1
|
Meoni S, Dojat M, Hutchinson M, Pelissier P, Chiquet C, Moro E. Visual dysfunction of superior colliculus and lateral geniculate nucleus in idiopathic blepharospasm. J Neurol Sci 2024; 466:123272. [PMID: 39426359 DOI: 10.1016/j.jns.2024.123272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/06/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND The etiology and pathophysiology of idiopathic blepharospasm (BP) are still largely unknown. It has been hypothesized that BP is the consequence of a dysfunction of the basal ganglia loop, although cortical areas, cerebellum, and other brainstem structures may be involved. There is some evidence that the superior colliculus (SC), a sensorimotor brainstem structure, is involved in another adult-onset focal dystonia, the cervical dystonia. To date, there is no data concerning the implication of the SC in BP. OBJECTIVES Our study aims to investigate the role of the SC in people with idiopathic BP compared to controls using fMRI and a visual stimulation paradigm based on luminance contrast variations. METHODS People with idiopathic BP and controls underwent brain fMRI using a standardized protocol, allowing modulation of visual activity in the SC, the lateral geniculate nucleus (LGN), and the primary visual cortex (V1), at increasing luminance levels (1 %, 3 %, 5 %, 9 %). RESULTS Ten BP women and ten sex- and age-matched controls were enrolled. Compared to controls, the BP group showed no modulation of visual responses at all luminance levels (p < 0.05) in both SC and LGN. In BP, BOLD responses in V1 were significantly lower at 5 % (p = 0.001), and 9 % (p = 0.002) luminance level. CONCLUSIONS Our findings support the concept of SC and LGN dysfunction in idiopathic BP. Brain fMRI, targeting these sub-cortical visual structures, could play a future important role both as a biomarker and in our understanding of the pathophysiology of adult-onset focal dystonias.
Collapse
Affiliation(s)
- Sara Meoni
- Grenoble-Alpes University, INSERM, U1216, University Hospital of Grenoble-Alpes, Grenoble Institut Neurosciences, Grenoble, France; Movement Disorders Unit, Department of Neurology, University Hospital of Grenoble-Alpes, Grenoble, France.
| | - Michel Dojat
- Grenoble-Alpes University, INSERM, U1216, University Hospital of Grenoble-Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Michael Hutchinson
- Department of Neurology, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Pierre Pelissier
- Movement Disorders Unit, Department of Neurology, University Hospital of Grenoble-Alpes, Grenoble, France
| | - Christophe Chiquet
- Department of Ophthalmology, University Hospital of Grenoble-Alpes, HP2 Laboratory, INSERM U1300, Grenoble, France
| | - Elena Moro
- Grenoble-Alpes University, INSERM, U1216, University Hospital of Grenoble-Alpes, Grenoble Institut Neurosciences, Grenoble, France; Movement Disorders Unit, Department of Neurology, University Hospital of Grenoble-Alpes, Grenoble, France
| |
Collapse
|
2
|
Xu J, Zhang X, Cheng Q, Zhang H, Zhong L, Luo Y, Zhang Y, Ou Z, Yan Z, Peng K, Liu G. Abnormal supplementary motor areas are associated with idiopathic and acquired blepharospasm. Parkinsonism Relat Disord 2024; 121:106029. [PMID: 38394948 DOI: 10.1016/j.parkreldis.2024.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Blepharospasm is a common form of focal dystonia characterized by excessive and involuntary spasms of the orbicularis oculi. In addition to idiopathic blepharospasm, lesions in various brain regions can also cause acquired blepharospasm. Whether these two types of blepharospasm share a common brain network remains largely unknown. Herein, we performed lesion coactivation network mapping, based on meta-analytic connectivity modeling, to test whether lesions causing blepharospasm could be mapped to a common coactivation brain network. We then tested the abnormality of the network in patients with idiopathic blepharospasm (n = 42) compared with healthy controls (n = 44). We identified 21 cases of lesion-induced blepharospasms through a systematic literature search. Although these lesions were heterogeneous, they were part of a co-activated brain network that mainly included the bilateral supplementary motor areas. Coactivation of these regions defines a single brain network that encompasses or is adjacent to most heterogeneous lesions causing blepharospasm. Moreover, the bilateral supplementary motor area is primarily associated with action execution, visual motion, and imagination, and participates in finger tapping and saccades. They also reported decreased functional connectivity with the left posterior cingulate cortex in patients with idiopathic blepharospasm. These results demonstrate a common convergent abnormality of the supplementary motor area across idiopathic and acquired blepharospasms, providing additional evidence that the supplementary motor area is an important brain region that is pathologically impaired in patients with blepharospasm.
Collapse
Affiliation(s)
- Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaodong Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Shenzhen Children's Hospital, Shenzhen, 518000, China
| | - Qinxiu Cheng
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haoran Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Linchang Zhong
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yuhan Luo
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Yue Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Zilin Ou
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Zhicong Yan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Kangqiang Peng
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Gang Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Huang XF, Hao XQ, Yin XX, Ren L, Wang D, Jin F, Tan LN, Liang ZH, Song CL. Functional connectivity alterations in the frontoparietal network and sensorimotor network are associated with behavioral heterogeneity in blepharospasm. Front Neurol 2023; 14:1273935. [PMID: 38020657 PMCID: PMC10668333 DOI: 10.3389/fneur.2023.1273935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Primary blepharospasm (BSP) is a clinically heterogeneous disease that manifests not only as spasmodic closure of the eyelids but also sometimes with apraxia of eyelid opening (AEO). This cross-sectional study aimed to investigate differences in the neural mechanisms of isolated BSP and BSP-associated AEO subtypes, which may reveal the pathophysiology underlying different phenotypes. Methods A total of 29 patients manifested as isolated BSP, 17 patients manifested as BSP associated with AEO, and 28 healthy controls underwent resting-state functional near-infrared spectroscopy (fNIRS). We assessed functional connectivity (FC) between regions of interest (ROIs) in the fronto-parietal control network (PFCN) and sensorimotor network (SMN). We also examined the relationship between altered FC and behavioral data. Results In the FPCN, ROI- analyses showed decreased FC between the left premotor cortex and supramarginal gyrus in the BSP with AEO group compared to the isolated BSP group. In the SMN, both subgroups showed hypoconnectivity of the left premotor cortex with the right primary motor cortex, primary sensory cortex, and somatosensory association cortex. This hypoconnectivity was positively correlated with the total number of botulinum toxin A treatments, which suggests that long-term botulinum toxin A treatment may modulate motor sequence planning and coordination. Conclusion These findings showed different connectivity alterations in neural networks associated with motor and cognitive control among different behavioral phenotypes of BSP. The identification of specific alterations in various networks that correspond to clinical heterogeneity may inform the identification of potential biomarkers for early diagnosis and personalized neuromodulation targets for treating different BSP subphenotypes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhan-Hua Liang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chun-Li Song
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Liu Y, Yang L, Yan H, Feng C, Jiang W, Li W, Lei Y, Pang L, Liang M, Guo W, Luo S. Increased functional connectivity coupling with supplementary motor area in blepharospasm at rest. Brain Res 2023; 1817:148469. [PMID: 37355150 DOI: 10.1016/j.brainres.2023.148469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
OBJECTIVE To explore the abnormalities of brain function in blepharospasm (BSP) and to illustrate its neural mechanisms by assuming supplementary motor area (SMA) as the entry point. METHODS Twenty-five patients with BSP and 23 controls underwent resting-state functional MRI, seed-based functional connectivity (FC), correlation analysis, receiver operating characteristic curve (ROC) analysis, and support vector machine (SVM) were applied to process the data. RESULTS Patients showed that the left medial prefrontal cortex (MPFC), left lingual gyrus, right cerebellar crus I, and right lingual gyrus/cerebellar crus I had enhanced FC with the left SMA, whereas the right inferior temporal gyrus (ITG) had enhanced FC with the right SMA relative to controls. The FC between the left MPFC and left SMA was positively correlated with symptomatic severity. The ROC analysis verified that the abnormal FCs demonstrated in this study can separate patients and controls at high sensitivity and specificity. SVM analysis exhibited that combined FCs of the left SMA were optimal for distinguishing patients and control group at the accuracy of 89.58%, with sensitivity of 92.00% and specificity of 86.96%. CONCLUSIONS Several brain networks partake in the neurobiology of BSP. SMA plays a vital role in several brain networks and might be the key pathogenic factor in BSP. SIGNIFICANCE Providing novel evidence for the engagement of the MPFC in the motor symptoms of BSP, enhancing credibility of the thesis that SMA regulates the neurobiology of BSP, and providing ideas of screening susceptible population of BSP using neuroimaging.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Neurology, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, China
| | - Lu Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Changqiang Feng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Wenyan Jiang
- Department of Intensive Care Unit, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Wenmei Li
- Department of Radiology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yiwu Lei
- Department of Radiology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lulu Pang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Meilan Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Shuguang Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
5
|
Tawfik HA, Dutton JJ. Debunking the Puzzle of Eyelid Apraxia: The Muscle of Riolan Hypothesis. Ophthalmic Plast Reconstr Surg 2023; 39:211-220. [PMID: 36136731 DOI: 10.1097/iop.0000000000002291] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Apraxia of eyelid opening (AEO) has been defined by the presence of an intermittent nonparalytic bilateral loss of the volitional ability to open the eyes or to maintain the eyelids in a sustained elevated position. It is not known whether the condition represents an apraxia, a dystonia, or a freezing phenomenon, and several different nomenclatorial terms have been suggested for this condition including the so-called AEO (scAEO), blepahrocolysis, focal eyelid dystonia, and so on. The primary goal of this review is to attempt to clarify the pathogenetic mechanisms underlying scAEO as a clinical phenomenon. This review also addresses the issue of whether scAEO is part of the spectrum of blepharospasm (BSP) which includes BSP, dystonic blinks and other dystonic eyelid conditions, or whether it is a separate phenomenologically heterogeneous disease with clinical features that merely overlap with BSP. METHODS A literature review was conducted in PubMed, MEDLINE, PubMed Central (PMC), NCBI Bookshelf, and Embase for several related keywords including the terms "apraxia of eyelid opening," "pretarsal blepharospasm," "blepharocolysis," "eyelid freezing," "eyelid akinesia," "levator inhibition," "blepharospasm-plus," as well as "blepharospasm." The clinical findings in patients with scAEO who fulfilled the classic diagnostic criteria of the disease that were originally set by Lepore and Duvoisin were included, while patients with isolated blepharospasm or dystonic blinks (DB) were excluded. In addition, electromyographic (EMG) studies in patients with scAEO were reviewed in detail with special emphasis on studies that performed synchronous EMG recordings both from the levator muscle (LPS) and the pretarsal orbicularis oculi muscle (OO). RESULTS The apraxia designation is clearly a misnomer. Although scAEO behaves clinically as a hypotonic freezing phenomenon, it also shares several cardinal features with focal dystonias. The authors broadly categorized the EMG data into 3 different patterns. The first pattern (n = 26/94 [27.6%]) was predominantly associated with involuntary discharges in the OO muscle and has been termed pretarsal blepharospasm (ptBSP). The commonest pattern was pattern no. 2 (n = 53/94 [56.38%]), which was characterized by involuntary discharges in the OO muscle, together with a disturbed reciprocal innervation of the antagonist levator muscle and is dubbed disturbed reciprocal innervation (DRI). This EMG pattern is difficult to discern from the first pattern. Pattern no. 3 (n = 15/94 [15.9%]) is characterized by an isolated levator palpebrae inhibition (ILPI). This levator silence was observed alone without EMG evidence of contractions in the pretarsal orbicularis or a disturbed reciprocal relation of both muscles. CONCLUSION EMG evidence shows that the great majority (84%) of patients show a dystonic pattern, whereas ILPI (16%) does not fit the dystonic spectrum. The authors propose that a spasmodic contraction of the muscle of Riolan may be the etiological basis for levator inhibition in patients with ILPI. If this is true, all the 3 EMG patterns observed in scAEO patients (ptBSP, DRI, and ILPI) would represent an atypical form of BSP. The authors suggest coining the terms Riolan muscle BSP ( rmBSP ) for ILPI, and the term atypical focal eyelid dystonia ( AFED ) instead of the term scAEO, as both terms holistically encompass both the clinical and EMG data and concur with the authors' theorem.
Collapse
Affiliation(s)
- Hatem A Tawfik
- Department of Ophthalmology, Ain Shams University, Cairo, Egypt
| | - Jonathan J Dutton
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, U.S.A
| |
Collapse
|
6
|
Corp DT, Morrison-Ham J, Jinnah HA, Joutsa J. The functional anatomy of dystonia: Recent developments. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:105-136. [PMID: 37482390 DOI: 10.1016/bs.irn.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
While dystonia has traditionally been viewed as a disorder of the basal ganglia, the involvement of other key brain structures is now accepted. However, just what these structures are remains to be defined. Neuroimaging has been an especially valuable tool in dystonia, yet traditional cross-sectional designs have not been able to separate causal from compensatory brain activity. Therefore, this chapter discusses recent studies using causal brain lesions, and animal models, to converge upon the brain regions responsible for dystonia with increasing precision. This evidence strongly implicates the basal ganglia, thalamus, brainstem, cerebellum, and somatosensory cortex, yet shows that different types of dystonia involve different nodes of this brain network. Nearly all of these nodes fall within the recently identified two-way networks connecting the basal ganglia and cerebellum, suggesting dysfunction of these specific pathways. Localisation of the functional anatomy of dystonia has strong implications for targeted treatment options, such as deep brain stimulation, and non-invasive brain stimulation.
Collapse
Affiliation(s)
- Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States.
| | - Jordan Morrison-Ham
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - H A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States
| | - Juho Joutsa
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States; Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Centre, Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
7
|
Odorfer TM, Yabe M, Hiew S, Volkmann J, Zeller D. Topological differences and confounders of mental rotation in cervical dystonia and blepharospasm. Sci Rep 2023; 13:6026. [PMID: 37055560 PMCID: PMC10102235 DOI: 10.1038/s41598-023-33262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/11/2023] [Indexed: 04/15/2023] Open
Abstract
Mental rotation (mR) bases on imagination of actual movements. It remains unclear whether there is a specific pattern of mR impairment in focal dystonia. We aimed to investigate mR in patients with cervical dystonia (CD) and blepharospasm (BS) and to assess potential confounders. 23 CD patients and 23 healthy controls (HC) as well as 21 BS and 19 hemifacial spasm (HS) patients were matched for sex, age, and education level. Handedness, finger dexterity, general reaction time, and cognitive status were assessed. Disease severity was evaluated by clinical scales. During mR, photographs of body parts (head, hand, or foot) and a non-corporal object (car) were displayed at different angles rotated within their plane. Subjects were asked to judge laterality of the presented image by keystroke. Both speed and correctness were evaluated. Compared to HC, CD and HS patients performed worse in mR of hands, whereas BS group showed comparable performance. There was a significant association of prolonged mR reaction time (RT) with reduced MoCA scores and with increased RT in an unspecific reaction speed task. After exclusion of cognitively impaired patients, increased RT in the mR of hands was confined to CD group, but not HS. While the question of whether specific patterns of mR impairment reliably define a dystonic endophenotype remains elusive, our findings point to mR as a useful tool, when used carefully with control measures and tasks, which may be capable of identifying specific deficits that distinguish between subtypes of dystonia.
Collapse
Affiliation(s)
- Thorsten M Odorfer
- Department of Neurology, University of Würzburg, 97080, Würzburg, Germany.
| | - Marie Yabe
- Department of Neurology, University of Würzburg, 97080, Würzburg, Germany
| | - Shawn Hiew
- Department of Neurology, University of Würzburg, 97080, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University of Würzburg, 97080, Würzburg, Germany
| | - Daniel Zeller
- Department of Neurology, University of Würzburg, 97080, Würzburg, Germany
| |
Collapse
|
8
|
Hao X, Huang X, Yin X, Wang HY, Lu R, Liang Z, Song C. Elucidation of the mechanism underlying impaired sensorimotor gating in patients with primary blepharospasm using prepulse inhibition. Front Neurol 2023; 14:1105483. [PMID: 36816573 PMCID: PMC9929365 DOI: 10.3389/fneur.2023.1105483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Objective We aimed to analyze prepulse inhibition (PPI) impairment of the blink reflex in patients with primary blepharospasm (BSP). Methods We recruited 30 BSP patients and 20 gender- and age-matched healthy controls (HCs). Weak electrical stimulation was applied to the right index finger at interstimulus intervals (ISIs) of 120, 200, and 300 ms before the supraorbital nerve stimulation to investigate PPI size [PPI size = (1 - R2 area at prepulse trials/R2 area at baseline trials) × 100%]. Results The prepulse stimulus significantly inhibited the R 2 component at the three ISIs in both groups, but less inhibition was shown in the BSP group (p < 0.05). In HCs, the prepulse stimulus induced prolonged R 2 and R 2c latencies at the three ISIs and increased the R 1 amplitude at ISIs of 120 ms; these changes were absent in BSP patients. In the BSP group, patients with sensory tricks showed better PPI than patients without sensory tricks. Disease duration and motor symptom severity showed no significant correlation with PPI size. Conclusion In BSP patients, PPI was impaired while R 1 facilitation was absent. PPI size did not correlate with the motor symptom severity and disease duration. Patients with sensory tricks showed better PPI than those without sensory tricks.
Collapse
Affiliation(s)
- Xinqing Hao
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaofeng Huang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoxue Yin
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hai-Yang Wang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,Department of Neurology, Jining No. 1 People's Hospital, Jining, China
| | - Ren Lu
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhanhua Liang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,*Correspondence: Zhanhua Liang ✉
| | - Chunli Song
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China,Chunli Song ✉
| |
Collapse
|
9
|
Yang A, Liu B, Lv K, Luan J, Hu P, Yu H, Shmuel A, Li S, Tian H, Ma G, Zhang B. Altered coupling of resting-state cerebral blood flow and functional connectivity in Meige syndrome. Front Neurosci 2023; 17:1152161. [PMID: 37207180 PMCID: PMC10188939 DOI: 10.3389/fnins.2023.1152161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/22/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Meige syndrome (MS) is an adult-onset segmental dystonia disease, mainly manifested as blepharospasm and involuntary movement caused by dystonic dysfunction of the oromandibular muscles. The changes of brain activity, perfusion and neurovascular coupling in patients with Meige syndrome are hitherto unknown. Methods Twenty-five MS patients and thirty age- and sex-matched healthy controls (HC) were prospectively recruited in this study. All the participants underwent resting-state arterial spin labeling and blood oxygen level-dependent examinations on a 3.0 T MR scanner. The measurement of neurovascular coupling was calculated using cerebral blood flow (CBF)-functional connectivity strength (FCS) correlations across the voxels of whole gray matter. Also, voxel-wised analyses of CBF, FCS, and CBF/FCS ratio images between MS and HC were conducted. Additionally, CBF and FCS values were compared between these two groups in selected motion-related brain regions. Results MS patients showed increased whole gray matter CBF-FCS coupling relative to HC (t = 2.262, p = 0.028). In addition, MS patients showed significantly increased CBF value in middle frontal gyrus and bilateral precentral gyrus. Conclusion The abnormal elevated neurovascular coupling of MS may indicate a compensated blood perfusion in motor-related brain regions and reorganized the balance between neuronal activity and brain blood supply. Our results provide a new insight into the neural mechanism underlying MS from the perspective of neurovascular coupling and cerebral perfusion.
Collapse
Affiliation(s)
- Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kuan Lv
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Jixin Luan
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pianpian Hu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Hongwei Yu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Departments of Neurology and Neurosurgery, Physiology, and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Shijun Li
- Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hong Tian
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
- Hong Tian,
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guolin Ma,
| | - Bing Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Beijing, China
| |
Collapse
|
10
|
Cheng Q, Xiao H, Luo Y, Zhong L, Guo Y, Fan X, Zhang X, Liu Y, Weng A, Ou Z, Zhang W, Wu H, Hu Q, Peng K, Xu J, Liu G. Cortico-basal ganglia networks dysfunction associated with disease severity in patients with idiopathic blepharospasm. Front Neurosci 2023; 17:1159883. [PMID: 37065925 PMCID: PMC10098005 DOI: 10.3389/fnins.2023.1159883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
Background Structural changes occur in brain regions involved in cortico-basal ganglia networks in idiopathic blepharospasm (iBSP); whether these changes influence the function connectivity patterns of cortico-basal ganglia networks remains largely unknown. Therefore, we aimed to investigate the global integrative state and organization of functional connections of cortico-basal ganglia networks in patients with iBSP. Methods Resting-state functional magnetic resonance imaging data and clinical measurements were acquired from 62 patients with iBSP, 62 patients with hemifacial spasm (HFS), and 62 healthy controls (HCs). Topological parameters and functional connections of cortico-basal ganglia networks were evaluated and compared among the three groups. Correlation analyses were performed to explore the relationship between topological parameters and clinical measurements in patients with iBSP. Results We found significantly increased global efficiency and decreased shortest path length and clustering coefficient of cortico-basal ganglia networks in patients with iBSP compared with HCs, however, such differences were not observed between patients with HFS and HCs. Further correlation analyses revealed that these parameters were significantly correlated with the severity of iBSP. At the regional level, the functional connectivity between the left orbitofrontal area and left primary somatosensory cortex and between the right anterior part of pallidum and right anterior part of dorsal anterior cingulate cortex was significantly decreased in patients with iBSP and HFS compared with HCs. Conclusion Dysfunction of the cortico-basal ganglia networks occurs in patients with iBSP. The altered network metrics of cortico-basal ganglia networks might be served as quantitative markers for evaluation of the severity of iBSP.
Collapse
Affiliation(s)
- Qinxiu Cheng
- Chinese Academy of Sciences, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Han Xiao
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yuhan Luo
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linchang Zhong
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yaomin Guo
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinxin Fan
- Chinese Academy of Sciences, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Xiaodong Zhang
- Chinese Academy of Sciences, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Ying Liu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ai Weng
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zilin Ou
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weixi Zhang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huawang Wu
- Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingmao Hu
- Chinese Academy of Sciences, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Kangqiang Peng
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Kangqiang Peng,
| | - Jinping Xu
- Chinese Academy of Sciences, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Shenzhen, China
- Jinping Xu,
| | - Gang Liu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Gang Liu,
| |
Collapse
|
11
|
Marapin RS, van der Horn HJ, van der Stouwe AMM, Dalenberg JR, de Jong BM, Tijssen MAJ. Altered brain connectivity in hyperkinetic movement disorders: A review of resting-state fMRI. Neuroimage Clin 2022; 37:103302. [PMID: 36669351 PMCID: PMC9868884 DOI: 10.1016/j.nicl.2022.103302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Hyperkinetic movement disorders (HMD) manifest as abnormal and uncontrollable movements. Despite reported involvement of several neural circuits, exact connectivity profiles remain elusive. OBJECTIVES Providing a comprehensive literature review of resting-state brain connectivity alterations using resting-state fMRI (rs-fMRI). We additionally discuss alterations from the perspective of brain networks, as well as correlations between connectivity and clinical measures. METHODS A systematic review was performed according to PRISMA guidelines and searching PubMed until October 2022. Rs-fMRI studies addressing ataxia, chorea, dystonia, myoclonus, tics, tremor, and functional movement disorders (FMD) were included. The standardized mean difference was used to summarize findings per region in the Automated Anatomical Labeling atlas for each phenotype. Furthermore, the activation likelihood estimation meta-analytic method was used to analyze convergence of significant between-group differences per phenotype. Finally, we conducted hierarchical cluster analysis to provide additional insights into commonalities and differences across HMD phenotypes. RESULTS Most articles concerned tremor (51), followed by dystonia (46), tics (19), chorea (12), myoclonus (11), FMD (11), and ataxia (8). Altered resting-state connectivity was found in several brain regions: in ataxia mainly cerebellar areas; for chorea, the caudate nucleus; for dystonia, sensorimotor and basal ganglia regions; for myoclonus, the thalamus and cingulate cortex; in tics, the basal ganglia, cerebellum, insula, and frontal cortex; for tremor, the cerebello-thalamo-cortical circuit; finally, in FMD, frontal, parietal, and cerebellar regions. Both decreased and increased connectivity were found for all HMD. Significant spatial convergence was found for dystonia, FMD, myoclonus, and tremor. Correlations between clinical measures and resting-state connectivity were frequently described. CONCLUSION Key brain regions contributing to functional connectivity changes across HMD often overlap. Possible increases and decreases of functional connections of a specific region emphasize that HMD should be viewed as a network disorder. Despite the complex interplay of physiological and methodological factors, this review serves to gain insight in brain connectivity profiles across HMD phenotypes.
Collapse
Affiliation(s)
- Ramesh S Marapin
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Harm J van der Horn
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - A M Madelein van der Stouwe
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Jelle R Dalenberg
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Bauke M de Jong
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Marina A J Tijssen
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.
| |
Collapse
|
12
|
O'Flynn LC, Simonyan K. Short- and Long-term Central Action of Botulinum Neurotoxin Treatment in Laryngeal Dystonia. Neurology 2022; 99:e1178-e1190. [PMID: 35764404 PMCID: PMC9536744 DOI: 10.1212/wnl.0000000000200850] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/28/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Laryngeal dystonia (LD) is isolated task-specific focal dystonia selectively impairing speech production. The first choice of LD treatment is botulinum neurotoxin (BoNT) injections into the affected laryngeal muscles. However, whether BoNT has a lasting therapeutic effect on disorder pathophysiology is unknown. We investigated short-term and long-term effects of BoNT treatment on brain function in patients with LD. METHODS A total of 161 participants were included in the functional MRI study. Statistical analyses examined central BoNT effects in patients with LD who were stratified based on the effectiveness and duration of treatment. RESULTS Patients with LD who were treated and benefited from BoNT injections had reduced activity in the left precuneus compared with BoNT-naive and treatment nonbenefiting patients. In addition, BoNT-treated patients with adductor LD had decreased activity in the right thalamus, whereas BoNT-treated abductor patients with LD had reduced activity in the left inferior frontal cortex. No statistically significant differences in brain activity were found between patients with shorter (1-5 years) and longer (13-28 years) treatment durations. However, patients with intermediate treatment duration of 6-12 years showed reduced activity in the right cerebellum compared with patients with both shorter and longer treatment durations and reduced activity in the right prefrontal cortex compared with patients with shorter treatment duration. DISCUSSION Our findings suggest that the left precuneus is the site of short-term BoNT central action in patients with LD, whereas the prefrontal-cerebellar axis is engaged in the BoNT response in patients with intermediate treatment duration of 6-12 years. Involvement of these structures points to indirect action of BoNT treatment on the dystonic sensorimotor network through modulation of motor sequence planning and coordination.
Collapse
Affiliation(s)
- Lena C O'Flynn
- From the Department of Otolaryngology-Head and Neck Surgery (L.C.O., K.S.), Massachusetts Eye and Ear and Harvard Medical School; Program in Speech Hearing Bioscience and Technology (L.C.O., K.S.), Harvard University; and Department of Neurology (K.S.), Massachusetts General Hospital, Boston
| | - Kristina Simonyan
- From the Department of Otolaryngology-Head and Neck Surgery (L.C.O., K.S.), Massachusetts Eye and Ear and Harvard Medical School; Program in Speech Hearing Bioscience and Technology (L.C.O., K.S.), Harvard University; and Department of Neurology (K.S.), Massachusetts General Hospital, Boston.
| |
Collapse
|
13
|
Zhang M, Huang X, Li B, Shang H, Yang J. Gray Matter Structural and Functional Alterations in Idiopathic Blepharospasm: A Multimodal Meta-Analysis of VBM and Functional Neuroimaging Studies. Front Neurol 2022; 13:889714. [PMID: 35734475 PMCID: PMC9207395 DOI: 10.3389/fneur.2022.889714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022] Open
Abstract
Background Neuroimaging studies have shown gray matter structural and functional alterations in patients with idiopathic blepharospasm (iBSP) but with variations. Here we aimed to investigate the specific and common neurostructural/functional abnormalities in patients with iBSP. Methods A systematic literature search from PubMed, Web of Science and Embase was conducted to identify relevant publications. We conducted separate meta-analysis for whole-brain voxel-based morphometry (VBM) studies and for functional imaging studies, and a multimodal meta-analysis across VBM and functional studies in iBSP, using anisotropic effect size-based signed differential mapping. Results The structural database comprised 129 patients with iBSP and 144 healthy controls whilst the functional database included 183 patients with iBSP and 253 healthy controls. The meta-analysis of VBM studies showed increased gray matter in bilateral precentral and postcentral gyri, right supplementary motor area and bilateral paracentral lobules, while decreased gray matter in right superior and inferior parietal gyri, left inferior parietal gyrus, left inferior temporal gyrus, left fusiform gyrus and parahippocampal gyrus. The meta-analysis of functional studies revealed hyperactivity in right dorsolateral superior frontal gyrus, left thalamus and right fusiform gyrus, while hypoactivity in left temporal pole, left insula, left precentral gyrus, bilateral precuneus and paracentral lobules, right supplementary motor area and middle frontal gyrus. The multimodal meta-analysis identified conjoint anatomic and functional changes in left precentral gyrus, bilateral supplementary motor areas and paracentral lobules, right inferior occipital gyrus and fusiform gyrus. Conclusions The patterns of conjoint and dissociated gray matter alterations identified in the meta-analysis may enhance our understanding of the pathophysiological mechanisms underlying iBSP.
Collapse
|
14
|
Fang TC, Chen CM, Chang MH, Wu CH, Guo YJ. Altered Functional Connectivity and Sensory Processing in Blepharospasm and Hemifacial Spasm: Coexistence and Difference. Front Neurol 2022; 12:759869. [PMID: 34975723 PMCID: PMC8715087 DOI: 10.3389/fneur.2021.759869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023] Open
Abstract
Background: Blepharospasm (BSP) and hemifacial spasm (HFS) are both facial hyperkinesia however BSP is thought to be caused by maladaptation in multiple brain regions in contrast to the peripherally induced cause in HFS. Plausible coexisting pathophysiologies between these two distinct diseases have been proposed. Objectives: In this study, we compared brain resting state functional connectivity (rsFC) and quantitative thermal test (QTT) results between patients with BSP, HFS and heathy controls (HCs). Methods: This study enrolled 12 patients with BSP, 11 patients with HFS, and 15 HCs. All subjects received serial neuropsychiatric evaluations, questionnaires determining disease severity and functional impairment, QTT, and resting state functional MRI. Image data were acquired using seed-based analyses using the CONN toolbox. Results: A higher cold detection threshold was found in the BSP and HFS patients compared to the HCs. The BSP and HFS patients had higher rsFC between the anterior cerebellum network and left occipital regions compared to the HCs. In all subjects, impaired cold detection threshold in the QTT of lower extremities had a correlation with higher rsFC between the anterior cerebellar network and left lingual gyrus. Compared to the HCs, increased rsFC in right postcentral gyrus in the BSP patients and decreased rsFC in the right amygdala and frontal orbital cortex in the HFS subjects were revealed when the anterior cerebellar network was used as seed. Conclusions: Dysfunction of sensory processing detected by the QTT is found in the BSP and HSP patients. Altered functional connectivity between the anterior cerebellar network and left occipital region, especially the Brodmann area 19, may indicate the possibility of shared pathophysiology among BSP, HFS, and impaired cold detection threshold. Further large-scale longitudinal study is needed for testing this theory in the future.
Collapse
Affiliation(s)
- Ting-Chun Fang
- Department of Neurology, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Chun-Ming Chen
- Department of Medical Imaging, China Medical University Hospital, Taichung City, Taiwan
| | - Ming-Hong Chang
- Department of Neurology, Taichung Veterans General Hospital, Taichung City, Taiwan.,College of Life Science, National Chung Hsing University, Taichung City, Taiwan
| | - Chen-Hao Wu
- Department of Radiology, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Yi-Jen Guo
- Department of Neurology, Taichung Veterans General Hospital, Taichung City, Taiwan
| |
Collapse
|
15
|
Burbaud P, Courtin E, Ribot B, Guehl D. Basal ganglia: From the bench to the bed. Eur J Paediatr Neurol 2022; 36:99-106. [PMID: 34953339 DOI: 10.1016/j.ejpn.2021.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/01/2021] [Indexed: 11/24/2022]
Abstract
The basal ganglia (BG) encompass a set of archaic structures of the vertebrate brain that have evolved relatively little during the phylogenetic process. From an anatomic point of view, they are widely distributed throughout brain from the telencephalon to the mesencephalon. The fact that they have been preserved through evolution suggests that they may play a critical role in behavioral monitoring. Indeed, a line of evidence suggests that they are involved in the building of behavioral routines and habits that drive most of our activities in everyday life. In this article, we first examine the organization and physiology of the basal ganglia to explain their function in the control of behavior. Then, we show how disruption of the putamen, and to a lesser extent of the cerebellum, might lead to various dystonic syndromes that frequently arise during childhood.
Collapse
Affiliation(s)
- P Burbaud
- Centre Hospitalier Universitaire de Bordeaux, Institut des Maladies Neurodégénératives, CNRS, University of Bordeaux, France.
| | - E Courtin
- Centre Hospitalier Universitaire de Bordeaux, Institut des Maladies Neurodégénératives, CNRS, University of Bordeaux, France
| | - B Ribot
- Centre Hospitalier Universitaire de Bordeaux, Institut des Maladies Neurodégénératives, CNRS, University of Bordeaux, France
| | - D Guehl
- Centre Hospitalier Universitaire de Bordeaux, Institut des Maladies Neurodégénératives, CNRS, University of Bordeaux, France
| |
Collapse
|
16
|
Luo Y, Guo Y, Zhong L, Liu Y, Dang C, Wang Y, Zeng J, Zhang W, Peng K, Liu G. Abnormal dynamic brain activity and functional connectivity of primary motor cortex in blepharospasm. Eur J Neurol 2021; 29:1035-1043. [PMID: 34962021 DOI: 10.1111/ene.15233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/19/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Accumulating evidence indicates that dynamic amplitude of low-frequency fluctuations (dALFF) or functional connectivity (dFC) can provide complementary information, distinct from static ALFF (sALFF) or FC (sFC), in detecting brain functional abnormalities in brain diseases. We aimed to examine whether dALFF and dFC can offer valuable information for the detection of functional brain abnormalities in patients with blepharospasm. METHODS We collected resting-state functional magnetic resonance imaging data from 46 patients each of blepharospasm, hemifacial spasm (HFS), and healthy controls (HCs). We examined inter-group differences in sALFF and dALFF to investigate abnormal regional brain activity in patients with blepharospasm. Based on the dALFF results, we conducted seed-based sFC and dFC analyses to identify static and dynamic connectivity changes in brain networks centered on areas showing abnormal temporal variability of local brain activity in patients with blepharospasm. RESULTS Compared with HCs, patients with blepharospasm displayed different brain functional change patterns characterized by increased sALFF in the left primary motor cortex (PMC) but increased dALFF variance in the right PMC. However, differences were not found between patients with HFS and HCs. Additionally, patients with blepharospasm exhibited decreased dFC strength, but no change in sFC, between right PMC and ipsilateral cerebellum compared with HCs; these findings were replicated when patients with blepharospasm were compared to those with HFS. CONCLUSIONS Our findings highlight that dALFF and dFC are complementary to sALFF and sFC and can provide valuable information for detecting brain functional abnormalities in blepharospasm. Blepharospasm may be a network disorder involving the cortico-ponto-cerebello-thalamo-cortical circuit.
Collapse
Affiliation(s)
- Yuhan Luo
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Yaomin Guo
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Linchang Zhong
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Chao Dang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Weixi Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China
| | - Kangqiang Peng
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Gang Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No. 58, Zhongshan Road 2, Guangzhou, China.,Guangdong-HongKong, Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| |
Collapse
|
17
|
Feng C, Jiang W, Xiao Y, Liu Y, Pang L, Liang M, Tang J, Lu Y, Wei J, Li W, Lei Y, Guo W, Luo S. Comparing Brain Functional Activities in Patients With Blepharospasm and Dry Eye Disease Measured With Resting-State fMRI. Front Neurol 2021; 12:607476. [PMID: 34777188 PMCID: PMC8578056 DOI: 10.3389/fneur.2021.607476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 09/24/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Blepharospasm (BSP) and dry eye disease (DED) are clinically common diseases characterized by an increased blinking rate. A sustained eyelid muscle activity may alter the cortical sensorimotor concordance and lead to secondary functional changes. This study aimed to explore the central mechanism of BSP by assessing brain functional differences between the two groups and comparing them with healthy controls. Methods: In this study, 25 patients with BSP, 22 patients with DED, and 23 healthy controls underwent resting-state functional magnetic resonance imaging (fMRI) scan. The amplitude of low-frequency fluctuations (ALFF) was applied to analyze the imaging data. Results: Analysis of covariance (ANCOVA) revealed widespread differences in ALFF across the three groups. In comparison with healthy controls, patients with BSP showed abnormal ALFF in the sensorimotor integration related-brain regions, including the bilateral supplementary motor area (SMA), left cerebellar Crus I, left fusiform gyrus, bilateral superior medial prefrontal cortex (MPFC), and right superior frontal gyrus (SFG). In comparison with patients with DED, patients with BSP exhibited a significantly increased ALFF in the left cerebellar Crus I and left SMA. ALFF in the left fusiform gyrus/cerebellar Crus I was positively correlated with symptomatic severity of BSP. Conclusions: Our results reveal that the distinctive changes in the brain function in patients with BSP are different from those in patients with DED and healthy controls. The results further emphasize the primary role of sensorimotor integration in the pathophysiology of BSP.
Collapse
Affiliation(s)
- Changqiang Feng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenyan Jiang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yang Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lulu Pang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meilan Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingqun Tang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yulin Lu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Wei
- Department of Comprehensive Internal Medicine, Guangxi Medical University Affiliated Tumor Hospital, Nanning, China
| | - Wenmei Li
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiwu Lei
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuguang Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
18
|
Guo Y, Peng K, Liu Y, Zhong L, Dang C, Yan Z, Wang Y, Zeng J, Zhang W, Ou Z, Liu G. Topological Alterations in White Matter Structural Networks in Blepharospasm. Mov Disord 2021; 36:2802-2810. [PMID: 34320254 DOI: 10.1002/mds.28736] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accumulating evidence indicates regional structural changes in the white matter (WM) of brains in patients with blepharospasm (BSP); however, whether large-scale WM structural networks undergo widespread reorganization in these patients remains unclear. OBJECTIVE We investigated topology changes and global and local features of large-scale WM structural networks in BSP patients compared with hemifacial spasm (HFS) patients or healthy controls (HCs). METHODS This cross-sectional study applied graph theoretical analysis to assess deterministic diffusion tensor tractography findings in 41 BSP patients, 41 HFS patients, and 41 HCs. WM structural connectivity in 246 cortical and subcortical regions was assessed, and topological parameters of the resulting graphs were calculated. Networks were compared among BSP, HFS, and HCs groups. RESULTS Compared to HCs, both BSP and HFS patients showed alterations in network integration and segregation characterized by increased global efficiency and modularity and reduced shortest path length. Moreover, increased nodal efficiency in multiple cortical and subcortical regions was found in BSP and HFS patients compared with HCs. However, these differences were not found between BSP and HFS patients. Whereas all participants showed highly similar hub distribution patterns, BSP patients had additional hub regions not present in either HFS patients or HCs, which were located in the primary head and face motor cortex and basal ganglia. CONCLUSIONS Our findings suggest that the large-scale WM structural network undergoes an extensive reorganization in BSP, probably due to both dystonia-specific abnormalities and facial hyperkinetic movements. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yaomin Guo
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kangqiang Peng
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Liu
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linchang Zhong
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chao Dang
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhicong Yan
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Wang
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinsheng Zeng
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weixi Zhang
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zilin Ou
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gang Liu
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| |
Collapse
|
19
|
Girard B, Davoudi O, Tatry M, Tassart M. [Secondary blepharospasm, analysis and pathophysiology of blepharospasm. French translation of the article]. J Fr Ophtalmol 2021; 44:151-162. [PMID: 33431190 DOI: 10.1016/j.jfo.2020.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE To localize the brain structures involved in blepharospasm. MATERIALS AND METHODS This is a retrospective consecutive series of brain MRI's of patients with secondary blepharospasm whose immediate past medical history included cerebrovascular accident or head trauma. RESULTS Six patients, including 4 with CVA with ischemic or hemorrhagic lesions of the thalamus and caudate nuclei and 2 with head trauma with contusive sequellae to the tectal plate and frontal cortical and cerebellar atrophy. CONCLUSION According to the literature, brain lesions associated with blepharospasm involve mainly the thalamus, head of the caudate nucleus, corpus striatum, globus pallidus, internal capsule, cerebral cortex and cerebellum. This study demonstrates that blepharospasm is associated with a lesion of a complex neural network - cortex-thalamus-globus pallidus-cortex - and does not correspond to a single, unique lesion. This network is connected with ascending and descending sensory-motor pathways and motor nuclei.
Collapse
Affiliation(s)
- B Girard
- Service d'ophtalmologie de l'hôpital Tenon, Sorbonne université, AP-HP, 4, rue de la Chine, 75020 Paris, France.
| | - O Davoudi
- Service d'ophtalmologie de l'hôpital Tenon, AP-HP, Paris, France; Service d'ophtalmologie de l'Hôpital Tenon, APHP, université de Clermont-Ferrand, Clermont-Ferrand, France
| | - M Tatry
- Service d'ophtalmologie de l'hôpital Tenon, Sorbonne université, AP-HP, 4, rue de la Chine, 75020 Paris, France
| | - M Tassart
- Service de radiologie de l'hôpital Tenon, GHU Sorbonne université, AP-HP, Paris, France
| |
Collapse
|
20
|
Voxel-Wise Brain-Wide Functional Connectivity Abnormalities in Patients with Primary Blepharospasm at Rest. Neural Plast 2021; 2021:6611703. [PMID: 33505457 PMCID: PMC7808842 DOI: 10.1155/2021/6611703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background Primary blepharospasm (BSP) is one of the most common focal dystonia and its pathophysiological mechanism remains unclear. An unbiased method was used in patients with BSP at rest to observe voxel-wise brain-wide functional connectivity (FC) changes. Method A total of 48 subjects, including 24 untreated patients with BSP and 24 healthy controls, were recruited to undergo functional magnetic resonance imaging (fMRI). The method of global-brain FC (GFC) was adopted to analyze the resting-state fMRI data. We designed the support vector machine (SVM) method to determine whether GFC abnormalities could be utilized to distinguish the patients from the controls. Results Relative to healthy controls, patients with BSP showed significantly decreased GFC in the bilateral superior medial prefrontal cortex/anterior cingulate cortex (MPFC/ACC) and increased GFC in the right postcentral gyrus/precentral gyrus/paracentral lobule, right superior frontal gyrus (SFG), and left paracentral lobule/supplement motor area (SMA), which were included in the default mode network (DMN) and sensorimotor network. SVM analysis showed that increased GFC values in the right postcentral gyrus/precentral gyrus/paracentral lobule could discriminate patients from controls with optimal accuracy, specificity, and sensitivity of 83.33%, 83.33%, and 83.33%, respectively. Conclusion This study suggested that abnormal GFC in the brain areas associated with sensorimotor network and DMN might underlie the pathophysiology of BSP, which provided a new perspective to understand BSP. GFC in the right postcentral gyrus/precentral gyrus/paracentral lobule might be utilized as a latent biomarker to differentiate patients with BSP from controls.
Collapse
|
21
|
Secondary blepharospasm, analysis and pathophysiology of blepharospasm. J Fr Ophtalmol 2020; 44:e1-e12. [PMID: 33349487 DOI: 10.1016/j.jfo.2020.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/13/2020] [Accepted: 11/17/2020] [Indexed: 11/23/2022]
Abstract
PURPOSE To localize the brain structures involved in blepharospasm. MATERIALS AND METHODS This is a retrospective consecutive series of brain MRI's of patients with secondary blepharospasm whose immediate past medical history included cerebrovascular accident or head trauma. RESULTS Six patients, including 4 with CVA with ischemic or hemorrhagic lesions of the thalamus and caudate nuclei and 2 with head trauma with contusive sequellae to the tectal plate and frontal cortical and cerebellar atrophy. CONCLUSION According to the literature, brain lesions associated with blepharospasm involve mainly the thalamus, head of the caudate nucleus, corpus striatum, globus pallidus, internal capsule, cerebral cortex and cerebellum. This study demonstrates that blepharospasm is associated with a lesion of a complex neural network - cortex-thalamus-globus pallidus-cortex - and does not correspond to a single, unique lesion. This network is connected with ascending and descending sensory-motor pathways and motor nuclei.
Collapse
|
22
|
Kasimu M, Paerhati H, Lei J, Abudujielili A, Maimaitituerxun Y, Kai Z. Surgical Treatment for the Cluster Headache: Clinical Experience. World Neurosurg 2020; 149:e1134-e1139. [PMID: 33346050 DOI: 10.1016/j.wneu.2020.12.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cluster headache (CH) refers to the most painful primary headache that sometimes leads to poor quality of life and associated disability. So far, no treatment has been found to cure CHs. In this study, we introduce a novel and effective surgery for CH. METHODS We studied 6 patients with CH diagnosed according to the criteria of the Headache Classification Committee of the IHS, third edition, who were eligible for surgical treatment on the basis of strong requirements. All of them underwent temporal craniectomy and transection of the greater superficial petrosal nerve and deep petrosal nerve pathway to the sphenopalatine ganglion. RESULTS All 6 patients had the surgery for CH and follow-up per 3 months. We significantly cured their pain and autonomic dysfunction. In the follow-up process none of the patients had reoccurring alacrimia. All of them had reduction of secretion of nasal, oral mucosa, and parotid and were satisfied with the surgery. CONCLUSIONS All 6 patients with CH received surgery by transection greater superficial petrosal nerve and deep petrosal nerve pathway to the sphenopalatine ganglion and were completely cured, and adverse events and serious complications did not occur.
Collapse
Affiliation(s)
- Maimaitijiang Kasimu
- Department of Neurosurgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, China.
| | - Halimureti Paerhati
- Department of Neurosurgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, China
| | - Jiang Lei
- Department of Neurosurgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, China
| | - Abulikemu Abudujielili
- Department of Neurosurgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, China
| | | | - Zhou Kai
- Department of Neurosurgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, China
| |
Collapse
|
23
|
Nguyen P, Kelly D, Glickman A, Argaw S, Shelton E, Peterson DA, Berman BD. Abnormal Neural Responses During Reflexive Blinking in Blepharospasm: An Event-Related Functional MRI Study. Mov Disord 2020; 35:1173-1180. [PMID: 32250472 DOI: 10.1002/mds.28042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The neurophysiological disruptions underlying blepharospasm, a disabling movement disorder characterized by increased blinking and involuntary muscle spasms of the eyelid, remain poorly understood. OBJECTIVE To investigate the neural substrates underlying reflexive blinking in blepharospasm patients compared to healthy controls using simultaneous functional MRI and surface electromyography. METHODS Fifteen blepharospasm patients and 15 healthy controls were recruited. Randomly timed air puffs to the left eye were used to induce reflexive eye blinks during two 8-minute functional MRI scans. Continuous surface electromyography and video recordings were used to monitor blink responses. Imaging data were analyzed using an event-related design. RESULTS Fourteen blepharospasm patients (10 female; 61.6 ± 8.0 years) and 15 controls (11 female; 60.9 ± 5.5 years) were included in the final analysis. Reflexive eye blinks in controls were associated with activation of the right hippocampus and in patients with activation of the left caudate nucleus. Reflexive blinks in blepharospasm patients showed increased activation in the right postcentral gyrus and precuneus, left precentral gyrus, and left occipital cortex compared to controls. Dystonia severity negatively correlated with activity in the left occipital cortex, and disease duration negatively correlated with reflexive-blink activity in the cerebellum. CONCLUSIONS Reflexive blinking in blepharospasm is associated with increased activation in the caudate nucleus and sensorimotor cortices, suggesting a loss of inhibition within the sensorimotor corticobasal ganglia network. The association between decreasing neural response during reflexive blinking in the cerebellum with disease duration suggests an adaptive role. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Phuong Nguyen
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Diane Kelly
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amanda Glickman
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Salem Argaw
- School of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Erika Shelton
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A Peterson
- Institute of Neural Computation, University of California San Diego, San Diego, California, USA.,Computational Neurobiology Laboratory, Salk Institute of Biological Studies, La Jolla, California, USA
| | - Brian D Berman
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
24
|
Does the network model fits neurophysiological abnormalities in blepharospasm? Neurol Sci 2020; 41:2067-2079. [DOI: 10.1007/s10072-020-04347-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/16/2020] [Indexed: 10/24/2022]
|
25
|
Conte A, Defazio G, Mascia M, Belvisi D, Pantano P, Berardelli A. Advances in the pathophysiology of adult-onset focal dystonias: recent neurophysiological and neuroimaging evidence. F1000Res 2020; 9. [PMID: 32047617 PMCID: PMC6993830 DOI: 10.12688/f1000research.21029.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/28/2022] Open
Abstract
Focal dystonia is a movement disorder characterized by involuntary muscle contractions that determine abnormal postures. The traditional hypothesis that the pathophysiology of focal dystonia entails a single structural dysfunction (i.e. basal ganglia) has recently come under scrutiny. The proposed network disorder model implies that focal dystonias arise from aberrant communication between various brain areas. Based on findings from animal studies, the role of the cerebellum has attracted increased interest in the last few years. Moreover, it has been increasingly reported that focal dystonias also include nonmotor disturbances, including sensory processing abnormalities, which have begun to attract attention. Current evidence from neurophysiological and neuroimaging investigations suggests that cerebellar involvement in the network and mechanisms underlying sensory abnormalities may have a role in determining the clinical heterogeneity of focal dystonias.
Collapse
Affiliation(s)
- Antonella Conte
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - Giovanni Defazio
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | - Marcello Mascia
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | | | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
26
|
Maggi G, D'Iorio A, Mautone G, Peluso S, Manganelli F, Dubbioso R, Esposito M, Santangelo G. Cognitive correlates of prospective memory in dystonia. Parkinsonism Relat Disord 2019; 66:51-55. [DOI: 10.1016/j.parkreldis.2019.06.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/12/2019] [Accepted: 06/30/2019] [Indexed: 12/18/2022]
|
27
|
Ribot B, Aupy J, Vidailhet M, Mazère J, Pisani A, Bezard E, Guehl D, Burbaud P. Dystonia and dopamine: From phenomenology to pathophysiology. Prog Neurobiol 2019; 182:101678. [PMID: 31404592 DOI: 10.1016/j.pneurobio.2019.101678] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/19/2019] [Accepted: 07/31/2019] [Indexed: 11/30/2022]
Abstract
A line of evidence suggests that the pathophysiology of dystonia involves the striatum, whose activity is modulated among other neurotransmitters, by the dopaminergic system. However, the link between dystonia and dopamine appears complex and remains unclear. Here, we propose a physiological approach to investigate the clinical and experimental data supporting a role of the dopaminergic system in the pathophysiology of dystonic syndromes. Because dystonia is a disorder of motor routines, we first focus on the role of dopamine and striatum in procedural learning. Second, we consider the phenomenology of dystonia from every angle in order to search for features giving food for thought regarding the pathophysiology of the disorder. Then, for each dystonic phenotype, we review, when available, the experimental and imaging data supporting a connection with the dopaminergic system. Finally, we propose a putative model in which the different phenotypes could be explained by changes in the balance between the direct and indirect striato-pallidal pathways, a process critically controlled by the level of dopamine within the striatum. Search strategy and selection criteria References for this article were identified through searches in PubMed with the search terms « dystonia », « dopamine", « striatum », « basal ganglia », « imaging data », « animal model », « procedural learning », « pathophysiology », and « plasticity » from 1998 until 2018. Articles were also identified through searches of the authors' own files. Only selected papers published in English were reviewed. The final reference list was generated on the basis of originality and relevance to the broad scope of this review.
Collapse
Affiliation(s)
- Bastien Ribot
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Jérome Aupy
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Marie Vidailhet
- AP-HP, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Sorbonne Université, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière UPMC Univ Paris 6 UMR S 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Joachim Mazère
- Université de Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France; CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France; Service de médecine nucléaire, CHU de Bordeaux, France
| | - Antonio Pisani
- Department of Neuroscience, University "Tor Vergata'', Rome, Italy; Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia I.R.C.C.S., Rome, Italy
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Dominique Guehl
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Pierre Burbaud
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
28
|
Motor and non-motor symptoms in blepharospasm: clinical and pathophysiological implications. J Neurol 2019; 266:2780-2785. [DOI: 10.1007/s00415-019-09484-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 02/02/2023]
|
29
|
Alterations of Interhemispheric Functional Connectivity and Degree Centrality in Cervical Dystonia: A Resting-State fMRI Study. Neural Plast 2019; 2019:7349894. [PMID: 31178903 PMCID: PMC6507243 DOI: 10.1155/2019/7349894] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/19/2019] [Accepted: 03/21/2019] [Indexed: 12/17/2022] Open
Abstract
Background Cervical dystonia (CD) is a neurological movement disorder characterized by involuntary head and neck movements and postures. Reports on microstructural and functional abnormalities in multiple brain regions not limited to the basal ganglia have been increasing in patients with CD. However, the neural bases of CD are unclear. This study is aimed at identifying cerebral functional abnormalities in CD by using resting-state functional magnetic resonance imaging (rs-fMRI). Methods Using rs-fMRI data, voxel-mirrored homotopic connectivity (VMHC) and degree centrality were used to compare the alterations of the rs-functional connectivity (FC) between 19 patients with CD and 21 healthy controls. Regions showing abnormal FCs from two measurements were the regions of interest for correlation analyses. Results Compared with healthy controls, patients with CD exhibited significantly decreased VMHC in the supplementary motor area (SMA), precuneus (PCu)/postcentral gyrus, and superior medial prefrontal cortex (MPFC). Significantly increased degree centrality in the right PCu and decreased degree centrality in the right lentiform nucleus and left ventral MPFC were observed in the patient group compared with the control group. Further correlation analyses showed that the VMHC values in the SMA were negatively correlated with dystonia severity. Conclusion Local abnormalities and interhemispheric interaction deficits in the sensorimotor network (SMA, postcentral gyrus, and PCu), default mode network (MPFC and PCu), and basal ganglia may be the key characteristics in the pathogenesis mechanism of CD.
Collapse
|
30
|
Sun Y, Tsai PJ, Chu CL, Huang WC, Bee YS. Epidemiology of benign essential blepharospasm: A nationwide population-based retrospective study in Taiwan. PLoS One 2018; 13:e0209558. [PMID: 30586395 PMCID: PMC6306223 DOI: 10.1371/journal.pone.0209558] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 12/09/2018] [Indexed: 02/02/2023] Open
Abstract
IMPORTANCE This study provides a nationwide, population-based data on the incidence of benign essential blepharospasm in Asian adults. BACKGROUND To describe the incidence, patient demographics, and risk factors associated with benign essential blepharospasm. DESIGN Population-based retrospective study. PARTICIPANTS AND SAMPLES A total of 1325 patients with benign essential blepharospasm were identified. METHODS Patients with diagnosis of blepharopsasm between January 2000 and December 2013 were sampled using the Longitudinal Health Insurance Database 2000. Secondary blepharospasm that may be related to neurological, trauma, and ocular surface disease were excluded. MAIN OUTCOME MEASURED Multivariate conditional logistic regression was used to estimate the odds ratios for potential risk factors of benign essential blepharospasm. RESULTS The mean annual incidence was 0.10‰ (0.07‰ for males, and 0.12‰ for females). The peak incidence was in the 50 to 59-year-old age group (0.19‰). People living in urban regions have more risk of developing blepharospasm comparing to people living in less urban regions (p <0.01). White-collar workers also have higher chance of having blepharospasm (p<0.001). Significant difference between control group and case group in hyperlipidemia (p <0.001), sleep disorders (p <0.001), mental disorders (depression, anxiety, obsessive compulsive disorder) (p <0.001), dry eye-related diseases (dry eye, Sjögren's syndrome) (p <0.001), Parkinson's disease (p <0.004), and rosacea (p <0.021) were also identified. CONCLUSIONS AND RELEVANCE Higher level of urbanization, white-collar work, sleep disorders, mental health diseases, dry eye-related diseases, Parkinsonism, and rosacea are possible risk factors for benign essential blepharospasm.
Collapse
Affiliation(s)
- Yng Sun
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Kaohsiung Medical University of Hospital, Kaohsiung, Taiwan
| | - Pei-Jhen Tsai
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | - Wei-Chun Huang
- Critical Care Center and Cardiovascular Medical Center, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Youn-Shen Bee
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan
- National Defense Medical Center, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
31
|
Wei J, Wei S, Yang R, Yang L, Yin Q, Li H, Qin Y, Lei Y, Qin C, Tang J, Luo S, Guo W. Voxel-Mirrored Homotopic Connectivity of Resting-State Functional Magnetic Resonance Imaging in Blepharospasm. Front Psychol 2018; 9:1620. [PMID: 30254593 PMCID: PMC6141657 DOI: 10.3389/fpsyg.2018.01620] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/13/2018] [Indexed: 11/22/2022] Open
Abstract
Objective: Several networks in human brain are involved in the development of blepharospasm. However, the underlying mechanisms for this disease are poorly understood. A voxel-mirrored homotopic connectivity (VMHC) method was used to quantify the changes in functional connectivity between two hemispheres of the brain in patients with blepharospasm. Methods: Twenty-four patients with blepharospasm and 24 healthy controls matched by age, sex, and education were recruited. The VMHC method was employed to analyze the fMRI data. The support vector machine (SVM) method was utilized to examine whether these abnormalities could be applied to distinguish the patients from the controls. Results: Compared with healthy controls, patients with blepharospasm showed significantly high VMHC in the inferior temporal gyrus, interior frontal gyrus, posterior cingulate cortex, and postcentral gyrus. No significant correlation was found between abnormal VMHC values and clinical variables. SVM analysis showed a combination of increased VMHC values in two brain areas with high sensitivities and specificities (83.33 and 91.67% in the combined inferior frontal gyrus and posterior cingulate cortex; and 83.33 and 87.50% in the combined inferior temporal gyrus and postcentral gyrus). Conclusion: Enhanced homotopic coordination in the brain regions associated with sensory integration networks and default-mode network may be underlying the pathophysiology of blepharospasm. This phenomenon may serve as potential image markers to distinguish patients with blepharospasm from healthy controls.
Collapse
Affiliation(s)
- Jing Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shubao Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rongxing Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiong Yin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huihui Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuhong Qin
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiwu Lei
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingqun Tang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shuguang Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
32
|
Vijayakumar D, Jankovic J. Medical treatment of blepharospasm. EXPERT REVIEW OF OPHTHALMOLOGY 2018. [DOI: 10.1080/17469899.2018.1503535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Dhanya Vijayakumar
- The University of South Carolina School of Medicine Greenville, Neuroscience Associates/Department of Internal Medicine, Greenville Health System, Greenville, South Carolina, USA
| | - Joseph Jankovic
- Department of Neurology, Baylor College of Medicine, Baylor St. Luke’s Medical Center at the McNair Campus, Houston, Texas, USA
| |
Collapse
|
33
|
Wakakura M, Yamagami A, Iwasa M. Blepharospasm in Japan: A Clinical Observational Study From a Large Referral Hospital in Tokyo. Neuroophthalmology 2018; 42:275-283. [PMID: 30258472 DOI: 10.1080/01658107.2017.1409770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/13/2017] [Accepted: 11/22/2017] [Indexed: 10/18/2022] Open
Abstract
Focal dystonia is regarded as a characteristic feature of blepharospasm. However, patients do not always present with motor symptoms. To clarify the clinical features of blepharospasm in Japan, we conducted a retrospective observational study involving a large population of patients from a single institution. Common symptoms included difficulty opening the eyes, photophobia, and ocular pain/irritation. Initial symptoms often occurred following the long-term use of psychotropics such as etizoram, benzodiazepines, and zolpidem (32% of patients). Our findings demonstrated that the clinical presentation of blepharospasm is heterogenous, and that understanding regarding sensory-dominant forms of the disease may be poor among practitioners in Japan.
Collapse
Affiliation(s)
- M Wakakura
- Division of Neuro-ophthalmology, Inouye Eye Hospital, Tokyo, Japan
| | - A Yamagami
- Division of Neuro-ophthalmology, Inouye Eye Hospital, Tokyo, Japan
| | - M Iwasa
- Division of Neuro-ophthalmology, Inouye Eye Hospital, Tokyo, Japan
| |
Collapse
|
34
|
Ni MF, Huang XF, Miao YW, Liang ZH. Resting state fMRI observations of baseline brain functional activities and connectivities in primary blepharospasm. Neurosci Lett 2017; 660:22-28. [DOI: 10.1016/j.neulet.2017.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/28/2017] [Accepted: 09/07/2017] [Indexed: 12/18/2022]
|