phase of delta oscillations overlying human visual cortex (1-4 Hz) was predictive of the quality of target processing only in regular streams of events. Moreover, in the regular condition, the optimum phase of these perception-predictive oscillations occurred in anticipation of the expected events. Together, these results show a strong correspondence between psychophysical and neurophysiological data, suggesting that the phase entrainment of low-frequency oscillations to external sensory cues can serve as an important and flexible mechanism for enhancing sensory processing.
Collapse
|
27
|
The attentional requirements of consciousness. Trends Cogn Sci 2012; 16:411-7. [DOI: 10.1016/j.tics.2012.06.013] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 11/22/2022]
|
28
|
Liu Y, Paradis AL, Yahia-Cherif L, Tallon-Baudry C. Activity in the lateral occipital cortex between 200 and 300 ms distinguishes between physically identical seen and unseen stimuli. Front Hum Neurosci 2012; 6:211. [PMID: 22848195 PMCID: PMC3404546 DOI: 10.3389/fnhum.2012.00211] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/27/2012] [Indexed: 11/25/2022] Open
Abstract
There is converging evidence that electrophysiological responses over posterior cortical regions in the 200–300 ms range distinguish between physically identical stimuli that reach consciousness or remain unseen. Here, we attempt at determining the sources of this awareness-related activity using magneto-encephalographic (MEG). Fourteen subjects were presented with faint colored gratings at threshold for contrast and reported on each trial whether the grating was seen or unseen. Subjects were primed with a color cue that could be congruent or incongruent with the color of the grating, to probe to what extent two co-localized features (color and orientation) would be bound in consciousness. The contrast between neural responses to seen and unseen physically identical gratings revealed a sustained posterior difference between 190 and 350 ms, thereby replicating prior studies. We further show that the main sources of the awareness-related activity were localized bilaterally on the lateral convexity of the occipito-temporal region, in the Lateral Occipital (LO) complex, as well as in the right posterior infero-temporal region. No activity differentiating seen and unseen trials could be observed in frontal or parietal regions in this latency range, even at lower threshold. Color congruency did not improve grating's detection, and the awareness-related activity was independent from color congruency. However, at the neural level, color congruency was processed differently in grating-present and grating-absent trials. The pattern of results suggests the existence of a neural process of color congruency engaging left parietal regions that is affected by the mere presence of another feature, whether this feature reaches consciousness or not. Altogether, our results reveal an occipital source of visual awareness insensitive to color congruency, and a simultaneous parietal source not engaged in visual awareness, but sensitive to the manipulation of co-localized features.
Collapse
Affiliation(s)
- Ying Liu
- Institut National de la Santé et de la Recherche Médicale-ENS UMR 960 Paris, France
| | | | | | | |
Collapse
|
29
|
Persuh M, Genzer B, Melara RD. Iconic memory requires attention. Front Hum Neurosci 2012; 6:126. [PMID: 22586389 PMCID: PMC3345872 DOI: 10.3389/fnhum.2012.00126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/19/2012] [Indexed: 11/17/2022] Open
Abstract
Two experiments investigated whether attention plays a role in iconic memory, employing either a change detection paradigm (Experiment 1) or a partial-report paradigm (Experiment 2). In each experiment, attention was taxed during initial display presentation, focusing the manipulation on consolidation of information into iconic memory, prior to transfer into working memory. Observers were able to maintain high levels of performance (accuracy of change detection or categorization) even when concurrently performing an easy visual search task (low load). However, when the concurrent search was made difficult (high load), observers' performance dropped to almost chance levels, while search accuracy held at single-task levels. The effects of attentional load remained the same across paradigms. The results suggest that, without attention, participants consolidate in iconic memory only gross representations of the visual scene, information too impoverished for successful detection of perceptual change or categorization of features.
Collapse
Affiliation(s)
- Marjan Persuh
- Program in Cognitive Neuroscience, City College, City University of New York NY, USA
| | | | | |
Collapse
|