1
|
Xie Y, Chang H, Zhang Y, Wang C, Zhang Y, Chen L, Geng F, Ku Y, Menon V, Chen F. Long-term abacus training gains in children are predicted by medial temporal lobe anatomy and circuitry. Dev Sci 2024; 27:e13489. [PMID: 38421061 PMCID: PMC11161333 DOI: 10.1111/desc.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
Abacus-based mental calculation (AMC) is a widely used educational tool for enhancing math learning, offering an accessible and cost-effective method for classroom implementation. Despite its universal appeal, the neurocognitive mechanisms that drive the efficacy of AMC training remain poorly understood. Notably, although abacus training relies heavily on the rapid recall of number positions and sequences, the role of memory systems in driving long-term AMC learning remains unknown. Here, we sought to address this gap by investigating the role of the medial temporal lobe (MTL) memory system in predicting long-term AMC training gains in second-grade children, who were longitudinally assessed up to fifth grade. Leveraging multimodal neuroimaging data, we tested the hypothesis that MTL systems, known for their involvement in associative memory, are instrumental in facilitating AMC-induced improvements in math skills. We found that gray matter volume in bilateral MTL, along with functional connectivity between the MTL and frontal and ventral temporal-occipital cortices, significantly predicted learning gains. Intriguingly, greater gray matter volume but weaker connectivity of the posterior parietal cortex predicted better learning outcomes, offering a more nuanced view of brain systems at play in AMC training. Our findings not only underscore the critical role of the MTL memory system in AMC training but also illuminate the neurobiological factors contributing to individual differences in cognitive skill acquisition. A video abstract of this article can be viewed at https://youtu.be/StVooNRc7T8. RESEARCH HIGHLIGHTS: We investigated the role of medial temporal lobe (MTL) memory system in driving children's math learning following abacus-based mental calculation (AMC) training. AMC training improved math skills in elementary school children across their second and fifth grade. MTL structural integrity and functional connectivity with prefrontal and ventral temporal-occipital cortices predicted long-term AMC training-related gains.
Collapse
Affiliation(s)
- Ye Xie
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, PR China
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
- Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Hyesang Chang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Yi Zhang
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, PR China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Chunjie Wang
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, PR China
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Yuan Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Lang Chen
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
- Department of Psychology, Santa Clara University, Santa Clara, CA 95053, United States
| | - Fengji Geng
- Department of Curriculum and Learning Sciences, Zhejiang University, Hangzhou, 310058, PR China
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, PR China
| | - Yixuan Ku
- Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, 510006, PR China
- Peng Cheng Laboratory, Shenzhen, 518040, PR China
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, United States
| | - Feiyan Chen
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, PR China
| |
Collapse
|
2
|
Xu T, Wu Y, Zhang Y, Zuo XN, Chen F, Zhou C. Reshaping the Cortical Connectivity Gradient by Long-Term Cognitive Training During Development. Neurosci Bull 2024; 40:50-64. [PMID: 37715923 PMCID: PMC10774512 DOI: 10.1007/s12264-023-01108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/01/2023] [Indexed: 09/18/2023] Open
Abstract
The organization of the brain follows a topological hierarchy that changes dynamically during development. However, it remains unknown whether and how cognitive training administered over multiple years during development can modify this hierarchical topology. By measuring the brain and behavior of school children who had carried out abacus-based mental calculation (AMC) training for five years (starting from 7 years to 12 years old) in pre-training and post-training, we revealed the reshaping effect of long-term AMC intervention during development on the brain hierarchical topology. We observed the development-induced emergence of the default network, AMC training-promoted shifting, and regional changes in cortical gradients. Moreover, the training-induced gradient changes were located in visual and somatomotor areas in association with the visuospatial/motor-imagery strategy. We found that gradient-based features can predict the math ability within groups. Our findings provide novel insights into the dynamic nature of network recruitment impacted by long-term cognitive training during development.
Collapse
Affiliation(s)
- Tianyong Xu
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Yunying Wu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310027, China
| | - Yi Zhang
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Feiyan Chen
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, China.
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, Zhejiang University, Hangzhou, 310027, China.
| | - Changsong Zhou
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, China.
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, Zhejiang University, Hangzhou, 310027, China.
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, 999077, China.
| |
Collapse
|
3
|
Ren X, Libertus ME. Identifying the Neural Bases of Math Competence Based on Structural and Functional Properties of the Human Brain. J Cogn Neurosci 2023; 35:1212-1228. [PMID: 37172121 DOI: 10.1162/jocn_a_02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Human populations show large individual differences in math performance and math learning abilities. Early math skill acquisition is critical for providing the foundation for higher quantitative skill acquisition and succeeding in modern society. However, the neural bases underlying individual differences in math competence remain unclear. Modern neuroimaging techniques allow us to not only identify distinct local cortical regions but also investigate large-scale neural networks underlying math competence both structurally and functionally. To gain insights into the neural bases of math competence, this review provides an overview of the structural and functional neural markers for math competence in both typical and atypical populations of children and adults. Although including discussion of arithmetic skills in children, this review primarily focuses on the neural markers associated with complex math skills. Basic number comprehension and number comparison skills are outside the scope of this review. By synthesizing current research findings, we conclude that neural markers related to math competence are not confined to one particular region; rather, they are characterized by a distributed and interconnected network of regions across the brain, primarily focused on frontal and parietal cortices. Given that human brain is a complex network organized to minimize the cost of information processing, an efficient brain is capable of integrating information from different regions and coordinating the activity of various brain regions in a manner that maximizes the overall efficiency of the network to achieve the goal. We end by proposing that frontoparietal network efficiency is critical for math competence, which enables the recruitment of task-relevant neural resources and the engagement of distributed neural circuits in a goal-oriented manner. Thus, it will be important for future studies to not only examine brain activation patterns of discrete regions but also examine distributed network patterns across the brain, both structurally and functionally.
Collapse
|
4
|
Zhou H, Yao Y, Geng F, Chen F, Hu Y. Right Fusiform Gray Matter Volume in Children with Long-Term Abacus Training Positively Correlates with Arithmetic Ability. Neuroscience 2022; 507:28-35. [PMID: 36400323 DOI: 10.1016/j.neuroscience.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/02/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
Abstract
Abacus-based mental calculation (AMC) training has a positive effect on number-related cognitive abilities. While visuospatial strategy may distinguish AMC from conventional calculation method, the underlying neural mechanism is still elusive. The current study aimed to address this question by examining the plasticity of fusiform induced by AMC training and whether this training affects the association between the volume of fusiform and behavioral performance in numerical cognitive tasks using voxel-based morphometry analysis. The results showed that gray matter volumes of bilateral fusiform were significantly smaller in the AMC group relative to the control group. In addition, the volume of right fusiform was positively correlated with digit memory span and negatively correlated with reaction time of an arithmetic operation task only within the AMC group. These results indicate that bilateral fusiform may be the essential neural substrate for AMC experts to recognize and reconstruct abacus-based representations for numbers. These results may advance our understanding of the neural mechanisms of AMC and shield some lights to potential interactions between brain development and cognitive training in children.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310007, China
| | - Yuan Yao
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China; Department of Psychology, Suzhou University of Science and Technology, Suzhou, China
| | - Fengji Geng
- Department of Curriculum and Learning Sciences, College of Education, Zhejiang University, Hangzhou 310007, China
| | - Feiyan Chen
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China.
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310007, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China.
| |
Collapse
|
5
|
Cui J, Xiao R, Ma M, Yuan L, Cohen Kodash R, Zhou X. Children skilled in mental abacus show enhanced non-symbolic number sense. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-020-00717-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Zhang Y, Wang C, Yao Y, Zhou C, Chen F. Adaptive Reconfiguration of Intrinsic Community Structure in Children with 5-Year Abacus Training. Cereb Cortex 2021; 31:3122-3135. [PMID: 33585902 DOI: 10.1093/cercor/bhab010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/17/2020] [Accepted: 01/04/2020] [Indexed: 01/21/2023] Open
Abstract
Human learning can be understood as a network phenomenon, underpinned by the adaptive reconfiguration of modular organization. However, the plasticity of community structure (CS) in resting-state network induced by cognitive intervention has never been investigated. Here, we explored the individual difference of intrinsic CS between children with 5-year abacus-based mental calculation (AMC) training (35 subjects) and their peers without prior experience in AMC (31 subjects). Using permutation-based analysis between subjects in the two groups, we found the significant alteration of intrinsic CS, with training-attenuated individual difference. The alteration of CS focused on selective subsets of cortical regions ("core areas"), predominantly affiliated to the visual, somatomotor, and default-mode subsystems. These subsystems exhibited training-promoted cohesion with attenuated interaction between them, from the perspective of individuals' CS. Moreover, the cohesion of visual network could predict training-improved math ability in the AMC group, but not in the control group. Finally, the whole network displayed enhanced segregation in the AMC group, including higher modularity index, more provincial hubs, lower participation coefficient, and fewer between-module links, largely due to the segregation of "core areas." Collectively, our findings suggested that the intrinsic CS could get reconfigured toward more localized processing and segregated architecture after long-term cognitive training.
Collapse
Affiliation(s)
- Yi Zhang
- Bio-X Laboratory, Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Chunjie Wang
- Bio-X Laboratory, Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yuzhao Yao
- Bio-X Laboratory, Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Changsong Zhou
- Bio-X Laboratory, Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China.,Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Feiyan Chen
- Bio-X Laboratory, Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Charting brain growth in tandem with brain templates at school age. Sci Bull (Beijing) 2020; 65:1924-1934. [PMID: 36738058 DOI: 10.1016/j.scib.2020.07.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/30/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
Brain growth charts and age-normed brain templates are essential resources for researchers to eventually contribute to the care of individuals with atypical developmental trajectories. The present work generates age-normed brain templates for children and adolescents at one-year intervals and the corresponding growth charts to investigate the influences of age and ethnicity using a common pediatric neuroimaging protocol. Two accelerated longitudinal cohorts with the identical experimental design were implemented in the United States and China. Anatomical magnetic resonance imaging (MRI) of typically developing school-age children (TDC) was obtained up to three times at nominal intervals of 1.25 years. The protocol generated and compared population- and age-specific brain templates and growth charts, respectively. A total of 674 Chinese pediatric MRI scans were obtained from 457 Chinese TDC and 190 American pediatric MRI scans were obtained from 133 American TDC. Population- and age-specific brain templates were used to quantify warp cost, the differences between individual brains and brain templates. Volumetric growth charts for labeled brain network areas were generated. Shape analyses of cost functions supported the necessity of age-specific and ethnicity-matched brain templates, which was confirmed by growth chart analyses. These analyses revealed volumetric growth differences between the two ethnicities primarily in lateral frontal and parietal areas, regions which are most variable across individuals in regard to their structure and function. Age- and ethnicity-specific brain templates facilitate establishing unbiased pediatric brain growth charts, indicating the necessity of the brain charts and brain templates generated in tandem. These templates and growth charts as well as related codes have been made freely available to the public for open neuroscience (https://github.com/zuoxinian/CCS/tree/master/H3/GrowthCharts).
Collapse
|
8
|
Wang C. A Review of the Effects of Abacus Training on Cognitive Functions and Neural Systems in Humans. Front Neurosci 2020; 14:913. [PMID: 32982681 PMCID: PMC7492585 DOI: 10.3389/fnins.2020.00913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
Abacus, which represents numbers via a visuospatial format, is a traditional device to facilitate arithmetic operations. Skilled abacus users, who have acquired the ability of abacus-based mental calculation (AMC), can perform fast and accurate calculations by manipulating an imaginary abacus in mind. Due to this extraordinary calculation ability in AMC users, there is an expanding literature investigating the effects of AMC training on cognition and brain systems. This review study aims to provide an updated overview of important findings in this fast-growing research field. Here, findings from previous behavioral and neuroimaging studies about AMC experts as well as children and adults receiving AMC training are reviewed and discussed. Taken together, our review of the existing literature suggests that AMC training has the potential to enhance various cognitive skills including mathematics, working memory and numerical magnitude processing. Besides, the training can result in functional and anatomical neural changes that are largely located within the frontal-parietal and occipital-temporal brain regions. Some of the neural changes can explain the training-induced cognitive enhancements. Still, caution is needed when extend the conclusions to a more general situation. Implications for future research are provided.
Collapse
Affiliation(s)
- Chunjie Wang
- Institute of Brain Science and Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
9
|
Liu J, Yuan L, Chen C, Cui J, Zhang H, Zhou X. The Semantic System Supports the Processing of Mathematical Principles. Neuroscience 2019; 404:102-118. [DOI: 10.1016/j.neuroscience.2019.01.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
|
10
|
Wang J, Li Y, Wang Y, Huang W. Multimodal Data and Machine Learning for Detecting Specific Biomarkers in Pediatric Epilepsy Patients With Generalized Tonic-Clonic Seizures. Front Neurol 2018; 9:1038. [PMID: 30619025 PMCID: PMC6297879 DOI: 10.3389/fneur.2018.01038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/19/2018] [Indexed: 01/16/2023] Open
Abstract
Previous neuroimaging studies of epilepsy with generalized tonic-clonic seizures (GTCS) focus mainly on adults. However, the neural mechanisms that underline this type of epilepsy remain unclear, especially for children. The aim of the present study was to detect the effect of epilepsy on brains of children with GTCS and to investigate whether the changes in the brain can be used to discriminate between epileptic children and healthy children at the level of the individual. To achieve this purpose, we measured gray matter (GM) volume and fractional amplitude of low-frequency fluctuation (fALFF) differences on multimodel magnetic resonance imaging in 14 children with GTCS and 30 age- and gender-matched healthy controls. The patients showed GM volume reduction and a fALFF increase in the thalamus, hippocampus, temporal and other deep nuclei. A significant decrease of fALFF was mainly found in the default mode network (DMN). In addition, epileptic duration was significantly negatively related to the GM volumes and significantly positively related to the fALFF value of right thalamus. A support vector machine (SVM) applied to the GM volume of the right thalamus correctly identified epileptic children with a statistically significant accuracy of 74.42% (P < 0.002). A SVM applied to the fALFF of the right thalamus correctly identified epileptic children with a statistically significant accuracy of 83.72% (P < 0.002). The consistent neuroimaging results indicated that the right thalamus plays an important role in reflecting the chronic damaging effect of GTCS epilepsy in children. The length of time of a child's epileptic history was correlated with greater GM volume reduction and a fALFF increase in the right thalamus. GM volumes and fALFF values in the right thalamus can identify children with GTCS from the healthy controls with high accuracy and at an individual subject level. These results are likely to be valuable in explaining the clinical problems and understanding the brain abnormalities underlying this disorder.
Collapse
Affiliation(s)
- Jianping Wang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongxin Li
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ya Wang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenhua Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Toh Z, Gu Q, Seah T, Wong W, McNab J, Chuang K, Hong X, Tang P. Increased white matter connectivity seen in young judo athletes with MRI. Clin Radiol 2018. [DOI: 10.1016/j.crad.2018.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Liu P, Fan Y, Wei Y, Zeng F, Li R, Fei N, Qin W. Altered structural and functional connectivity of the insula in functional dyspepsia. Neurogastroenterol Motil 2018; 30:e13345. [PMID: 29687532 DOI: 10.1111/nmo.13345] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 03/02/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Functional dyspepsia (FD) is a common functional gastrointestinal disease. Neuroimaging studies have identified that insula is involved in the pathogenesis of FD. However, less is known about structural and functional connectivity of insula in FD. METHODS In this study, 67 FD patients and 46 healthy controls (HCs) underwent structural MRI, resting-state functional MRI, diffusion tensor imaging (DTI) scans, and clinical assessment. We used the 3 neuroimaging modalities to investigate structural and functional connectivity of insula between FD patients and HCs, and we examined relationships between the neuroimaging findings and clinical symptoms. KEY RESULTS Compared with HCs, (i) FD patients had decreased gray matter density in right insula according to voxel-based morphometry method, which region was targeted as region of interest for further analysis of structural and functional connectivity; (ii) FD patients had lower connection probability in right anterior insula with right thalamus, right internal capsule (IC), and right external capsule (EC); (iii) FD patients had decreased functional connectivity of the right anterior insula with right thalamus and right pregenual anterior cingulate cortex (pACC); and (iv) FD patients had negative correlation between disease duration and the functional connectivity of right anterior insula with thalamus. CONCLUSIONS AND INFERENCES The present findings reveal that alterations of structural and/or functional connectivity of right anterior insula with regions, including thalamus, IC, EC, and pACC, may be mainly implicated in abnormalities of visceral sensory processing and related affective responses in FD patients. Finally, this study could enhance understanding of the pathophysiology of FD.
Collapse
Affiliation(s)
- P Liu
- School of Life Science and Technology, Life Science Research Center, Xidian University, Xi'an, China.,School of Life Science and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi'an, China
| | - Y Fan
- School of Life Science and Technology, Life Science Research Center, Xidian University, Xi'an, China.,School of Life Science and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi'an, China
| | - Y Wei
- School of Life Science and Technology, Life Science Research Center, Xidian University, Xi'an, China.,School of Life Science and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi'an, China
| | - F Zeng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - R Li
- School of Life Science and Technology, Life Science Research Center, Xidian University, Xi'an, China.,School of Life Science and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi'an, China
| | - N Fei
- School of Life Science and Technology, Life Science Research Center, Xidian University, Xi'an, China.,School of Life Science and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi'an, China
| | - W Qin
- School of Life Science and Technology, Life Science Research Center, Xidian University, Xi'an, China.,School of Life Science and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi'an, China
| |
Collapse
|
13
|
Xie Y, Weng J, Wang C, Xu T, Peng X, Chen F. The impact of long-term abacus training on modular properties of functional brain network. Neuroimage 2018; 183:811-817. [PMID: 30149141 DOI: 10.1016/j.neuroimage.2018.08.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 01/22/2023] Open
Abstract
Training induces cognitive and neural plasticity, and understanding of the neural mechanisms of training-induced brain plasticity has significant implications for improving children's academic achievement. Previous studies have indicated that training in abacus-based mental calculation (AMC) improves arithmetical capacities and results in brain plasticity within visuospatial brain regions. However, previous studies have reported alterations within distributed brain regions. Thus, it remains unclear whether and how AMC training influences the functional integration and separation between and/or within networks. The current study aimed to address these questions using graph theory, engaging 162 children, 90 of whom were given long-term AMC training. The AMC group exhibited greater local efficiency and intra-module connections within the visual network and less local efficiency and intra-module connections in the cingulo-opercular network (CON). Interestingly, in the AMC group, negative correlations were found between local efficiency and intra-module connections across the two networks. Furthermore, both network characteristics of the CON were negatively correlated with math ability in the AMC group. No such correlations were found in the control group. The current study delineated the enhanced neural mechanisms of visuospatial-related brain regions at an intermediate level and highlighted the intrinsic association between different brain ensembles in neural plasticity, thus furthering the understanding of the effects of AMC training on brain network reconfiguration.
Collapse
Affiliation(s)
- Ye Xie
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, 310027, PR China
| | - Jian Weng
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, 310027, PR China; Center of Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Chunjie Wang
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, 310027, PR China; State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, PR China
| | - Tianyong Xu
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, 310027, PR China
| | - Xiaogang Peng
- The First Hospital of Qiqihar, Qiqihar, Heilongjiang, PR China
| | - Feiyan Chen
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
14
|
Srinivasan M, Wagner K, Frank MC, Barner D. The Role of Design and Training in Artifact Expertise: The Case of the Abacus and Visual Attention. Cogn Sci 2018; 42 Suppl 3:757-782. [DOI: 10.1111/cogs.12611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/19/2017] [Accepted: 02/19/2018] [Indexed: 11/29/2022]
Affiliation(s)
| | - Katie Wagner
- Department of Psychology; University of California, San Diego
| | | | - David Barner
- Department of Psychology; University of California, San Diego
| |
Collapse
|
15
|
An event-related potential investigation of spatial attention orientation in children trained with mental abacus calculation. Neuroreport 2018; 28:35-41. [PMID: 27831960 PMCID: PMC5142367 DOI: 10.1097/wnr.0000000000000705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The objective of this study was to investigate the effects of long-term mental abacus calculation training (MACT) on children’s spatial attention orientation. Fifteen children with intensive MACT (MACT group) and 15 children without MACT (non-MACT group) were selected. The two groups of children were matched in age, sex, handedness, and academic grade. The participants were tested with a Posner spatial cueing task while their neural activities were recorded with a 32-channel electroencephalogram system. The participants’ behavior scores (reaction time and accuracy) as well as early components of event-related potential (ERP) during the tests were statistically analyzed. The behavioral scores showed no significant difference between the two groups of children, although the MACT group tended to have a shorter reaction time. The early ERP components showed that under valid cueing condition, the MACT group had significantly higher P1 amplitude [F(1, 28)=5.06, P<0.05, effective size=0.72] and lower N1 amplitude [F(1, 28)=6.05, P<0.05, effective size=0.82] in the occipital region compared with the non-MACT group. In the centrofrontal brain region, the MACT group had lower N1 amplitude [F(1, 28)=4.89, P<0.05, effect size=0.70] and longer N1 latency [F(1, 28)=6.26, P<0.05, effect size=0.80] than the non-MACT group. In particular, the MACT group also showed a higher centrofrontal P2 amplitude in the right hemisphere [F(1, 28)=4.82, P<0.05, effect size 0.81] compared with the left hemisphere and the middle location. MACT enhances the children’s spatial attention orientation, which can be detected in the early components of ERP.
Collapse
|
16
|
Wang C, Weng J, Yao Y, Dong S, Liu Y, Chen F. Effect of abacus training on executive function development and underlying neural correlates in Chinese children. Hum Brain Mapp 2017; 38:5234-5249. [PMID: 28727223 PMCID: PMC6867117 DOI: 10.1002/hbm.23728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/17/2017] [Accepted: 07/07/2017] [Indexed: 01/19/2023] Open
Abstract
Executive function (EF) refers to a set of cognitive abilities involved in self-regulated behavior. Given the critical role of EF in cognition, strategies for improving EF have attracted intensive attention in recent years. Previous studies have explored the effects of abacus-based mental calculation (AMC) training on several cognitive abilities. However, it remains unclear whether AMC training affects EF and its neural correlates. In this study, participants were randomly assigned to AMC or control groups upon starting primary school. The AMC group received 2 h AMC training every week, while the control group did not have any abacus experience. Neural activity during an EF task was examined using functional MRI for both groups in their 4th and 6th grades. Our results showed that the AMC group performed better and faster than the control group in both grades. They also had lower activation in the frontoparietal reigons than the control group in the 6th grade. From the 4th to the 6th grade, the AMC group showed activation decreases in the frontoparietal regions, while the control group exhibited an opposite pattern. Furthermore, voxel-wise regression analyses revealed that better performance was associated with lower task-relevant brain activity in the AMC group but associated with greater task-relevant brain activity in the control group. These results suggest that long-term AMC training, with calculation ability as its original target, may improve EF and enhance neural efficiency of the frontoparietal regions during development. Hum Brain Mapp 38:5234-5249, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chunjie Wang
- Bio‐X LaboratoryDepartment of Physics, Zhejiang UniversityHangzhouChina
| | - Jian Weng
- Bio‐X LaboratoryDepartment of Physics, Zhejiang UniversityHangzhouChina
| | - Yuan Yao
- Department of PsychologySuzhou University of Science and TechnologySuzhouChina
| | - Shanshan Dong
- Bio‐X LaboratoryDepartment of Physics, Zhejiang UniversityHangzhouChina
| | - Yuqiu Liu
- Bio‐X LaboratoryDepartment of Physics, Zhejiang UniversityHangzhouChina
| | - Feiyan Chen
- Bio‐X LaboratoryDepartment of Physics, Zhejiang UniversityHangzhouChina
| |
Collapse
|
17
|
The Effects of Long-term Abacus Training on Topological Properties of Brain Functional Networks. Sci Rep 2017; 7:8862. [PMID: 28821846 PMCID: PMC5562922 DOI: 10.1038/s41598-017-08955-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 07/20/2017] [Indexed: 11/08/2022] Open
Abstract
Previous studies in the field of abacus-based mental calculation (AMC) training have shown that this training has the potential to enhance a wide variety of cognitive abilities. It can also generate specific changes in brain structure and function. However, there is lack of studies investigating the impact of AMC training on the characteristics of brain networks. In this study, utilizing graph-based network analysis, we compared topological properties of brain functional networks between an AMC group and a matched control group. Relative to the control group, the AMC group exhibited higher nodal degrees in bilateral calcarine sulcus and increased local efficiency in bilateral superior occipital gyrus and right cuneus. The AMC group also showed higher nodal local efficiency in right fusiform gyrus, which was associated with better math ability. However, no relationship was significant in the control group. These findings provide evidence that long-term AMC training may improve information processing efficiency in visual-spatial related regions, which extend our understanding of training plasticity at the brain network level.
Collapse
|
18
|
Dong S, Wang C, Xie Y, Hu Y, Weng J, Chen F. The impact of abacus training on working memory and underlying neural correlates in young adults. Neuroscience 2016; 332:181-90. [PMID: 27393250 DOI: 10.1016/j.neuroscience.2016.06.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 11/25/2022]
Abstract
Abacus-based mental calculation (AMC) activates the frontoparietal areas largely overlapping with the working memory (WM) network. Given the critical role of WM in cognition, how to improve WM capability has attracted intensive attention in past years. However, it is still unclear whether WM could be enhanced by AMC training. The current research thus explored the impact of AMC training on verbal and visuospatial WM, as well as the underlying neural basis. Participants were randomly assigned to an abacus group and a control group. Their verbal WM was evaluated by digit/letter memory span (DMS/LMS) tests, and visuospatial WM was assessed by a visuospatial n-back task. Neural activity during the n-back task was examined using functional MRI. Our results showed reliable improvements of both verbal and visuospatial WM in the abacus group after 20-day AMC training but not in the control. In addition, the n-back task-induced activations in the right frontoparietal circuitry and left occipitotemporal junction (OTJ) declined as a result of training. Notably, the decreases in activity were positively correlated with performance gains across trained participants. These results suggest AMC training not only improves calculating skills but also have the potential to promote individuals' WM capabilities, which is associated with the functional plasticity of the common neural substrates.
Collapse
Affiliation(s)
- Shanshan Dong
- Bio-X Laboratory, Department of Physics, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Chunjie Wang
- Bio-X Laboratory, Department of Physics, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Ye Xie
- Bio-X Laboratory, Department of Physics, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Yuzheng Hu
- Bio-X Laboratory, Department of Physics, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China; Neuroimage Research Branch, National Institute on Drug Abuse, National Institute of Health, Baltimore, MD 21224, USA
| | - Jian Weng
- Bio-X Laboratory, Department of Physics, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Feiyan Chen
- Bio-X Laboratory, Department of Physics, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China.
| |
Collapse
|
19
|
Matías-Guiu J, Pérez-Martínez D, Matías-Guiu J. A pilot study of a new method of cognitive stimulation using abacus arithmetic in healthy and cognitively impaired elderly subjects. NEUROLOGÍA (ENGLISH EDITION) 2016. [DOI: 10.1016/j.nrleng.2015.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
20
|
Hahn A, Kranz GS, Sladky R, Kaufmann U, Ganger S, Hummer A, Seiger R, Spies M, Vanicek T, Winkler D, Kasper S, Windischberger C, Swaab DF, Lanzenberger R. Testosterone affects language areas of the adult human brain. Hum Brain Mapp 2016; 37:1738-48. [PMID: 26876303 PMCID: PMC4949561 DOI: 10.1002/hbm.23133] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/17/2015] [Accepted: 01/25/2016] [Indexed: 12/19/2022] Open
Abstract
Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high-dose hormone application in adult female-to-male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel-based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting-state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone-dependent neuroplastic adaptations in adulthood within language-specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738-1748, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andreas Hahn
- Department of Psychiatry and PsychotherapyMedical University of ViennaAustria
| | - Georg S. Kranz
- Department of Psychiatry and PsychotherapyMedical University of ViennaAustria
| | - Ronald Sladky
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of ViennaAustria
| | - Ulrike Kaufmann
- Department of Obstetrics and GynecologyMedical University of ViennaAustria
| | - Sebastian Ganger
- Department of Psychiatry and PsychotherapyMedical University of ViennaAustria
| | - Allan Hummer
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of ViennaAustria
| | - Rene Seiger
- Department of Psychiatry and PsychotherapyMedical University of ViennaAustria
| | - Marie Spies
- Department of Psychiatry and PsychotherapyMedical University of ViennaAustria
| | - Thomas Vanicek
- Department of Psychiatry and PsychotherapyMedical University of ViennaAustria
| | - Dietmar Winkler
- Department of Psychiatry and PsychotherapyMedical University of ViennaAustria
| | - Siegfried Kasper
- Department of Psychiatry and PsychotherapyMedical University of ViennaAustria
| | - Christian Windischberger
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of ViennaAustria
| | - Dick F. Swaab
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamthe Netherlands
| | - Rupert Lanzenberger
- Department of Psychiatry and PsychotherapyMedical University of ViennaAustria
| |
Collapse
|
21
|
Neural Plasticity following Abacus Training in Humans: A Review and Future Directions. Neural Plast 2016; 2016:1213723. [PMID: 26881089 PMCID: PMC4736326 DOI: 10.1155/2016/1213723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 01/28/2023] Open
Abstract
The human brain has an enormous capacity to adapt to a broad variety of environmental demands. Previous studies in the field of abacus training have shown that this training can induce specific changes in the brain. However, the neural mechanism underlying these changes remains elusive. Here, we reviewed the behavioral and imaging findings of comparisons between abacus experts and average control subjects and focused on changes in activation patterns and changes in brain structure. Finally, we noted the limitations and the future directions of this field. We concluded that although current studies have provided us with information about the mechanisms of abacus training, more research on abacus training is needed to understand its neural impact.
Collapse
|
22
|
Bleyenheuft Y, Dricot L, Gilis N, Kuo HC, Grandin C, Bleyenheuft C, Gordon AM, Friel KM. Capturing neuroplastic changes after bimanual intensive rehabilitation in children with unilateral spastic cerebral palsy: A combined DTI, TMS and fMRI pilot study. RESEARCH IN DEVELOPMENTAL DISABILITIES 2015; 43-44:136-49. [PMID: 26183338 PMCID: PMC4871716 DOI: 10.1016/j.ridd.2015.06.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 05/25/2023]
Abstract
Intensive rehabilitation interventions have been shown to be efficacious in improving upper extremity function in children with unilateral spastic cerebral palsy (USCP). These interventions are based on motor learning principles and engage children in skillful movements. Improvements in upper extremity function are believed to be associated with neuroplastic changes. However, these neuroplastic changes have not been well-described in children with cerebral palsy, likely due to challenges in defining and implementing the optimal tools and tests in children. Here we documented the implementation of three different neurological assessments (diffusion tensor imaging-DTI, transcranial magnetic stimulation-TMS and functional magnetic resonance imaging-fMRI) before and after a bimanual intensive treatment (HABIT-ILE) in two children with USCP presenting differential corticospinal developmental reorganization (ipsilateral and contralateral). The aim of the study was to capture neurophysiological changes and to document the complementary relationship between these measures, the potential measurable changes and the feasibility of applying these techniques in children with USCP. Independent of cortical reorganization, both children showed increases in activation and size of the motor areas controlling the affected hand, quantified with different techniques. In addition, fMRI provided additional unexpected changes in the reward circuit while using the affected hand.
Collapse
Affiliation(s)
- Yannick Bleyenheuft
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.
| | - Laurence Dricot
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie Gilis
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Hsing-Ching Kuo
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, USA
| | - Cécile Grandin
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium; Radioloy Service, Clinques Universitaires Saint-Luc, Brussels, Belgium
| | - Corinne Bleyenheuft
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium; Physical Medicine and Rehabilitation Service, CHU Mont-Godinne, Yvoir, Belgium
| | - Andrew M Gordon
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, USA
| | - Kathleen M Friel
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, USA; Burke-Cornell Medical Research Institute, White Plains, NY, USA
| |
Collapse
|
23
|
Vasques X, Richardet R, Hill SL, Slater D, Chappelier JC, Pralong E, Bloch J, Draganski B, Cif L. Automatic target validation based on neuroscientific literature mining for tractography. Front Neuroanat 2015; 9:66. [PMID: 26074781 PMCID: PMC4445321 DOI: 10.3389/fnana.2015.00066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/09/2015] [Indexed: 11/24/2022] Open
Abstract
Target identification for tractography studies requires solid anatomical knowledge validated by an extensive literature review across species for each seed structure to be studied. Manual literature review to identify targets for a given seed region is tedious and potentially subjective. Therefore, complementary approaches would be useful. We propose to use text-mining models to automatically suggest potential targets from the neuroscientific literature, full-text articles and abstracts, so that they can be used for anatomical connection studies and more specifically for tractography. We applied text-mining models to three structures: two well-studied structures, since validated deep brain stimulation targets, the internal globus pallidus and the subthalamic nucleus and, the nucleus accumbens, an exploratory target for treating psychiatric disorders. We performed a systematic review of the literature to document the projections of the three selected structures and compared it with the targets proposed by text-mining models, both in rat and primate (including human). We ran probabilistic tractography on the nucleus accumbens and compared the output with the results of the text-mining models and literature review. Overall, text-mining the literature could find three times as many targets as two man-weeks of curation could. The overall efficiency of the text-mining against literature review in our study was 98% recall (at 36% precision), meaning that over all the targets for the three selected seeds, only one target has been missed by text-mining. We demonstrate that connectivity for a structure of interest can be extracted from a very large amount of publications and abstracts. We believe this tool will be useful in helping the neuroscience community to facilitate connectivity studies of particular brain regions. The text mining tools used for the study are part of the HBP Neuroinformatics Platform, publicly available at http://connectivity-brainer.rhcloud.com/.
Collapse
Affiliation(s)
- Xavier Vasques
- Blue Brain Project, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland ; IBM Systems France ; Laboratoire de Recherche en Neurosciences Cliniques France
| | - Renaud Richardet
- Blue Brain Project, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Sean L Hill
- Blue Brain Project, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - David Slater
- Laboratoire de Recherche Neuroimagerie, Université de Lausanne Lausanne, Switzerland ; Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne Lausanne, Switzerland
| | - Jean-Cedric Chappelier
- School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Etienne Pralong
- Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne Lausanne, Switzerland
| | - Jocelyne Bloch
- Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne Lausanne, Switzerland
| | - Bogdan Draganski
- Laboratoire de Recherche Neuroimagerie, Université de Lausanne Lausanne, Switzerland ; Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne Lausanne, Switzerland
| | - Laura Cif
- Laboratoire de Recherche Neuroimagerie, Université de Lausanne Lausanne, Switzerland ; Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Université de Lausanne Lausanne, Switzerland ; Département de Neurochirurgie, Hôpital Gui de Chauliac, Centre Hospitalier Régional Universitaire de Montpellier, Université Montpellier 1 Montpellier, France
| |
Collapse
|
24
|
Moeller K, Willmes K, Klein E. A review on functional and structural brain connectivity in numerical cognition. Front Hum Neurosci 2015; 9:227. [PMID: 26029075 PMCID: PMC4429582 DOI: 10.3389/fnhum.2015.00227] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 04/09/2015] [Indexed: 12/22/2022] Open
Abstract
Only recently has the complex anatomo-functional system underlying numerical cognition become accessible to evaluation in the living brain. We identified 27 studies investigating brain connectivity in numerical cognition. Despite considerable heterogeneity regarding methodological approaches, populations investigated, and assessment procedures implemented, the results provided largely converging evidence regarding the underlying brain connectivity involved in numerical cognition. Analyses of both functional/effective as well as structural connectivity have consistently corroborated the assumption that numerical cognition is subserved by a fronto-parietal network including (intra)parietal as well as (pre)frontal cortex sites. Evaluation of structural connectivity has indicated the involvement of fronto-parietal association fibers encompassing the superior longitudinal fasciculus dorsally and the external capsule/extreme capsule system ventrally. Additionally, commissural fibers seem to connect the bilateral intraparietal sulci when number magnitude information is processed. Finally, the identification of projection fibers such as the superior corona radiata indicates connections between cortex and basal ganglia as well as the thalamus in numerical cognition. Studies on functional/effective connectivity further indicated a specific role of the hippocampus. These specifications of brain connectivity augment the triple-code model of number processing and calculation with respect to how gray matter areas associated with specific number-related representations may work together.
Collapse
Affiliation(s)
- Korbinian Moeller
- Knowledge Media Research Center Tübingen, Germany ; Department of Psychology, Eberhard-Karls University Tübingen, Germany
| | - Klaus Willmes
- Department of Neurology, Section Neuropsychology, University Hospital, RWTH Aachen University Aachen, Germany
| | - Elise Klein
- Knowledge Media Research Center Tübingen, Germany ; Department of Neurology, Section Neuropsychology, University Hospital, RWTH Aachen University Aachen, Germany
| |
Collapse
|
25
|
A pilot study of a new method of cognitive stimulation using abacus arithmetic in healthy and cognitively impaired elderly subjects. Neurologia 2015; 31:326-31. [PMID: 25840607 DOI: 10.1016/j.nrl.2015.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 02/07/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND This study explores the applicability of a cognitive stimulation method based on abacus arithmetic in elderly people with and without cognitive impairment. METHODS This observational and prospective pilot study was performed in 2 hospitals. The study assessed the applicability of a programme of arithmetic training developed for use in the elderly population. The primary endpoint was an evaluation of the stimulation programme, in terms of usability, satisfaction, and participation, in healthy elderly controls and elderly patients with mild cognitive impairment or Alzheimer disease. Secondary endpoints were family satisfaction, caregiver burden, and the behaviour and cognition of patients. RESULTS Usability, satisfaction, and degree of participation were high. The Mini-Mental State Examination showed significant changes (23.1±4.8 before the intervention vs 24.9±4.2 afterwards, P=.002); there were no changes on the Trail Making Test parts A and B, Yesavage Geriatric Depression scale, and Zarit caregiver burden scale. CONCLUSIONS The study suggests that cognitive stimulation with abacus arithmetic may be used in elderly people with and without cognitive impairment. Further studies will be needed to evaluate the efficacy of this kind of programmes.
Collapse
|
26
|
Itahashi T, Yamada T, Nakamura M, Watanabe H, Yamagata B, Jimbo D, Shioda S, Kuroda M, Toriizuka K, Kato N, Hashimoto R. Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: a multimodal brain imaging study. NEUROIMAGE-CLINICAL 2014; 7:155-69. [PMID: 25610777 PMCID: PMC4299973 DOI: 10.1016/j.nicl.2014.11.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/22/2014] [Accepted: 11/26/2014] [Indexed: 11/17/2022]
Abstract
Growing evidence suggests that a broad range of behavioral anomalies in people with autism spectrum disorder (ASD) can be linked with morphological and functional alterations in the brain. However, the neuroanatomical underpinnings of ASD have been investigated using either structural magnetic resonance imaging (MRI) or diffusion tensor imaging (DTI), and the relationships between abnormalities revealed by these two modalities remain unclear. This study applied a multimodal data-fusion method, known as linked independent component analysis (ICA), to a set of structural MRI and DTI data acquired from 46 adult males with ASD and 46 matched controls in order to elucidate associations between different aspects of atypical neuroanatomy of ASD. Linked ICA identified two composite components that showed significant between-group differences, one of which was significantly correlated with age. In the other component, participants with ASD showed decreased gray matter (GM) volumes in multiple regions, including the bilateral fusiform gyri, bilateral orbitofrontal cortices, and bilateral pre- and post-central gyri. These GM changes were linked with a pattern of decreased fractional anisotropy (FA) in several white matter tracts, such as the bilateral inferior longitudinal fasciculi, bilateral inferior fronto-occipital fasciculi, and bilateral corticospinal tracts. Furthermore, unimodal analysis for DTI data revealed significant reductions of FA along with increased mean diffusivity in those tracts for ASD, providing further evidence of disrupted anatomical connectivity. Taken together, our findings suggest that, in ASD, alterations in different aspects of brain morphology may co-occur in specific brain networks, providing a comprehensive view for understanding the neuroanatomy of this disorder. Structural alterations of gray (GM) and white matter (WM) in ASD were investigated. Linked independent component analysis was used for multimodal data analysis. Alterations of GM and WM in ASD co-occurred in cognitive and affective networks. Results reveal an integrative view of multiple aspects of structural changes in ASD.
Collapse
Affiliation(s)
- Takashi Itahashi
- Department of Pharmacognosy and Phytochemistry, Showa University School of Pharmacy, Tokyo, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Takashi Yamada
- Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
| | - Motoaki Nakamura
- Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
- Kinko Hospital, Kanagawa Psychiatric Center, Kanagawa, Japan
| | - Hiromi Watanabe
- Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
| | - Bun Yamagata
- Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
| | - Daiki Jimbo
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Seiji Shioda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Miho Kuroda
- Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
- Child Mental Health-care Center, Fukushima University, Fukushima, Japan
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Toriizuka
- Department of Pharmacognosy and Phytochemistry, Showa University School of Pharmacy, Tokyo, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ryuichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan
- Corresponding author at: Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11, Kita-karasuyama, Setagaya-ku, Tokyo 157-8577, Japan. Tel.: +81 3 5315 9357.
| |
Collapse
|
27
|
Du F, Yao Y, Zhang Q, Chen F. Long-Term Abacus Training Induces Automatic Processing of Abacus Numbers in Children. Perception 2014; 43:694-704. [DOI: 10.1068/p7625] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abacus-based mental calculation (AMC) is a unique strategy for arithmetic that is based on the mental abacus. AMC experts can solve calculation problems with extraordinarily fast speed and high accuracy. Previous studies have demonstrated that abacus experts showed superior performance and special neural correlates during numerical tasks. However, most of those studies focused on the perception and cognition of Arabic numbers. It remains unclear how the abacus numbers were perceived. By applying a similar enumeration Stroop task, in which participants are presented with a visual display containing two abacus numbers and asked to compare the numerosity of beads that consisted of the abacus number, in the present study we investigated the automatic processing of the numerical value of abacus numbers in abacus-trained children. The results demonstrated a significant congruity effect in the numerosity comparison task for abacus-trained children, in both reaction time and error rate analysis. These results suggested that the numerical value of abacus numbers was perceived automatically by the abacus-trained children after long-term training.
Collapse
Affiliation(s)
- Fenglei Du
- Bio-X Laboratory, Department of Physics, Yuquan Campus, Zhejiang University, Hangzhou 310027, P R China
| | - Yuan Yao
- Bio-X Laboratory, Department of Physics, Yuquan Campus, Zhejiang University, Hangzhou 310027, P R China
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, P R China
| | - Qiong Zhang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, P R China
| | - Feiyan Chen
- Bio-X Laboratory, Department of Physics, Yuquan Campus, Zhejiang University, Hangzhou 310027, P R China
| |
Collapse
|
28
|
Abacus training modulates the neural correlates of exact and approximate calculations in Chinese children: an fMRI study. BIOMED RESEARCH INTERNATIONAL 2013; 2013:694075. [PMID: 24288683 PMCID: PMC3830782 DOI: 10.1155/2013/694075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/12/2013] [Indexed: 01/29/2023]
Abstract
Exact (EX) and approximate (AP) calculations rely on distinct neural circuits. However, the training effect on the neural correlates of EX and AP calculations is largely unknown, especially for the AP calculation. Abacus-based mental calculation (AMC) is a particular arithmetic skill that can be acquired by long-term abacus training. The present study investigated whether and how the abacus training modulates the neural correlates of EX and AP calculations by functional magnetic resonance imaging (fMRI). Neural activations were measured in 20 abacus-trained and 19 nontrained Chinese children during AP and EX calculation tasks. Our results demonstrated that: (1) in nontrained children, similar neural regions were activated in both tasks, while the size of activated regions was larger in AP than those in the EX; (2) in abacus-trained children, no significant difference was found between these two tasks; (3) more visuospatial areas were activated in abacus-trained children under the EX task compared to the nontrained. These results suggested that more visuospatial strategies were used by the nontrained children in the AP task compared to the EX; abacus-trained children adopted a similar strategy in both tasks; after long-term abacus training, children were more inclined to apply a visuospatial strategy during processing EX calculations.
Collapse
|
29
|
Li Y, Hu Y, Zhao M, Wang Y, Huang J, Chen F. The neural pathway underlying a numerical working memory task in abacus-trained children and associated functional connectivity in the resting brain. Brain Res 2013; 1539:24-33. [PMID: 24080400 DOI: 10.1016/j.brainres.2013.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 09/13/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
Abstract
Training can induce significant changes in brain functioning and behavioral performance. One consequence of training is changing the pattern of brain activation. Abacus training is of interest because abacus experts gain the ability to handle digits with unusual speed and accuracy. However, the neural correlates of numerical memory in abacus-trained children remain unknown. In the current study, we aimed to detect a training effect of abacus-based mental calculations on numerical working memory in children. We measured brain functional magnetic resonance imaging (fMRI) activation patterns in 17 abacus-trained children and 17 control children as they performed two numerical working memory tasks (digits and beads). Functional MRI results revealed higher activation in abacus-trained children than in the controls in the right posterior superior parietal lobule/superior occipital gyrus (PSPL/SOG) and the right supplementary motor area (SMA) in both tasks. When these regions were used as seeds in a functional connectivity analysis of the resting brain, the abacus-trained children showed significantly enhanced integration between the right SMA and the right inferior frontal gyrus (IFG). The IFG is considered to be the key region for the control of attention. These findings demonstrate that extensive engagement of the fronto-parietal network occurs during numerical memory tasks in the abacus-trained group. Furthermore, abacus training may increase the functional integration of visuospatial-attention circuitry, which and thus enhances high-level cognitive process.
Collapse
Affiliation(s)
- Yongxin Li
- Bio-X Laboratory, Department of Physics, Zhejiang University, 38 Zheda Road, Hangzhou 310027, People's Republic of China
| | | | | | | | | | | |
Collapse
|