1
|
Ban Y, Ujitoko Y. Age and Gender Differences in the Pseudo-Haptic Effect on Computer Mouse Operation in a Desktop Environment. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:5566-5580. [PMID: 37450361 DOI: 10.1109/tvcg.2023.3295389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Pseudo-haptics is a method that can provide a haptic sensation without requiring a physical haptic device. The effect of pseudo-haptics is known to depend on the individual, but it is unclear which factors cause individual differences. As the first study establishing a calibration method for these differences in future research, we examined the differences in the pseudo-haptic effect on mouse cursor operation in a desktop environment depending on the age and gender of the user. We conducted an online experiment and collected data from more than 400 participants. The participants performed a task of lifting a virtual object with a mouse pointer. We found that the effect of pseudo-haptics was greater in younger or male participants than in older or female participants. We also found that the effect of pseudo-haptics, which varied with age and gender, can be explained by habituation to the mouse in daily life and the accuracy of detecting the pointer position using vision or proprioception. Specifically, the pseudo-haptic effect was higher for those who used the mouse more frequently and had higher accuracy in identifying the pointer position using proprioception or vision. The results of the present study not only indicate the factors that cause age and gender differences but also provide hints for calibrating these differences.
Collapse
|
2
|
Li KY, Pickett KA, Fu HW, Chen RS. Proprioceptive and olfactory deficits in individuals with Parkinson disease and mild cognitive impairment. Acta Neurol Belg 2024; 124:419-430. [PMID: 37962784 DOI: 10.1007/s13760-023-02420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Individuals with neurodegenerative diseases such as Parkinson disease (PD) and Alzheimer's (AD) disease often present with perceptual impairments at an early clinical stage. Therefore, early identification and quantification of these impairments could facilitate diagnosis and early intervention. OBJECTIVES This study aimed to compare proprioceptive and olfactory sensitivities in individuals diagnosed with PD and mild cognitive impairment (MCI). METHODS Proprioception in the forearm and olfactory function were measured in neurotypical older adults, individuals with PD, and individuals with MCI. Position and passive motion senses were assessed using a passive motion apparatus. The traditional Chinese version of the University of Pennsylvania smell identification test (UPSIT-TC) and the smell threshold test (STT) were used to identify and discriminate smell, respectively. RESULTS Position sense threshold between the groups differed significantly (p < 0.001), with the PD (p < 0.001) and MCI (p = 0.004) groups showing significantly higher than the control group. The control group had significantly higher mean UPSIT-TC scores than the PD (p < 0.001) and MCI (p = 0.006) groups. The control group had a significantly lower mean STT threshold than the PD and MCI groups (p < 0.001 and p = 0.008, respectively). UPSIT-TC scores significantly correlated with disease progression in PD (r = - 0.50, p = 0.008) and MCI (r = 0.44, p = 0.04). CONCLUSIONS Proprioceptive and olfactory sensitivities were reduced in individuals with PD and MCI, and these deficits were related to disease severity. These findings support previous findings indicating that perceptual loss may be a potential biomarker for diagnosing and monitoring disease progression in individuals with neurodegenerative diseases.
Collapse
Affiliation(s)
- Kuan-Yi Li
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Tao-Yuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kristen A Pickett
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
- Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Hsuan-Wei Fu
- Department of Rehabilitation, Kuang Tien General Hospital, Taichung, Taiwan
| | - Rou-Shayn Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Geurkink TH, Overbeek CL, Marang-van de Mheen PJ, Nagels J, Nelissen RGHH, de Groot JH. Ageing and joint position sense of the asymptomatic shoulder: An observational study. J Electromyogr Kinesiol 2023; 71:102792. [PMID: 37267894 DOI: 10.1016/j.jelekin.2023.102792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023] Open
Abstract
PURPOSE This study aimed to quantify the extent to which age was associated with joint position sense (JPS) of the asymptomatic shoulder as measured by joint position reproduction (JPR) tasks and assess the reproducibility of these tasks. METHODS 120 Asymptomatic participants aged 18-70 years each performed 10 JPR-tasks. Both contralateral and ipsilateral JPR-tasks were evaluated on accuracy of JPR under active- and passive conditions at two levels within the shoulder forward flexion trajectory. Each task was performed three times. In a subgroup of 40 participants, the reproducibility of JPR-tasks was assessed one week after initial measurement. Reproducibility of JPR-tasks was evaluated by both reliability (intra-class correlation coefficients (ICC's)) and agreement (standard error of measurement (SEM)) measures. RESULTS Age was not associated with increased JPR-errors for any of the contralateral or ipsilateral JPR-tasks. ICC's ranged between 0.63 and 0.80 for contralateral JPR-tasks, and from 0.32 to 0.48 for ipsilateral tasks, except for one ipsilateral task where the reliability was similar to contralateral tasks (0.79). The SEM was comparable and small for all JPR-tasks, ranging between 1.1 and 2.1. CONCLUSION No age-related decline in JPS of the asymptomatic shoulder was found, and good agreement between test and re-test measurements for all JPR-tasks as indicated by the small SEM.
Collapse
Affiliation(s)
- Timon H Geurkink
- Department of Orthopaedics, Leiden University Medical Center, Postzone J-11-R, PO Box 9600, 2300RC Leiden, The Netherlands; Laboratory for Kinematics and Neuromechanics, Department of Orthopaedics and Rehabilitation, Leiden University Medical Center, Leiden, The Netherlands.
| | - Celeste L Overbeek
- Department of Orthopaedics, Leiden University Medical Center, Postzone J-11-R, PO Box 9600, 2300RC Leiden, The Netherlands; Laboratory for Kinematics and Neuromechanics, Department of Orthopaedics and Rehabilitation, Leiden University Medical Center, Leiden, The Netherlands
| | - Perla J Marang-van de Mheen
- Department of Biomedical Data Sciences, Medical Decision Making, Leiden University Medical Center, Leiden, The Netherlands
| | - Jochem Nagels
- Department of Orthopaedics, Leiden University Medical Center, Postzone J-11-R, PO Box 9600, 2300RC Leiden, The Netherlands; Laboratory for Kinematics and Neuromechanics, Department of Orthopaedics and Rehabilitation, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob G H H Nelissen
- Department of Orthopaedics, Leiden University Medical Center, Postzone J-11-R, PO Box 9600, 2300RC Leiden, The Netherlands; Laboratory for Kinematics and Neuromechanics, Department of Orthopaedics and Rehabilitation, Leiden University Medical Center, Leiden, The Netherlands
| | - Jurriaan H de Groot
- Laboratory for Kinematics and Neuromechanics, Department of Orthopaedics and Rehabilitation, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Logue RN, Goldenkoff ER, Vesia M, Brown SH. Measuring hand sensory function and force control in older adults: Are current hand assessment tools enough? J Gerontol A Biol Sci Med Sci 2021; 77:1405-1412. [PMID: 34908115 DOI: 10.1093/gerona/glab368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The ability to grasp and manipulate objects is essential for performing activities of daily living. However, there is limited information regarding age-related behavioral differences in hand sensorimotor function due, in part, to the lack of assessment tools capable of measuring subtle but important differences in hand function. The purpose of this study was to demonstrate performance differences in submaximal force control and tactile pattern recognition in healthy older adults using two custom-designed sensorimotor assessment tools. METHODS Sensorimotor function was assessed in 13 healthy older adults (mean age 72.2 ±5.5y, range: 65-84y) and 13 young adults (mean age 20 ±1.4y, range: 19-23y). Clinical assessments included the Montreal Cognitive Assessment (MoCA), monofilament testing, maximum voluntary contraction (MVC), and Grooved Pegboard Test. Sensorimotor assessments included submaximal (5, 20% MVC) grip force step-tracking and tactile pattern recognition tasks. RESULTS Clinical assessments revealed no or minimal group differences in MVC, monofilament thresholds, and MoCA. However, sensorimotor assessments showed that older adults took longer to discriminate tactile patterns and had poorer accuracy than young adults. Older adults also produced submaximal forces less smoothly than young adults at the 20% force level while greater variability in force maintenance was seen at 5% but not 20% MVC. CONCLUSIONS These results demonstrate the ability to integrate higher-order tactile information and control low grip forces is impaired in older adults despite no differences in grip strength or cognition. These findings underscore the need for more sensitive evaluation methods that focus on sensorimotor ability reflective of daily activities.
Collapse
Affiliation(s)
- Rachel N Logue
- Motor Control Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Elana R Goldenkoff
- Brain Behavior Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Vesia
- Brain Behavior Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Susan H Brown
- Motor Control Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Upper Limb Proprioceptive Acuity Assessment Based on Three-Dimensional Position Measurement Systems. Motor Control 2020; 24:605-623. [PMID: 32916660 DOI: 10.1123/mc.2020-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 11/18/2022]
Abstract
The aim of the current work was to verify three-dimensional directional effects on the reproduction error precision of the human upper limb position. Thirty male subjects without history of upper limb pathology were recruited from Renmin University of China. A three-dimensional position reproduction task in six directions (up, down, left, right, far, and near) was performed by each subject. The results suggested that the proprioceptive sense of upper limb position depends on the direction, with smaller absolute errors in Directions 4 (right) and 5 (far) than in Directions 1 (up), 2 (down), 3 (left), and 6 (near). Proprioception near the end of the elbow joint range of motion may be more reliable and sensitive. Subjects reproduced fewer ranges in the horizontal plane (Directions 3, 5, and 6) and they overshot the target position along the z-axis (vertical direction) except for Direction 6. Overestimations of position in the z-axis may be caused by overestimations of force.
Collapse
|
6
|
Collins K, Young S, Hung YJ. The Impacts of Shoulder Position Sense, Vision, Racket Weight, and Gender on Racket Positioning Accuracy in Tennis Players. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2020; 13:1086-1097. [PMID: 32922625 PMCID: PMC7449349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Repetitive loading to the shoulder joint can compromise shoulder position sense, which may further contribute to injuries and performance deficits. The first goal of the study was to examine the correlation between shoulder position sense and racket positioning accuracy. The second goal of the study was to examine the impact of visual feedback, racket weight, and gender on racket positioning accuracy in tennis players. Fifty-eight tennis players participated in the study. Active shoulder position sense was examined in 3 abduction (45°, 90°, 135°) and 2 external rotation (45°, 90°) angles. For racket positioning accuracy, participants went through a tennis swing and had the center of the racket touch the ball with full or peripheral vision, and with normal or added (0.6 oz.) racket weight. Low correlation (Pearson's r: from 012 to .381) was found between shoulder position sense and racket positioning accuracy. Shoulder position sense varied among different target angles (p < .001) and the variation was similar between genders (p = .123). Subjects performed better with full vision than with peripheral vision in both racket weight conditions (p < .001). However, racket weight (p = 1.000 for peripheral and p = .362 for full vision) and gender (p = .380) had no impact on racket positioning accuracy. Although the shoulder joint is part of the upper limb kinematic chain, shoulder position sense integrity may not have a direct impact on end-point racket positioning accuracy. Through motor learning, tennis players may have learned to coordinate all upper limb joints and muscles to achieve desired racket positioning accuracy.
Collapse
Affiliation(s)
- Kaitlyn Collins
- Department of Physical Therapy, Angelo State University, San Angelo, TX, USA
| | - Sydney Young
- Department of Physical Therapy, Angelo State University, San Angelo, TX, USA
| | - You-Jou Hung
- Department of Physical Therapy, Angelo State University, San Angelo, TX, USA
| |
Collapse
|
7
|
Djajadikarta ZJ, Gandevia SC, Taylor JL. Age has no effect on ankle proprioception when movement history is controlled. J Appl Physiol (1985) 2020; 128:1365-1372. [DOI: 10.1152/japplphysiol.00741.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
It is generally accepted that proprioceptive ability deteriorates with age, although not all data support this view. We tested proprioception using three reliable tests at the ankle in 80 adults (19–80 yr). For all tests, the effects of muscle thixotropy were controlled. Under these conditions, we found no difference in proprioceptive acuity between young and old people.
Collapse
Affiliation(s)
| | - Simon C. Gandevia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- Prince of Wales Hospital Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Janet L. Taylor
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- Edith Cowan University, Joondalup, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Négyesi J, Galamb K, Szilágyi B, Nagatomi R, Hortobágyi T, Tihanyi J. Age-specific modifications in healthy adults' knee joint position sense. Somatosens Mot Res 2019; 36:262-269. [PMID: 31691599 DOI: 10.1080/08990220.2019.1684888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aim: Right-handed young adults perform target-matching tasks more accurately with the non-dominant (ND) compared to the dominant (D) limb, but it is unclear if age affects this disparity. We determined if age affects target-matching asymmetry in right-side dominant healthy adults. Method: Young (n = 12, age: 23.6 y, 6 females) and older (n = 12; age: 75.1 y, 7 females) adults performed a passive joint position-matching task with the D and ND leg in a randomized order. Result: Age affected absolute, constant, and variable knee JPS errors but, contrary to expectations, it did not affect target-matching asymmetries between the D and ND knees. However, older participants tended to underestimate while young subjects overestimated the target angles. Moreover, older as compared to young subjects performed the target-matching task with higher variability. Conclusion: Altogether, age seems to affect passive knee target-matching behaviour in right-side dominant healthy adults. The present data indicate that healthy aging produces age-specific modifications in passive joint position sense.
Collapse
Affiliation(s)
- János Négyesi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kata Galamb
- Department of Movement, Human and Health Sciences, University of Rome, Rome, Italy
| | - Borbála Szilágyi
- Department of Biomechanics, Kinesiology and Informatics, University of Physical Education, Budapest, Hungary
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Biomedical Engineering for Health & Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - József Tihanyi
- Department of Biomechanics, Kinesiology and Informatics, University of Physical Education, Budapest, Hungary
| |
Collapse
|
9
|
Galamb K, Szilágyi B, Magyar OM, Hortobágyi T, Nagatomi R, Váczi M, Négyesi J. Effects of side-dominance on knee joint proprioceptive target-matching asymmetries. Physiol Int 2018; 105:257-265. [PMID: 30269560 DOI: 10.1556/2060.105.2018.3.22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AIMS Right- and left-side-dominant individuals reveal target-matching asymmetries between joints of the dominant and non-dominant upper limbs. However, it is unclear if such asymmetries are also present in lower limb's joints. We hypothesized that right-side-dominant participants perform knee joint target-matching tasks more accurately with their non-dominant leg compared to left-side-dominant participants. METHODS Participants performed position sense tasks using each leg by moving each limb separately and passively on an isokinetic dynamometer. RESULTS Side-dominance affected (p < 0.05) knee joint absolute position errors only in the non-dominant leg but not in the dominant leg: right-side-dominant participants produced less absolute position errors (2.82° ± 0.72°) with the non-dominant leg compared to left-side-dominant young participants (3.54° ± 0.33°). CONCLUSIONS In conclusion, right-side-dominant participants tend to perform a target-matching task more accurately with the non-dominant leg compared to left-side-dominant participants. Our results extend the literature by showing that right-hemisphere specialization under proprioceptive target-matching tasks may be not evident at the lower limb joints.
Collapse
Affiliation(s)
- K Galamb
- 1 Pain Clinic , Budapest, Hungary.,2 Department of Movement, Human and Health Sciences, University of Rome , Rome, Italy
| | | | | | - T Hortobágyi
- 3 Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - R Nagatomi
- 4 Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine , Sendai, Japan.,5 Division of Biomedical Engineering for Health & Welfare, Tohoku University Graduate School of Biomedical Engineering , Sendai, Japan
| | - M Váczi
- 6 Institute of Sport Sciences and Physical Education, University of Pécs , Pécs, Hungary
| | - J Négyesi
- 1 Pain Clinic , Budapest, Hungary.,4 Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine , Sendai, Japan
| |
Collapse
|
10
|
Reliability, validity, and clinical feasibility of a rapid and objective assessment of post-stroke deficits in hand proprioception. J Neuroeng Rehabil 2018; 15:47. [PMID: 29880003 PMCID: PMC5991441 DOI: 10.1186/s12984-018-0387-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proprioceptive function can be affected after neurological injuries such as stroke. Severe and persistent proprioceptive impairments may be associated with a poor functional recovery after stroke. To better understand their role in the recovery process, and to improve diagnostics, prognostics, and the design of therapeutic interventions, it is essential to quantify proprioceptive deficits accurately and sensitively. However, current clinical assessments lack sensitivity due to ordinal scales and suffer from poor reliability and ceiling effects. Robotic technology offers new possibilities to address some of these limitations. Nevertheless, it is important to investigate the psychometric and clinimetric properties of technology-assisted assessments. METHODS We present an automated robot-assisted assessment of proprioception at the level of the metacarpophalangeal joint, and evaluate its reliability, validity, and clinical feasibility in a study with 23 participants with stroke and an age-matched group of 29 neurologically intact controls. The assessment uses a two-alternative forced choice paradigm and an adaptive sampling procedure to identify objectively the difference threshold of angular joint position. RESULTS Results revealed a good reliability (ICC(2,1) = 0.73) for assessing proprioception of the impaired hand of participants with stroke. Assessments showed similar task execution characteristics (e.g., number of trials and duration per trial) between participants with stroke and controls and a short administration time of approximately 12 min. A difference in proprioceptive function could be found between participants with a right hemisphere stroke and control subjects (p<0.001). Furthermore, we observed larger proprioceptive deficits in participants with a right hemisphere stroke compared to a left hemisphere stroke (p=0.028), despite the exclusion of participants with neglect. No meaningful correlation could be established with clinical scales for different modalities of somatosensation. We hypothesize that this is due to their low resolution and ceiling effects. CONCLUSIONS This study has demonstrated the assessment's applicability in the impaired population and promising integration into clinical routine. In conclusion, the proposed assessment has the potential to become a powerful tool to investigate proprioceptive deficits in longitudinal studies as well as to inform and adjust sensorimotor rehabilitation to the patient's deficits.
Collapse
|
11
|
Kuehn E, Perez-Lopez MB, Diersch N, Döhler J, Wolbers T, Riemer M. Embodiment in the aging mind. Neurosci Biobehav Rev 2018; 86:207-225. [DOI: 10.1016/j.neubiorev.2017.11.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 11/10/2017] [Accepted: 11/21/2017] [Indexed: 12/24/2022]
|
12
|
Rinderknecht MD, Lambercy O, Raible V, Liepert J, Gassert R. Age-based model for metacarpophalangeal joint proprioception in elderly. Clin Interv Aging 2017; 12:635-643. [PMID: 28435235 PMCID: PMC5388205 DOI: 10.2147/cia.s129601] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neurological injuries such as stroke can lead to proprioceptive impairment. For an informed diagnosis, prognosis, and treatment planning, it is essential to be able to distinguish between healthy performance and deficits following the neurological injury. Since there is some evidence that proprioception declines with age and stroke occurs predominantly in the elderly population, it is important to create a healthy reference model in this specific age group. However, most studies investigate age effects by comparing young and elderly subjects and do not provide a model within a target age range. Moreover, despite the functional relevance of the hand in activities of daily living, age-based models of distal proprioception are scarce. Here, we present a proprioception model based on the assessment of the metacarpophalangeal joint angle difference threshold in 30 healthy elderly subjects, aged 55-80 years (median: 63, interquartile range: 58-66), using a robotic tool to apply passive flexion-extension movements to the index finger. A two-alternative forced-choice paradigm combined with an adaptive algorithm to define stimulus magnitude was used. The mixed-effects model analysis revealed that aging has a significant, increasing effect on the difference threshold at the metacarpophalangeal joint, whereas other predictors (eg, tested hand or sex) did not show a significant effect. The adaptive algorithm allowed reaching an average assessment duration <15 minutes, making its clinical applicability realistic. This study provides further evidence for an age-related decline in proprioception at the level of the hand. The established age-based model of proprioception in elderly may serve as a reference model for the proprioceptive performance of stroke patients, or of any other patient group with central or peripheral proprioceptive impairments. Furthermore, it demonstrates the potential of such automated robotic tools as a rapid and quantitative assessment to be used in research and clinical settings.
Collapse
Affiliation(s)
- Mike D Rinderknecht
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Vanessa Raible
- Department of Neurorehabilitation, Kliniken Schmieder, Allensbach, Germany
| | - Joachim Liepert
- Department of Neurorehabilitation, Kliniken Schmieder, Allensbach, Germany
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Abstract
Developmental data suggested that mental simulation skills become progressively dissociated from overt motor activity across development. Thus, efficient simulation is rather independent from current sensorimotor information. Here, we tested the impact of bodily (sensorimotor) information on simulation skills of adolescents with Autism Spectrum Disorders (ASD). Typically-developing (TD) and ASD participants judged laterality of hand images while keeping one arm flexed on chest or while holding both arms extended. Both groups were able to mentally simulate actions, but this ability was constrained by body posture more in ASD than in TD adolescents. The strong impact of actual body information on motor simulation implies that simulative skills are not fully effective in ASD individuals.
Collapse
|
14
|
Rinderknecht MD, Popp WL, Lambercy O, Gassert R. Reliable and Rapid Robotic Assessment of Wrist Proprioception Using a Gauge Position Matching Paradigm. Front Hum Neurosci 2016; 10:316. [PMID: 27445756 PMCID: PMC4925678 DOI: 10.3389/fnhum.2016.00316] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/10/2016] [Indexed: 11/13/2022] Open
Abstract
Quantitative assessments of position sense are essential for the investigation of proprioception, as well as for diagnosis, prognosis and treatment planning for patients with somatosensory deficits. Despite the development and use of various paradigms and robotic tools, their clinimetric properties are often poorly evaluated and reported. A proper evaluation of the latter is essential to compare results between different studies and to identify the influence of possible confounds on outcome measures. The aim of the present study was to perform a comprehensive evaluation of a rapid robotic assessment of wrist proprioception using a passive gauge position matching task. Thirty-two healthy subjects undertook six test-retests of proprioception of the right wrist on two different days. The constant error (CE) was 0.87°, the absolute error (AE) was 5.87°, the variable error (VE) was 4.59° and the total variability (E) was 6.83° in average for the angles presented in the range from 10° to 30°. The intraclass correlation analysis provided an excellent reliability for CE (0.75), good reliability for AE (0.68) and E (0.68), and fair reliability for VE (0.54). Tripling the assessment length had negligible effects on the reliabilities. Additional analysis revealed significant trends of larger overestimation (constant errors), as well as larger absolute and variable errors with increased flexion angles. No proprioceptive learning occurred, despite increased familiarity with the task, which was reflected in significantly decreased assessment duration by 30%. In conclusion, the proposed automated assessment can provide sensitive and reliable information on proprioceptive function of the wrist with an administration time of around 2.5 min, demonstrating the potential for its application in research or clinical settings. Moreover, this study highlights the importance of reporting the complete set of errors (CE, AE, VE, and E) in a matching experiment for the identification of trends and subsequent interpretation of results.
Collapse
Affiliation(s)
- Mike D Rinderknecht
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich Zurich, Switzerland
| | - Werner L Popp
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich Zurich, Switzerland
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich Zurich, Switzerland
| |
Collapse
|
15
|
Boisgontier MP, Swinnen SP. Age-related deficit in a bimanual joint position matching task is amplitude dependent. Front Aging Neurosci 2015; 7:162. [PMID: 26347649 PMCID: PMC4543861 DOI: 10.3389/fnagi.2015.00162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/07/2015] [Indexed: 11/23/2022] Open
Abstract
The cognitive load associated with joint position sense increases with age but does not necessarily result in impaired performance in a joint position matching task. It is still unclear which factors interact with age to predict matching performance. To test whether movement amplitude and direction are part of such predictors, young and older adults performed a bimanual wrist joint position matching task. Results revealed an age-related deficit when the target limb was positioned far from (25°) the neutral position, but not when close to (15°, 5°) the neutral joint position, irrespective of the direction. These results suggest that the difficulty associated with the comparison of two musculoskeletal states increases towards extreme joint amplitude and that older adults are more vulnerable to this increased difficulty.
Collapse
Affiliation(s)
- Matthieu P Boisgontier
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Biomedical Sciences Group, KU Leuven Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, Biomedical Sciences Group, KU Leuven Leuven, Belgium ; Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven Leuven, Belgium
| |
Collapse
|
16
|
Li KY, Su WJ, Fu HW, Pickett KA. Kinesthetic deficit in children with developmental coordination disorder. RESEARCH IN DEVELOPMENTAL DISABILITIES 2015; 38:125-133. [PMID: 25576876 DOI: 10.1016/j.ridd.2014.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 06/04/2023]
Abstract
The aim of this study was to measure and compare kinesthetic sensitivity in children with developmental coordination disorder (DCD) and typically developing (TD) children between 6 and 11 years old. 30 children with DCD aged 6 to 11 years (5 in each age group) and 30 TD children participated in the study. Participants placed their forearms on a passive motion apparatus which extended the elbow joint at constant velocities between 0.15 and 1.35°s(-1). Participants were required to concentrate on detection of passive arm motion and press a trigger held in their left hand once they sensed it. The detection time was measured for each trial. The DCD group was significantly less sensitive in detection of passive motion than TD children. Further analysis of individual age groups revealed that kinesthetic sensitivity was worse in DCD than TD children for age groups beyond six years of age. Our findings suggested that individual with DCD lag behind their TD counterparts in kinesthetic sensitivity. Between the ages of 7 and 11 years the difference between groups is quantifiable and significant with 11 year old children with DCD performing similar to 7 year old TD children.
Collapse
Affiliation(s)
- Kuan-yi Li
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| | - Wei-jen Su
- Jiang Tsun United Clinic, Taipei, Taiwan
| | - Hsuan-wei Fu
- Department of Rehabilitation, Kuang Tien General Hospital, Taichung, Taiwan
| | - Kristen A Pickett
- Occupational Therapy Program, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
17
|
Iandolo R, Squeri V, De Santis D, Giannoni P, Morasso P, Casadio M. Proprioceptive bimanual test in intrinsic and extrinsic coordinates. Front Hum Neurosci 2015; 9:72. [PMID: 25741268 PMCID: PMC4332282 DOI: 10.3389/fnhum.2015.00072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/28/2015] [Indexed: 11/13/2022] Open
Abstract
Is there any difference between matching the position of the hands by asking the subjects to move them to the same spatial location or to mirror-symmetric locations with respect to the body midline? If the motion of the hands were planned in the extrinsic space, the mirror-symmetric task would imply an additional challenge, because we would need to flip the coordinates of the target on the other side of the workspace. Conversely, if the planning were done in intrinsic coordinates, in order to move both hands to the same spot in the workspace, we should compute different joint angles for each arm. Even if both representations were available to the subjects, the two tasks might lead to different results, providing some cue on the organization of the "body schema". In order to answer such questions, the middle fingertip of the non-dominant hand of a population of healthy subjects was passively moved by a manipulandum to 20 different target locations. Subjects matched these positions with the middle fingertip of their dominant hand. For most subjects, the matching accuracy was higher in the extrinsic modality both in terms of systematic error and variability, even for the target locations in which the configuration of the arms was the same for both modalities. This suggests that the matching performance of the subjects could be determined not only by proprioceptive information but also by the cognitive representation of the task: expressing the goal as reaching for the physical location of the hand in space is apparently more effective than requiring to match the proprioceptive representation of joint angles.
Collapse
Affiliation(s)
- Riccardo Iandolo
- NeuroLab, Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa , Genoa , Italy ; Motor Learning and Robotic Rehabilitation Laboratory, Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia , Genoa , Italy
| | - Valentina Squeri
- Motor Learning and Robotic Rehabilitation Laboratory, Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia , Genoa , Italy
| | - Dalia De Santis
- Motor Learning and Robotic Rehabilitation Laboratory, Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia , Genoa , Italy
| | | | - Pietro Morasso
- NeuroLab, Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa , Genoa , Italy ; Motor Learning and Robotic Rehabilitation Laboratory, Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia , Genoa , Italy
| | - Maura Casadio
- NeuroLab, Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa , Genoa , Italy ; Motor Learning and Robotic Rehabilitation Laboratory, Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia , Genoa , Italy
| |
Collapse
|
18
|
Sedda A, Gandola M. Methods to explore productive behaviors in personal and extrapersonal space. Front Hum Neurosci 2014; 8:790. [PMID: 25324769 PMCID: PMC4183110 DOI: 10.3389/fnhum.2014.00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/17/2014] [Indexed: 12/02/2022] Open
|
19
|
Langan J. Older adults demonstrate greater accuracy in joint position matching using self-guided movements. Hum Mov Sci 2014; 36:97-106. [DOI: 10.1016/j.humov.2014.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 05/13/2014] [Accepted: 05/31/2014] [Indexed: 10/25/2022]
|