1
|
Krishnan S, Lima CF, Evans S, Chen S, Guldner S, Yeff H, Manly T, Scott SK. Beatboxers and Guitarists Engage Sensorimotor Regions Selectively When Listening to the Instruments They can Play. Cereb Cortex 2019; 28:4063-4079. [PMID: 30169831 PMCID: PMC6188551 DOI: 10.1093/cercor/bhy208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 08/04/2018] [Indexed: 12/31/2022] Open
Abstract
Studies of classical musicians have demonstrated that expertise modulates neural responses during auditory perception. However, it remains unclear whether such expertise-dependent plasticity is modulated by the instrument that a musician plays. To examine whether the recruitment of sensorimotor regions during music perception is modulated by instrument-specific experience, we studied nonclassical musicians-beatboxers, who predominantly use their vocal apparatus to produce sound, and guitarists, who use their hands. We contrast fMRI activity in 20 beatboxers, 20 guitarists, and 20 nonmusicians as they listen to novel beatboxing and guitar pieces. All musicians show enhanced activity in sensorimotor regions (IFG, IPC, and SMA), but only when listening to the musical instrument they can play. Using independent component analysis, we find expertise-selective enhancement in sensorimotor networks, which are distinct from changes in attentional networks. These findings suggest that long-term sensorimotor experience facilitates access to the posterodorsal "how" pathway during auditory processing.
Collapse
Affiliation(s)
- Saloni Krishnan
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, UK.,Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Oxford, UK
| | - César F Lima
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, UK.,Instituto Universitário de Lisboa (ISCTE-IUL), Avenida das Forças Armadas, Lisboa, Portugal
| | - Samuel Evans
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, UK.,Department of Psychology, University of Westminster, 115 New Cavendish Street, London, UK
| | - Sinead Chen
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, UK
| | - Stella Guldner
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, UK.,Graduate School of Economic and Social Sciences (GESS), University of Mannheim, Mannheim, Germany
| | - Harry Yeff
- Get Involved Ltd, 3 Loughborough Street, London, UK
| | - Tom Manly
- MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge, UK
| | - Sophie K Scott
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, UK
| |
Collapse
|
2
|
Lachmair M, Ruiz Fernandez S, Gerjets P. Does Grammatical Number Influence the Semantic Priming Between Number Cues and Words Related to Vertical Space? An Investigation Using Virtual Reality. Front Psychol 2018; 9:573. [PMID: 29731734 PMCID: PMC5921996 DOI: 10.3389/fpsyg.2018.00573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/05/2018] [Indexed: 12/05/2022] Open
Abstract
The GES framework postulates a hierarchical order between grounded, embodied, and situated representations. Against this background, the present study investigated the relation of two effects: (i) a semantic priming between number cues and words with referents up or down in the world according to the number's magnitude which is supposed to be grounded (cf. Lachmair et al., 2014) and (ii) the compatibility between number cues and the grammatical word form of the words according to the number's multitude which is supposed to be embodied (cf. Roettger and Domahs, 2015). In two experiments words referring to objects up or down in the world and spatially neutral words were presented subsequent to the numbers “1” and “9.” In Experiment 1 words were presented in singular word form and in Experiment 2 in plural word form. For the first time, Virtual Reality was used in such an experimental setup in order to reduce spatial predispositions of participants and to provide a homogeneous experimental environment for replication purposes. According to GES it was expected that the spatial semantic priming should occur in both grammatical word forms. However, the compatibility with grammatical number should only occur for the plural word form due to its markedness. The results of Experiment 1 support the spatial-semantic-priming-hypothesis but not the grammatical-number-hypothesis. The results of Experiment 2 supported only the grammatical-number-hypothesis. It is argued that the grounded spatial effect of Experiment 1 was not affected by grammatical number. However, in Experiment 2 this effect vanished due to an activated embodied reference frame according to grammatical number.
Collapse
Affiliation(s)
| | - Susana Ruiz Fernandez
- Leibniz-Institut für Wissensmedien, Tuebingen, Germany.,LEAD Graduate School and Research Network, University of Tuebingen, Tuebingen, Germany.,FOM-Hochschule fuer Oekonomie und Management, Essen, Germany
| | - Peter Gerjets
- Leibniz-Institut für Wissensmedien, Tuebingen, Germany.,LEAD Graduate School and Research Network, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
3
|
Lachmair M, Cress U, Fissler T, Kurek S, Leininger J, Nuerk HC. Music-space associations are grounded, embodied and situated: examination of cello experts and non-musicians in a standard tone discrimination task. PSYCHOLOGICAL RESEARCH 2017; 83:894-906. [PMID: 28744607 PMCID: PMC6557872 DOI: 10.1007/s00426-017-0898-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 07/20/2017] [Indexed: 11/29/2022]
Abstract
In recent research, a systematic association of musical pitch with space has been described in the so-called Spatial-Pitch-Association-of-Response Codes-effect (SPARC). Typically, high pitch is associated with upper/right and low pitch with lower/left space. However, a theoretical classification of these associations regarding their experiential sources is difficult. Therefore, we applied a theoretical framework of numerical cognition classifying similar Space-Associated Response Codes (SARC) effects according to their groundedness, embodiedness and situatedness. We tested these attributes with a group of non-musicians and with a group of highly skilled cello players playing high tones with lower hand positions (i.e., reverse SPARC alignment) in a standard SPARC context of a piano and a reversed SPARC context of a cello. The results showed that SPARC is grounded, in general. However, for cello player SPARC is also situated and embodied. We conclude that groundedness, embodiedness and situatedness provide general characteristics of mapping cognitive representations to space.
Collapse
Affiliation(s)
- Martin Lachmair
- Leibniz-Institut für Wissensmedien, Schleichstraße 6, 72076, Tübingen, Germany.
| | - Ulrike Cress
- Department of Psychology, University of Tübingen, Tübingen, Germany.,Leibniz-Institut für Wissensmedien, Schleichstraße 6, 72076, Tübingen, Germany.,LEAD Graduate School and Research Network, Tübingen, Germany
| | - Tim Fissler
- Department of Psychology, University of Tübingen, Tübingen, Germany
| | - Simone Kurek
- Department of Psychology, University of Tübingen, Tübingen, Germany
| | - Jan Leininger
- Department of Psychology, University of Tübingen, Tübingen, Germany
| | - Hans-Christoph Nuerk
- Department of Psychology, University of Tübingen, Tübingen, Germany.,Leibniz-Institut für Wissensmedien, Schleichstraße 6, 72076, Tübingen, Germany.,LEAD Graduate School and Research Network, Tübingen, Germany
| |
Collapse
|
4
|
Larrouy-Maestri P, Magis D, Grabenhorst M, Morsomme D. Layman versus Professional Musician: Who Makes the Better Judge? PLoS One 2015; 10:e0135394. [PMID: 26308213 PMCID: PMC4550346 DOI: 10.1371/journal.pone.0135394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 07/21/2015] [Indexed: 11/22/2022] Open
Abstract
The increasing number of casting shows and talent contests in the media over the past years suggests a public interest in rating the quality of vocal performances. In many of these formats, laymen alongside music experts act as judges. Whereas experts' judgments are considered objective and reliable when it comes to evaluating singing voice, little is known about laymen’s ability to evaluate peers. On the one hand, layman listeners–who by definition did not have any formal training or regular musical practice–are known to have internalized the musical rules on which singing accuracy is based. On the other hand, layman listeners’ judgment of their own vocal skills is highly inaccurate. Also, when compared with that of music experts, their level of competence in pitch perception has proven limited. The present study investigates laypersons' ability to objectively evaluate melodies performed by untrained singers. For this purpose, laymen listeners were asked to judge sung melodies. The results were compared with those of music experts who had performed the same task in a previous study. Interestingly, the findings show a high objectivity and reliability in layman listeners. Whereas both the laymen's and experts' definition of pitch accuracy overlap, differences regarding the musical criteria employed in the rating task were evident. The findings suggest that the effect of expertise is circumscribed and limited and supports the view that laypersons make trustworthy judges when evaluating the pitch accuracy of untrained singers.
Collapse
Affiliation(s)
- Pauline Larrouy-Maestri
- Neuroscience Department, Max-Planck-Institute for Empirical Aesthetics, Frankfurt, Germany
- Psychology Department, University of Liège, Liège, Belgium
- * E-mail:
| | - David Magis
- Fonds de la Recherche Scientifique-FNRS, Brussels, Belgium
| | - Matthias Grabenhorst
- Neuroscience Department, Max-Planck-Institute for Empirical Aesthetics, Frankfurt, Germany
| | | |
Collapse
|
5
|
Maes PJ, Leman M, Palmer C, Wanderley MM. Action-based effects on music perception. Front Psychol 2014; 4:1008. [PMID: 24454299 PMCID: PMC3879531 DOI: 10.3389/fpsyg.2013.01008] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/17/2013] [Indexed: 11/30/2022] Open
Abstract
The classical, disembodied approach to music cognition conceptualizes action and perception as separate, peripheral processes. In contrast, embodied accounts of music cognition emphasize the central role of the close coupling of action and perception. It is a commonly established fact that perception spurs action tendencies. We present a theoretical framework that captures the ways in which the human motor system and its actions can reciprocally influence the perception of music. The cornerstone of this framework is the common coding theory, postulating a representational overlap in the brain between the planning, the execution, and the perception of movement. The integration of action and perception in so-called internal models is explained as a result of associative learning processes. Characteristic of internal models is that they allow intended or perceived sensory states to be transferred into corresponding motor commands (inverse modeling), and vice versa, to predict the sensory outcomes of planned actions (forward modeling). Embodied accounts typically refer to inverse modeling to explain action effects on music perception (Leman, 2007). We extend this account by pinpointing forward modeling as an alternative mechanism by which action can modulate perception. We provide an extensive overview of recent empirical evidence in support of this idea. Additionally, we demonstrate that motor dysfunctions can cause perceptual disabilities, supporting the main idea of the paper that the human motor system plays a functional role in auditory perception. The finding that music perception is shaped by the human motor system and its actions suggests that the musical mind is highly embodied. However, we advocate for a more radical approach to embodied (music) cognition in the sense that it needs to be considered as a dynamical process, in which aspects of action, perception, introspection, and social interaction are of crucial importance.
Collapse
Affiliation(s)
- Pieter-Jan Maes
- Department of Music Research, McGill University Montreal, QC, Canada
| | - Marc Leman
- Department of Musicology, Ghent University Ghent, Belgium
| | - Caroline Palmer
- Department of Psychology, McGill University Montreal, QC, Canada
| | | |
Collapse
|