1
|
Baniqued PL, Low KA, Fletcher MA, Gratton G, Fabiani M. Shedding light on gray(ing) areas: Connectivity and task switching dynamics in aging. Psychophysiology 2017; 55. [DOI: 10.1111/psyp.12818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 11/02/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Pauline L. Baniqued
- Helen Wills Neuroscience Institute; University of California; Berkeley, Berkeley California
- Beckman Institute for Advanced Science and Technology; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - Kathy A. Low
- Beckman Institute for Advanced Science and Technology; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - Mark A. Fletcher
- Beckman Institute for Advanced Science and Technology; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - Gabriele Gratton
- Beckman Institute for Advanced Science and Technology; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - Monica Fabiani
- Beckman Institute for Advanced Science and Technology; University of Illinois at Urbana-Champaign; Urbana Illinois
| |
Collapse
|
2
|
Walker JA, Low KA, Fletcher MA, Cohen NJ, Gratton G, Fabiani M. Hippocampal structure predicts cortical indices of reactivation of related items. Neuropsychologia 2016; 95:182-192. [PMID: 27939369 DOI: 10.1016/j.neuropsychologia.2016.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/02/2016] [Accepted: 12/06/2016] [Indexed: 11/25/2022]
Abstract
One of the key components of relational memory is the ability to bind together the constituent elements of a memory experience, and this ability is thought to be supported by the hippocampus. Previously we had shown that these relational bindings can be used to reactivate the cortical processors of an absent item in the presence of a relationally bound associate (Walker et al., 2014). Specifically, we recorded the event-related optical signal (EROS) when presenting the scene of a face-scene pair during a preview period immediately preceding a test display, and demonstrated reactivation of a face-processing cortical area (the superior temporal sulcus, STS) for scenes that had been previously paired with faces, relative to scenes that had not. Here we combined the EROS measures during the same preview paradigm with anatomical estimates of hippocampal integrity (structural MRI measures of hippocampal volume and diffusion tensor imaging measures of mean fractional anisotropy and diffusivity) to provide evidence that the hippocampus is mediating this reactivation phenomenon. The study was run in a sample of older adults aged 55-87, taking advantage of the high amount of hippocampal variability present in aging. We replicated the functional reactivation of STS during the preview period, specific to scenes previously paired with faces. Crucially, we also found that this phenomenon is correlated with structural hippocampus integrity. Both STS reactivation and hippocampal structure predicted subsequent recognition performance. These data support the theory that relational memory is sustained by an interaction between hippocampal and cortical sensory processing regions, and that these functions may be at the basis of episodic memory changes in normal aging.
Collapse
Affiliation(s)
- John A Walker
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| | - Kathy A Low
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mark A Fletcher
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Neal J Cohen
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gabriele Gratton
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Monica Fabiani
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Monti JM, Cooke GE, Watson PD, Voss MW, Kramer AF, Cohen NJ. Relating hippocampus to relational memory processing across domains and delays. J Cogn Neurosci 2015; 27:234-45. [PMID: 25203273 DOI: 10.1162/jocn_a_00717] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The hippocampus has been implicated in a diverse set of cognitive domains and paradigms, including cognitive mapping, long-term memory, and relational memory, at long or short study-test intervals. Despite the diversity of these areas, their association with the hippocampus may rely on an underlying commonality of relational memory processing shared among them. Most studies assess hippocampal memory within just one of these domains, making it difficult to know whether these paradigms all assess a similar underlying cognitive construct tied to the hippocampus. Here we directly tested the commonality among disparate tasks linked to the hippocampus by using PCA on performance from a battery of 12 cognitive tasks that included two traditional, long-delay neuropsychological tests of memory and two laboratory tests of relational memory (one of spatial and one of visual object associations) that imposed only short delays between study and test. Also included were different tests of memory, executive function, and processing speed. Structural MRI scans from a subset of participants were used to quantify the volume of the hippocampus and other subcortical regions. Results revealed that the 12 tasks clustered into four components; critically, the two neuropsychological tasks of long-term verbal memory and the two laboratory tests of relational memory loaded onto one component. Moreover, bilateral hippocampal volume was strongly tied to performance on this component. Taken together, these data emphasize the important contribution the hippocampus makes to relational memory processing across a broad range of tasks that span multiple domains.
Collapse
|
4
|
Baym CL, Khan NA, Pence A, Raine LB, Hillman CH, Cohen NJ. Aerobic Fitness Predicts Relational Memory but Not Item Memory Performance in Healthy Young Adults. J Cogn Neurosci 2014; 26:2645-52. [DOI: 10.1162/jocn_a_00667] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Health factors such as an active lifestyle and aerobic fitness have long been linked to decreased risk of cardiovascular disease, stroke, and other adverse health outcomes. Only more recently have researchers begun to investigate the relationship between aerobic fitness and memory function. Based on recent findings in behavioral and cognitive neuroscience showing that the hippocampus might be especially sensitive to the effects of exercise and fitness, the current study assessed hippocampal-dependent relational memory and non-hippocampal-dependent item memory in young adults across a range of aerobic fitness levels. Aerobic fitness was assessed using a graded exercise test to measure oxygen consumption during maximal exercise (VO2max), and relational and item memory were assessed using behavioral and eye movement measures. Behavioral results indicated that aerobic fitness was positively correlated with relational memory performance but not item memory performance, suggesting that the beneficial effects of aerobic fitness selectively affect hippocampal function and not that of the surrounding medial temporal lobe cortex. Eye movement results further supported the specificity of this fitness effect to hippocampal function, in that aerobic fitness predicted disproportionate preferential viewing of previously studied relational associations but not of previously viewed items. Potential mechanisms underlying this pattern of results, including neurogenesis, are discussed.
Collapse
|