1
|
Wetzel D, Jacobs PP, Winkler D, Grunert R. Significance of EEG-electrode combinations while calculating filters with common spatial patterns. GERMAN MEDICAL SCIENCE : GMS E-JOURNAL 2024; 22:Doc08. [PMID: 39386391 PMCID: PMC11463027 DOI: 10.3205/000334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/15/2024] [Indexed: 10/12/2024]
Abstract
Objective Common spatial pattern (CSP) is a common filter technique used for pre-processing of electroencephalography (EEG) signals for imaginary movement classification tasks. It is crucial to reduce the amount of features especially in cases where few data is available. Therefore, different approaches to reduce the amount of electrodes used for CSP calculation are tried in this research. Methods Freely available EEG datasets are used for the evaluation. To evaluate the approaches a simple classification pipeline consisting mainly of the CSP calculation and linear discriminant analysis for classification is used. A baseline over all electrodes is calculated and compared against the results of the approaches. Results The most promising approach is to use the ability of CSP to provide information about the origin of the created filter. An algorithm that extracts the important electrodes from the CSP utilizing these information is proposed.The results show that using subject specific electrode positions has a positive impact on accuracy for the classification task. Further, it is shown that good performing electrode combinations in one session are not necessarily good performing electrodes in another session of the same subject. In addition to the combinations calculated using the developed algorithm, 26 additional electrode combinations are proposed. These can be taken into account when selecting well-performing electrode combinations. In this research we could achieve an accuracy improvement of over 10%. Conclusions Carefully selecting the correct electrode combination can improve accuracy for classifying an imaginary movement task.
Collapse
Affiliation(s)
- Dominik Wetzel
- University of Applied Sciences Zwickau, Faculty of Physical Engineering/Computer Sciences, Zwickau, Germany
| | - Paul-Philipp Jacobs
- University Leipzig, Department of Diagnostic and Interventional Radiology, Leipzig, Germany
| | - Dirk Winkler
- University Leipzig, Department of Neurosurgery, Leipzig, Germany
| | - Ronny Grunert
- University Leipzig, Department of Neurosurgery, Leipzig, Germany
- Fraunhofer Institute for Machine Tools and Forming Technology, Fraunhofer Plastics Technology Center Oberlausitz, Zittau, Germany
| |
Collapse
|
2
|
Cioffi E, Hutber A, Molloy R, Murden S, Yurkewich A, Kirton A, Lin JP, Gimeno H, McClelland VM. EEG-based sensorimotor neurofeedback for motor neurorehabilitation in children and adults: A scoping review. Clin Neurophysiol 2024; 167:143-166. [PMID: 39321571 DOI: 10.1016/j.clinph.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/17/2024] [Accepted: 08/03/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE Therapeutic interventions for children and young people with dystonia and dystonic/dyskinetic cerebral palsy are limited. EEG-based neurofeedback is emerging as a neurorehabilitation tool. This scoping review maps research investigating EEG-based sensorimotor neurofeedback in adults and children with neurological motor impairments, including augmentative strategies. METHODS MEDLINE, CINAHL and Web of Science databases were searched up to 2023 for relevant studies. Study selection and data extraction were conducted independently by at least two reviewers. RESULTS Of 4380 identified studies, 133 were included, only three enrolling children. The most common diagnosis was adult-onset stroke (77%). Paradigms mostly involved upper limb motor imagery or motor attempt. Common neurofeedback modes included visual, haptic and/or electrical stimulation. EEG parameters varied widely and were often incompletely described. Two studies applied augmentative strategies. Outcome measures varied widely and included classification accuracy of the Brain-Computer Interface, degree of enhancement of mu rhythm modulation or other neurophysiological parameters, and clinical/motor outcome scores. Few studies investigated whether functional outcomes related specifically to the EEG-based neurofeedback. CONCLUSIONS There is limited evidence exploring EEG-based sensorimotor neurofeedback in individuals with movement disorders, especially in children. Further clarity of neurophysiological parameters is required to develop optimal paradigms for evaluating sensorimotor neurofeedback. SIGNIFICANCE The expanding field of sensorimotor neurofeedback offers exciting potential as a non-invasive therapy. However, this needs to be balanced by robust study design and detailed methodological reporting to ensure reproducibility and validation that clinical improvements relate to induced neurophysiological changes.
Collapse
Affiliation(s)
- Elena Cioffi
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Paediatric Neurosciences, Evelina London Children's Hospital, London, UK.
| | - Anna Hutber
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Paediatric Neurosciences, Evelina London Children's Hospital, London, UK.
| | - Rob Molloy
- Islington Paediatric Occupational Therapy, Whittington Hospital NHS Trust, London, UK; Barts Bone and Joint Health, Blizard Institute, Queen Mary University of London, London, UK.
| | - Sarah Murden
- Department of Paediatric Neurology, King's College Hospital NHS Foundation Trust, London, UK.
| | - Aaron Yurkewich
- Mechatronics Engineering, Ontario Tech University, Ontario, Canada.
| | - Adam Kirton
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Jean-Pierre Lin
- Department of Paediatric Neurosciences, Evelina London Children's Hospital, London, UK.
| | - Hortensia Gimeno
- Barts Bone and Joint Health, Blizard Institute, Queen Mary University of London, London, UK; The Royal London Hospital and Tower Hamlets Community Children's Therapy Services, Barts Health NHS Trust, London, UK.
| | - Verity M McClelland
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Paediatric Neurosciences, Evelina London Children's Hospital, London, UK.
| |
Collapse
|
3
|
Chen H, Wang D, Xu M, Chen Y. CRE-TSCAE: A Novel Classification Model Based on Stacked Convolutional Autoencoder for Dual-Target RSVP-BCI Tasks. IEEE Trans Biomed Eng 2024; 71:2080-2094. [PMID: 38306265 DOI: 10.1109/tbme.2024.3361716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
OBJECTIVE The Rapid Serial Visual Presentation (RSVP) paradigm facilitates target identification in a rapid picture stream, which is applied extensively in military target surveillance and police monitoring. Most researchers concentrate on the single target RSVP-BCI whereas the study of dual-target is scarcely conducted, limiting RSVP application considerably. METHODS This paper proposed a novel classification model named Common Representation Extraction-Targeted Stacked Convolutional Autoencoder (CRE-TSCAE) to detect two targets with one nontarget in RSVP tasks. CRE generated a common representation for each target class to reduce variability from different trials of the same class and distinguish the difference between two targets better. TSCAE aimed to control uncertainty in the training process while requiring less target training data. The model learned a compact and discriminative feature through the training from several learning tasks so as to distinguish each class effectively. RESULTS It was validated on the World Robot Contest 2021 and 2022 ERP datasets. Experimental results showed that CRE-TSCAE outperformed the state-of-the-art RSVP decoding algorithms and the Average ACC was 71.25%, improving 6.5% at least over the rest. CONCLUSION It demonstrated that CRE-TSCAE showed a strong ability to extract discriminative latent features in detecting the differences among two targets with nontarget, which guaranteed increased classification accuracy. SIGNIFICANCE CRE-TSCAE provided an innovative and effective classification model for dual-target RSVP-BCI tasks and some insights into the neurophysiological distinction between different targets.
Collapse
|
4
|
Wang A, Tian X, Jiang D, Yang C, Xu Q, Zhang Y, Zhao S, Zhang X, Jing J, Wei N, Wu Y, Lv W, Yang B, Zang D, Wang Y, Zhang Y, Wang Y, Meng X. Rehabilitation with brain-computer interface and upper limb motor function in ischemic stroke: A randomized controlled trial. MED 2024; 5:559-569.e4. [PMID: 38642555 DOI: 10.1016/j.medj.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Upper limb motor dysfunction is a major problem in the rehabilitation of patients with stroke. Brain-computer interface (BCI) is a kind of communication system that converts the "ideas" in the brain into instructions and has been used in stroke rehabilitation. This study aimed to investigate the efficacy and safety of BCI in rehabilitation training on upper limb motor function among patients with ischemic stroke. METHODS This was an investigator-initiated, multicenter, randomized, open-label, blank-controlled clinical trial with blinded outcome assessment conducted at 17 centers in China. Patients were assigned in a 1:1 ratio to the BCI group or the control group based on traditional rehabilitation training. The primary efficacy outcome is the difference in improvement of the Fugl-Meyer Assessment upper extremity (FMA-UE) score between two groups at month 1 after randomization. The safety outcomes were any adverse events within 3 months. FINDINGS A total of 296 patients with ischemic stroke were enrolled and randomly allocated to the BCI group (n = 150) and the control group (n = 146). The primary efficacy outcomes of FMA-UE score change from baseline to 1 month were 13.17 (95% confidence interval [CI], 11.56-14.79) in the BCI group and 9.83 (95% CI, 8.19-11.47) in the control group (mean difference between groups was 3.35; 95% CI, 1.05-5.65; p = 0.0045). Adverse events occurred in 33 patients (22.00%) in the BCI group and in 31 patients (21.23%) in the control group. CONCLUSIONS BCI rehabilitation training can further improve upper limb motor function based on traditional rehabilitation training in patients with ischemic stroke. This study was registered at ClinicalTrials.gov: NCT04387474. FUNDING This work was supported by the National Key R&D Program of China (2018YFC1312903), the National Key Research and Development Program of China (2022YFC3600600), the Training Fund for Open Projects at Clinical Institutes and Departments of Capital Medical University (CCMU2022ZKYXZ009), the Beijing Natural Science Foundation Haidian original innovation joint fund (L222123), the Fund for Young Talents of Beijing Medical Management Center (QML20230505), and the high-level public health talents (xuekegugan-02-47).
Collapse
Affiliation(s)
- Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xue Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China; Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Di Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chengyuan Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qin Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifei Zhang
- Research and Development Center, Shandong Haitian Intelligent Engineering Co., Ltd., Shandong, China
| | - Shaoqing Zhao
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Xiaoli Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Wei
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuqian Wu
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Lv
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Banghua Yang
- School of Mechatronic Engineering and Automation, Research Center of Brain Computer Engineering, Shanghai University, Shanghai, China
| | - Dawei Zang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yumei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Nath D, Singh N, Saini M, Banduni O, Kumar N, Srivastava MVP, Mehndiratta A. Clinical potential and neuroplastic effect of targeted virtual reality based intervention for distal upper limb in post-stroke rehabilitation: a pilot observational study. Disabil Rehabil 2024; 46:2640-2649. [PMID: 37383015 DOI: 10.1080/09638288.2023.2228690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
PURPOSE A library of Virtual Reality (VR) tasks has been developed for targeted post-stroke rehabilitation of distal upper extremities. The objective of this pilot study was to evaluate the clinical potential of the targeted VR-based therapeutic intervention in a small cohort of patients specifically with chronic stroke. Furthermore, our aim was to explore the possible neuronal reorganizations in corticospinal pathways in response to the distal upper limb targeted VR-intervention. METHODOLOGY Five patients with chronic stroke were enrolled in this study and were given VR-intervention of 20 sessions of 45 min each. Clinical Scales, cortical-excitability measures (using Transcranial Magnetic Stimulation): Resting Motor Threshold (RMT), and Motor Evoked Potential (MEP) amplitude, task-specific performance metrics i.e., Time taken to complete the task (TCT), smoothness of trajectory, relative % error were evaluated pre- and post-intervention to evaluate the intervention-induced improvements. RESULTS Pre-to post-intervention improvements were observed in Fugl-Meyer Assessment (both total and wrist/hand component), Modified Barthel Index, Stroke Impact Scale, Motor Assessment Scale, active range of motion at wrist, and task-specific outcome metrics. Pre-to post-intervention ipsilesional RMT reduced (mean ∼9%) and MEP amplitude increased (mean ∼29µV), indicating increased cortical excitability at post-intervention. CONCLUSION VR-training exhibited improved motor outcomes and cortical-excitability in patients with stroke. Neurophysiological changes observed in terms of improved cortical-excitability might be a consequence of plastic reorganization induced by VR-intervention.
Collapse
Affiliation(s)
- Debasish Nath
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi (IITD), New Delhi, India
| | - Neha Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi (IITD), New Delhi, India
| | - Megha Saini
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi (IITD), New Delhi, India
| | - Onika Banduni
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi (IITD), New Delhi, India
| | - Nand Kumar
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - M V Padma Srivastava
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Amit Mehndiratta
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi (IITD), New Delhi, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
6
|
Berger DJ, d’Avella A. Myoelectric control and virtual reality to enhance motor rehabilitation after stroke. Front Bioeng Biotechnol 2024; 12:1376000. [PMID: 38665814 PMCID: PMC11043476 DOI: 10.3389/fbioe.2024.1376000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Effective upper-limb rehabilitation for severely impaired stroke survivors is still missing. Recent studies endorse novel motor rehabilitation approaches such as robotic exoskeletons and virtual reality systems to restore the function of the paretic limb of stroke survivors. However, the optimal way to promote the functional reorganization of the central nervous system after a stroke has yet to be uncovered. Electromyographic (EMG) signals have been employed for prosthetic control, but their application to rehabilitation has been limited. Here we propose a novel approach to promote the reorganization of pathological muscle activation patterns and enhance upper-limb motor recovery in stroke survivors by using an EMG-controlled interface to provide personalized assistance while performing movements in virtual reality (VR). We suggest that altering the visual feedback to improve motor performance in VR, thereby reducing the effect of deviations of the actual, dysfunctional muscle patterns from the functional ones, will actively engage patients in motor learning and facilitate the restoration of functional muscle patterns. An EMG-controlled VR interface may facilitate effective rehabilitation by targeting specific changes in the structure of muscle synergies and in their activations that emerged after a stroke-offering the possibility to provide rehabilitation therapies addressing specific individual impairments.
Collapse
Affiliation(s)
- Denise Jennifer Berger
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine, Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea d’Avella
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
7
|
Özlü A, Üstündağ S, Bulut Özkaya D, Menekşeoğlu AK. Effect of Exergame on Pain, Function, and Quality of Life in Shoulder Impingement Syndrome: A Prospective Randomized Controlled Study. Games Health J 2024; 13:109-119. [PMID: 38394299 DOI: 10.1089/g4h.2023.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Objective: This study aimed to investigate the effect of a virtual reality (VR)-mediated gamified rehabilitation program added to a home exercise program on pain, functionality, and quality of life in shoulder impingement syndrome. Methods: Forty-eight participants with shoulder impingement syndrome were included in this prospective, randomized, single-blind study between January and July 2022. The participants were randomized into two groups: the VR group (n = 24) and the control group (n = 24). All participants were given a home exercise program for 3 weeks, with five sessions per week. The participants in the VR group received 15 sessions (45 minutes each session) of a gamified shoulder exercise program with an immersive VR headset, while those in the control group received 15 sessions (45 minutes each session) of supervised therapeutic exercises. The participants were evaluated and compared before and after treatment using the 36-item Short Form Survey (SF-36), range-of-motion (ROM) measurements, the Visual Analog Scale (VAS), and the Shoulder Pain and Disability Scale (SPADI). Results: At the baseline assessment, the two groups were homogenous regarding demographic and clinical parameters. The post-treatment shoulder extension and adduction ROM was significantly greater in the VR group and the post-treatment pain subscales for SPADI and SF-36 were significantly lower in the VR group. Conclusion: In individuals with shoulder impingement syndrome, a VR-mediated gamified exercise program added to a home exercise program increased shoulder ROM and reduced pain scores. Further clinical studies are needed to prove the long-term efficacy of the addition of VR-mediated gamified exercises to the treatment of this condition in clinical settings.
Collapse
Affiliation(s)
- Aysun Özlü
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Sema Üstündağ
- Department of Internal Medicine, Faculty of Nursing, Kutahya Health Sciences University, Kutahya, Turkey
| | - Dilan Bulut Özkaya
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Ahmet Kıvanç Menekşeoğlu
- Department of Physical Medicine and Rehabilitation, Istanbul Kanuni Sultan Süleyman Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
8
|
Peng K, Moussavi Z, Karunakaran KD, Borsook D, Lesage F, Nguyen DK. iVR-fNIRS: studying brain functions in a fully immersive virtual environment. NEUROPHOTONICS 2024; 11:020601. [PMID: 38577629 PMCID: PMC10993907 DOI: 10.1117/1.nph.11.2.020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Abstract
Immersive virtual reality (iVR) employs head-mounted displays or cave-like environments to create a sensory-rich virtual experience that simulates the physical presence of a user in a digital space. The technology holds immense promise in neuroscience research and therapy. In particular, virtual reality (VR) technologies facilitate the development of diverse tasks and scenarios closely mirroring real-life situations to stimulate the brain within a controlled and secure setting. It also offers a cost-effective solution in providing a similar sense of interaction to users when conventional stimulation methods are limited or unfeasible. Although combining iVR with traditional brain imaging techniques may be difficult due to signal interference or instrumental issues, recent work has proposed the use of functional near infrared spectroscopy (fNIRS) in conjunction with iVR for versatile brain stimulation paradigms and flexible examination of brain responses. We present a comprehensive review of current research studies employing an iVR-fNIRS setup, covering device types, stimulation approaches, data analysis methods, and major scientific findings. The literature demonstrates a high potential for iVR-fNIRS to explore various types of cognitive, behavioral, and motor functions in a fully immersive VR (iVR) environment. Such studies should set a foundation for adaptive iVR programs for both training (e.g., in novel environments) and clinical therapeutics (e.g., pain, motor and sensory disorders and other psychiatric conditions).
Collapse
Affiliation(s)
- Ke Peng
- University of Manitoba, Department of Electrical and Computer Engineering, Price Faculty of Engineering, Winnipeg, Manitoba, Canada
| | - Zahra Moussavi
- University of Manitoba, Department of Electrical and Computer Engineering, Price Faculty of Engineering, Winnipeg, Manitoba, Canada
| | - Keerthana Deepti Karunakaran
- Massachusetts General Hospital, Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
| | - David Borsook
- Massachusetts General Hospital, Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Boston, Massachusetts, United States
| | - Frédéric Lesage
- University of Montreal, Institute of Biomedical Engineering, Department of Electrical Engineering, Ecole Polytechnique, Montreal, Quebec, Canada
- Montreal Heart Institute, Montreal, Quebec, Canada
| | - Dang Khoa Nguyen
- University of Montreal, Department of Neurosciences, Montreal, Quebec, Canada
- Research Center of the Hospital Center of the University of Montreal, Department of Neurology, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Xu X, Fan X, Dong J, Zhang X, Song Z, Li W, Pu F. Event-Related EEG Desynchronization Reveals Enhanced Motor Imagery From the Third Person Perspective by Manipulating Sense of Body Ownership With Virtual Reality for Stroke Patients. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1055-1067. [PMID: 38349835 DOI: 10.1109/tnsre.2024.3365587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Virtual reality (VR)-based rehabilitation training holds great potential for post-stroke motor recovery. Existing VR-based motor imagery (MI) paradigms mostly focus on the first-person perspective, and the benefit of the third-person perspective (3PP) remains to be further exploited. The 3PP is advantageous for movements involving the back or those with a large range because of its field coverage. Some movements are easier to imagine from the 3PP. However, the 3PP training efficiency may be unsatisfactory, which may be attributed to the difficulty encountered when generating a strong sense of ownership (SOO). In this work, we attempt to enhance a visual-guided 3PP MI in stroke patients by eliciting the SOO over a virtual avatar with VR. We propose to achieve this by inducing the so-called out-of-body experience (OBE), which is a full-body illusion (FBI) that people misperceive a 3PP virtual body as his/her own (i.e., generating the SOO to the virtual body). Electroencephalography signals of 13 stroke patients are recorded while MI of the affected upper limb is being performed. The proposed paradigm is evaluated by comparing event-related desynchronization (ERD) with a control paradigm without FBI induction. The results show that the proposed paradigm leads to a significantly larger ERD during MI, indicating a bilateral activation pattern consistent with that in previous studies. In conclusion, 3PP MI can be enhanced in stroke patients by eliciting the SOO through induction of the "OBE" FBI. This study offers more possibilities for virtual rehabilitation in stroke patients and can further facilitate VR application in rehabilitation.
Collapse
|
10
|
da Silva Soares R, Ramirez-Chavez KL, Tufanoglu A, Barreto C, Sato JR, Ayaz H. Cognitive Effort during Visuospatial Problem Solving in Physical Real World, on Computer Screen, and in Virtual Reality. SENSORS (BASEL, SWITZERLAND) 2024; 24:977. [PMID: 38339693 PMCID: PMC10857420 DOI: 10.3390/s24030977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Spatial cognition plays a crucial role in academic achievement, particularly in science, technology, engineering, and mathematics (STEM) domains. Immersive virtual environments (VRs) have the growing potential to reduce cognitive load and improve spatial reasoning. However, traditional methods struggle to assess the mental effort required for visuospatial processes due to the difficulty in verbalizing actions and other limitations in self-reported evaluations. In this neuroergonomics study, we aimed to capture the neural activity associated with cognitive workload during visuospatial tasks and evaluate the impact of the visualization medium on visuospatial task performance. We utilized functional near-infrared spectroscopy (fNIRS) wearable neuroimaging to assess cognitive effort during spatial-reasoning-based problem-solving and compared a VR, a computer screen, and a physical real-world task presentation. Our results reveal a higher neural efficiency in the prefrontal cortex (PFC) during 3D geometry puzzles in VR settings compared to the settings in the physical world and on the computer screen. VR appears to reduce the visuospatial task load by facilitating spatial visualization and providing visual cues. This makes it a valuable tool for spatial cognition training, especially for beginners. Additionally, our multimodal approach allows for progressively increasing task complexity, maintaining a challenge throughout training. This study underscores the potential of VR in developing spatial skills and highlights the value of comparing brain data and human interaction across different training settings.
Collapse
Affiliation(s)
- Raimundo da Silva Soares
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (K.L.R.-C.); (A.T.); (C.B.)
- Center of Mathematics Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo 09606-405, Brazil;
| | - Kevin L. Ramirez-Chavez
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (K.L.R.-C.); (A.T.); (C.B.)
| | - Altona Tufanoglu
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (K.L.R.-C.); (A.T.); (C.B.)
| | - Candida Barreto
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (K.L.R.-C.); (A.T.); (C.B.)
| | - João Ricardo Sato
- Center of Mathematics Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo 09606-405, Brazil;
| | - Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (K.L.R.-C.); (A.T.); (C.B.)
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Drexel University, Philadelphia, PA 19104, USA
- Drexel Solutions Institute, Drexel University, Philadelphia, PA 19104, USA
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, USA
- Department of Family and Community Health, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Vidaurre C, Irastorza-Landa N, Sarasola-Sanz A, Insausti-Delgado A, Ray AM, Bibián C, Helmhold F, Mahmoud WJ, Ortego-Isasa I, López-Larraz E, Lozano Peiteado H, Ramos-Murguialday A. Challenges of neural interfaces for stroke motor rehabilitation. Front Hum Neurosci 2023; 17:1070404. [PMID: 37789905 PMCID: PMC10543821 DOI: 10.3389/fnhum.2023.1070404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
More than 85% of stroke survivors suffer from different degrees of disability for the rest of their lives. They will require support that can vary from occasional to full time assistance. These conditions are also associated to an enormous economic impact for their families and health care systems. Current rehabilitation treatments have limited efficacy and their long-term effect is controversial. Here we review different challenges related to the design and development of neural interfaces for rehabilitative purposes. We analyze current bibliographic evidence of the effect of neuro-feedback in functional motor rehabilitation of stroke patients. We highlight the potential of these systems to reconnect brain and muscles. We also describe all aspects that should be taken into account to restore motor control. Our aim with this work is to help researchers designing interfaces that demonstrate and validate neuromodulation strategies to enforce a contingent and functional neural linkage between the central and the peripheral nervous system. We thus give clues to design systems that can improve or/and re-activate neuroplastic mechanisms and open a new recovery window for stroke patients.
Collapse
Affiliation(s)
- Carmen Vidaurre
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Ikerbasque Science Foundation, Bilbao, Spain
| | | | | | | | - Andreas M. Ray
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Carlos Bibián
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Florian Helmhold
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Wala J. Mahmoud
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Iñaki Ortego-Isasa
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Eduardo López-Larraz
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Bitbrain, Zaragoza, Spain
| | | | - Ander Ramos-Murguialday
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Yakovlev L, Syrov N, Kaplan A. Investigating the influence of functional electrical stimulation on motor imagery related μ-rhythm suppression. Front Neurosci 2023; 17:1202951. [PMID: 37492407 PMCID: PMC10365101 DOI: 10.3389/fnins.2023.1202951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Background Motor Imagery (MI) is a well-known cognitive technique that utilizes the same neural circuits as voluntary movements. Therefore, MI practice is widely used in sport training and post-stroke rehabilitation. The suppression of the μ-rhythm in electroencephalogram (EEG) is a conventional marker of sensorimotor cortical activation during motor imagery. However, the role of somatosensory afferentation in mental imagery processes is not yet clear. In this study, we investigated the impact of functional electrical stimulation (FES) on μ-rhythm suppression during motor imagery. Methods Thirteen healthy experienced participants were asked to imagine their right hand grasping, while a 30-channel EEG was recorded. FES was used to influence sensorimotor activation during motor imagery of the same hand. Results We evaluated cortical activation by estimating the μ-rhythm suppression index, which was assessed in three experimental conditions: MI, MI + FES, and FES. Our findings shows that motor imagery enhanced by FES leads to a more prominent μ-rhythm suppression. Obtained results suggest a direct effect of peripheral electrical stimulation on cortical activation, especially when combined with motor imagery. Conclusion This research sheds light on the potential benefits of integrating FES into motor imagery-based interventions to enhance cortical activation and holds promise for applications in neurorehabilitation.
Collapse
Affiliation(s)
- Lev Yakovlev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Nikolay Syrov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alexander Kaplan
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- Laboratory for Neurophysiology and Neuro-Computer Interfaces, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
13
|
Choy CS, Fang Q, Neville K, Ding B, Kumar A, Mahmoud SS, Gu X, Fu J, Jelfs B. Virtual reality and motor imagery for early post-stroke rehabilitation. Biomed Eng Online 2023; 22:66. [PMID: 37407988 PMCID: PMC10320905 DOI: 10.1186/s12938-023-01124-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Motor impairment is a common consequence of stroke causing difficulty in independent movement. The first month of post-stroke rehabilitation is the most effective period for recovery. Movement imagination, known as motor imagery, in combination with virtual reality may provide a way for stroke patients with severe motor disabilities to begin rehabilitation. METHODS The aim of this study is to verify whether motor imagery and virtual reality help to activate stroke patients' motor cortex. 16 acute/subacute (< 6 months) stroke patients participated in this study. All participants performed motor imagery of basketball shooting which involved the following tasks: listening to audio instruction only, watching a basketball shooting animation in 3D with audio, and also performing motor imagery afterwards. Electroencephalogram (EEG) was recorded for analysis of motor-related features of the brain such as power spectral analysis in the [Formula: see text] and [Formula: see text] frequency bands and spectral entropy. 18 EEG channels over the motor cortex were used for all stroke patients. RESULTS All results are normalised relative to all tasks for each participant. The power spectral densities peak near the [Formula: see text] band for all participants and also the [Formula: see text] band for some participants. Tasks with instructions during motor imagery generally show greater power spectral peaks. The p-values of the Wilcoxon signed-rank test for band power comparison from the 18 EEG channels between different pairs of tasks show a 0.01 significance of rejecting the band powers being the same for most tasks done by stroke subjects. The motor cortex of most stroke patients is more active when virtual reality is involved during motor imagery as indicated by their respective scalp maps of band power and spectral entropy. CONCLUSION The resulting activation of stroke patient's motor cortices in this study reveals evidence that it is induced by imagination of movement and virtual reality supports motor imagery. The framework of the current study also provides an efficient way to investigate motor imagery and virtual reality during post-stroke rehabilitation.
Collapse
Affiliation(s)
- Chi S. Choy
- School of Engineering, RMIT University, Melbourne, Australia
| | - Qiang Fang
- Department of Biomedical Engineering, Shantou University, Shantou, China
| | - Katrina Neville
- School of Engineering, RMIT University, Melbourne, Australia
| | - Bingrui Ding
- Department of Biomedical Engineering, Shantou University, Shantou, China
| | - Akshay Kumar
- Department of Biomedical Engineering, Shantou University, Shantou, China
| | | | - Xudong Gu
- Rehabilitation Center, Jiaxing 2nd Hospital, Jiaxing, 314000 China
| | - Jianming Fu
- Rehabilitation Center, Jiaxing 2nd Hospital, Jiaxing, 314000 China
| | - Beth Jelfs
- Department of Electrical, Electronic & Systems Engineering, University of Birmingham, Birmingham, UK
| |
Collapse
|
14
|
Donnelly MR, Phanord CS, Marin-Pardo O, Jeong J, Bladon B, Wong K, Abdullah A, Liew SL. Acceptability of a Telerehabilitation Biofeedback System Among Stroke Survivors: A Qualitative Analysis. OTJR-OCCUPATION PARTICIPATION AND HEALTH 2023; 43:549-557. [PMID: 36803173 PMCID: PMC11305672 DOI: 10.1177/15394492231153998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Electromyography (EMG) biofeedback delivered via telerehabilitation can increase access to occupational therapy services for stroke survivors with severe impairment, but there is limited research on its acceptability. This study identified factors influencing the acceptability of a complex, muscle biofeedback system (Tele-REINVENT) for upper extremity sensorimotor stroke telerehabilitation among stroke survivors. We conducted interviews with stroke survivors (n = 4) who used Tele-REINVENT at home for 6 weeks and analyzed the data with reflexive thematic analysis. Biofeedback, customization, gamification, and predictability affected the acceptability of Tele-REINVENT among stroke survivors. Across themes, features and experiences that gave participants agency and control were more acceptable. Our findings contribute to the design and development of at-home EMG biofeedback interventions, which can improve access to advanced occupational therapy treatment options for those who need it most.
Collapse
Affiliation(s)
| | | | | | | | | | - Kira Wong
- University of Southern California, Los Angeles, USA
| | | | | |
Collapse
|
15
|
Shi Y, Li Y, Koike Y. Sparse Logistic Regression-Based EEG Channel Optimization Algorithm for Improved Universality across Participants. Bioengineering (Basel) 2023; 10:664. [PMID: 37370595 DOI: 10.3390/bioengineering10060664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Electroencephalogram (EEG) channel optimization can reduce redundant information and improve EEG decoding accuracy by selecting the most informative channels. This article aims to investigate the universality regarding EEG channel optimization in terms of how well the selected EEG channels can be generalized to different participants. In particular, this study proposes a sparse logistic regression (SLR)-based EEG channel optimization algorithm using a non-zero model parameter ranking method. The proposed channel optimization algorithm was evaluated in both individual analysis and group analysis using the raw EEG data, compared with the conventional channel selection method based on the correlation coefficients (CCS). The experimental results demonstrate that the SLR-based EEG channel optimization algorithm not only filters out most redundant channels (filters 75-96.9% of channels) with a 1.65-5.1% increase in decoding accuracy, but it can also achieve a satisfactory level of decoding accuracy in the group analysis by employing only a few (2-15) common EEG electrodes, even for different participants. The proposed channel optimization algorithm can realize better universality for EEG decoding, which can reduce the burden of EEG data acquisition and enhance the real-world application of EEG-based brain-computer interface (BCI).
Collapse
Affiliation(s)
- Yuxi Shi
- School of Engineering, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Yuanhao Li
- School of Engineering, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Yasuharu Koike
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
16
|
Nieto-Escamez F, Cortés-Pérez I, Obrero-Gaitán E, Fusco A. Virtual Reality Applications in Neurorehabilitation: Current Panorama and Challenges. Brain Sci 2023; 13:brainsci13050819. [PMID: 37239291 DOI: 10.3390/brainsci13050819] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Central Nervous System Diseases are a leading cause of disability worldwide, posing significant social and economic burdens for patients, their families, caregivers, and society as a whole [...].
Collapse
Affiliation(s)
- Francisco Nieto-Escamez
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Center for Neuropsychological Assessment and Rehabilitation (CERNEP), 04120 Almeria, Spain
| | - Irene Cortés-Pérez
- Department of Health Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23071 Jaen, Spain
| | - Esteban Obrero-Gaitán
- Department of Health Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23071 Jaen, Spain
| | - Augusto Fusco
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
17
|
Yadav H, Maini S. Electroencephalogram based brain-computer interface: Applications, challenges, and opportunities. MULTIMEDIA TOOLS AND APPLICATIONS 2023:1-45. [PMID: 37362726 PMCID: PMC10157593 DOI: 10.1007/s11042-023-15653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 07/17/2022] [Accepted: 04/22/2023] [Indexed: 06/28/2023]
Abstract
Brain-Computer Interfaces (BCI) is an exciting and emerging research area for researchers and scientists. It is a suitable combination of software and hardware to operate any device mentally. This review emphasizes the significant stages in the BCI domain, current problems, and state-of-the-art findings. This article also covers how current results can contribute to new knowledge about BCI, an overview of BCI from its early developments to recent advancements, BCI applications, challenges, and future directions. The authors pointed to unresolved issues and expressed how BCI is valuable for analyzing the human brain. Humans' dependence on machines has led humankind into a new future where BCI can play an essential role in improving this modern world.
Collapse
Affiliation(s)
- Hitesh Yadav
- Department of Electrical and Instrumentation Engineering, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab India
| | - Surita Maini
- Department of Electrical and Instrumentation Engineering, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab India
| |
Collapse
|
18
|
Wang L, Huang M, Yang R, Liang HN, Han J, Sun Y. Survey of Movement Reproduction in Immersive Virtual Rehabilitation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:2184-2202. [PMID: 35015645 DOI: 10.1109/tvcg.2022.3142198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Virtual reality (VR) has emerged as a powerful tool for rehabilitation. Many effective VR applications have been developed to support motor rehabilitation of people affected by motor issues. Movement reproduction, which transfers users' movements from the physical world to the virtual environment, is commonly used in VR rehabilitation applications. Three major components are required for movement reproduction in VR: (1) movement input, (2) movement representation, and (3) movement modulation. Until now, movement reproduction in virtual rehabilitation has not yet been systematically studied. This article aims to provide a state-of-the-art review on this subject by focusing on existing literature on immersive motor rehabilitation using VR. In this review, we provided in-depth discussions on the rehabilitation goals and outcomes, technology issues behind virtual rehabilitation, and user experience regarding movement reproduction. Similarly, we present good practices and highlight challenges and opportunities that can form constructive suggestions for the design and development of fit-for-purpose VR rehabilitation applications and can help frame future research directions for this emerging area that combines VR and health.
Collapse
|
19
|
Yuan J, Hassan SS, Wu J, Koger CR, Packard RRS, Shi F, Fei B, Ding Y. Extended reality for biomedicine. NATURE REVIEWS. METHODS PRIMERS 2023; 3:15. [PMID: 37051227 PMCID: PMC10088349 DOI: 10.1038/s43586-023-00208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Extended reality (XR) refers to an umbrella of methods that allows users to be immersed in a three-dimensional (3D) or a 4D (spatial + temporal) virtual environment to different extents, including virtual reality (VR), augmented reality (AR), and mixed reality (MR). While VR allows a user to be fully immersed in a virtual environment, AR and MR overlay virtual objects over the real physical world. The immersion and interaction of XR provide unparalleled opportunities to extend our world beyond conventional lifestyles. While XR has extensive applications in fields such as entertainment and education, its numerous applications in biomedicine create transformative opportunities in both fundamental research and healthcare. This Primer outlines XR technology from instrumentation to software computation methods, delineating the biomedical applications that have been advanced by state-of-the-art techniques. We further describe the technical advances overcoming current limitations in XR and its applications, providing an entry point for professionals and trainees to thrive in this emerging field.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, United States
| | - Sohail S. Hassan
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, United States
| | - Jiaojiao Wu
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Casey R. Koger
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, United States
| | - René R. Sevag Packard
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
- Ronald Reagan UCLA Medical Center, Los Angeles, CA United States
- Veterans Affairs West Los Angeles Medical Center, Los Angeles, CA, United States
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Baowei Fei
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, United States
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States
- Center for Imaging and Surgical Innovation, The University of Texas at Dallas, Richardson, TX, United States
| | - Yichen Ding
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, United States
- Center for Imaging and Surgical Innovation, The University of Texas at Dallas, Richardson, TX, United States
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
20
|
A Review of Online Classification Performance in Motor Imagery-Based Brain–Computer Interfaces for Stroke Neurorehabilitation. SIGNALS 2023. [DOI: 10.3390/signals4010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Motor imagery (MI)-based brain–computer interfaces (BCI) have shown increased potential for the rehabilitation of stroke patients; nonetheless, their implementation in clinical practice has been restricted due to their low accuracy performance. To date, although a lot of research has been carried out in benchmarking and highlighting the most valuable classification algorithms in BCI configurations, most of them use offline data and are not from real BCI performance during the closed-loop (or online) sessions. Since rehabilitation training relies on the availability of an accurate feedback system, we surveyed articles of current and past EEG-based BCI frameworks who report the online classification of the movement of two upper limbs in both healthy volunteers and stroke patients. We found that the recently developed deep-learning methods do not outperform the traditional machine-learning algorithms. In addition, patients and healthy subjects exhibit similar classification accuracy in current BCI configurations. Lastly, in terms of neurofeedback modality, functional electrical stimulation (FES) yielded the best performance compared to non-FES systems.
Collapse
|
21
|
Dehghani A, Soltanian-Zadeh H, Hossein-Zadeh GA. Probing fMRI brain connectivity and activity changes during emotion regulation by EEG neurofeedback. Front Hum Neurosci 2023; 16:988890. [PMID: 36684847 PMCID: PMC9853008 DOI: 10.3389/fnhum.2022.988890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Despite the existence of several emotion regulation studies using neurofeedback, interactions among a small number of regions were evaluated, and therefore, further investigation is needed to understand the interactions of the brain regions involved in emotion regulation. We implemented electroencephalography (EEG) neurofeedback with simultaneous functional magnetic resonance imaging (fMRI) using a modified happiness-inducing task through autobiographical memories to upregulate positive emotion. Then, an explorative analysis of whole brain regions was done to understand the effect of neurofeedback on brain activity and the interaction of whole brain regions involved in emotion regulation. The participants in the control and experimental groups were asked to do emotion regulation while viewing positive images of autobiographical memories and getting sham or real (based on alpha asymmetry) EEG neurofeedback, respectively. The proposed multimodal approach quantified the effects of EEG neurofeedback in changing EEG alpha power, fMRI blood oxygenation level-dependent (BOLD) activity of prefrontal, occipital, parietal, and limbic regions (up to 1.9% increase), and functional connectivity in/between prefrontal, parietal, limbic system, and insula in the experimental group. New connectivity links were identified by comparing the brain functional connectivity between experimental conditions (Upregulation and View blocks) and also by comparing the brain connectivity of the experimental and control groups. Psychometric assessments confirmed significant changes in positive and negative mood states in the experimental group by neurofeedback. Based on the exploratory analysis of activity and connectivity among all brain regions involved in emotion regions, we found significant BOLD and functional connectivity increases due to EEG neurofeedback in the experimental group, but no learning effect was observed in the control group. The results reveal several new connections among brain regions as a result of EEG neurofeedback which can be justified according to emotion regulation models and the role of those regions in emotion regulation and recalling positive autobiographical memories.
Collapse
Affiliation(s)
- Amin Dehghani
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran,Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States,*Correspondence: Amin Dehghani, ,
| | - Hamid Soltanian-Zadeh
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran,Medical Image Analysis Lab, Department of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, United States,School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Gholam-Ali Hossein-Zadeh
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran,School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
22
|
Clinical Effectiveness of Non-Immersive Virtual Reality Tasks for Post-Stroke Neuro-Rehabilitation of Distal Upper-Extremities: A Case Report. J Clin Med 2022; 12:jcm12010092. [PMID: 36614892 PMCID: PMC9820917 DOI: 10.3390/jcm12010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
A library of non-immersive Virtual Reality (VR) tasks were developed for post-stroke rehabilitation of distal upper extremities. The objective was to evaluate the rehabilitation impact of the developed VR-tasks on a patient with chronic stroke. The study involved a 50-year-old male patient with chronic (13 month) stroke. Twenty VR therapy sessions of 45 min each were given. Clinical scales, cortical-excitability measures, functional MRI (fMRI), and diffusion tensor imaging (DTI) data were acquired pre-and post-therapy to evaluate the motor recovery. Increase in Fugl-Meyer Assessment (wrist/hand) by 2 units, Barthel Index by 5 units, Brunnstrom Stage by 1 unit, Addenbrooke's Cognitive Examination by 3 units, Wrist Active Range of Motion by 5° and decrease in Modified Ashworth Scale by 1 unit were observed. Ipsilesional Motor Evoked Potential (MEP) amplitude (obtained using Transcranial Magnetic Stimulation) was increased by 60.9µV with a decrease in Resting Motor Threshold (RMT) by 7%, and contralesional MEP amplitude was increased by 56.2µV with a decrease in RMT by 7%. The fMRI-derived Laterality Index of Sensorimotor Cortex increased in precentral-gyrus (from 0.28 to 0.33) and in postcentral-gyrus (from 0.07 to 0.3). The DTI-derived FA-asymmetry decreased in precentral-gyrus (from 0.029 to 0.024) and in postcentral-gyrus (from 0.027 to 0.017). Relative reduction in task-specific performance metrics, i.e., time taken to complete the task (31.6%), smoothness of trajectory (76.7%), and relative percentage error (80.7%), were observed from day 1 to day 20 of the VR therapy. VR therapy resulted in improvement in clinical outcomes in a patient with chronic stroke. The research also gives insights to further improve the overall system of rehabilitation.
Collapse
|
23
|
Marin-Pardo O, Donnelly MR, Phanord CS, Wong K, Pan J, Liew SL. Functional and neuromuscular changes induced via a low-cost, muscle-computer interface for telerehabilitation: A feasibility study in chronic stroke. FRONTIERS IN NEUROERGONOMICS 2022; 3:1046695. [PMID: 38235476 PMCID: PMC10790881 DOI: 10.3389/fnrgo.2022.1046695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/31/2022] [Indexed: 01/19/2024]
Abstract
Stroke is a leading cause of adult disability in the United States. High doses of repeated task-specific practice have shown promising results in restoring upper limb function in chronic stroke. However, it is currently challenging to provide such doses in clinical practice. At-home telerehabilitation supervised by a clinician is a potential solution to provide higher-dose interventions. However, telerehabilitation systems developed for repeated task-specific practice typically require a minimum level of active movement. Therefore, severely impaired people necessitate alternative therapeutic approaches. Measurement and feedback of electrical muscle activity via electromyography (EMG) have been previously implemented in the presence of minimal or no volitional movement to improve motor performance in people with stroke. Specifically, muscle neurofeedback training to reduce unintended co-contractions of the impaired hand may be a targeted intervention to improve motor control in severely impaired populations. Here, we present the preliminary results of a low-cost, portable EMG biofeedback system (Tele-REINVENT) for supervised and unsupervised upper limb telerehabilitation after stroke. We aimed to explore the feasibility of providing higher doses of repeated task-specific practice during at-home training. Therefore, we recruited 5 participants (age = 44-73 years) with chronic, severe impairment due to stroke (Fugl-Meyer = 19-40/66). They completed a 6-week home-based training program that reinforced activity of the wrist extensor muscles while avoiding coactivation of flexor muscles via computer games. We used EMG signals to quantify the contribution of two antagonistic muscles and provide biofeedback of individuated activity, defined as a ratio of extensor and flexor activity during movement attempt. Our data suggest that 30 1-h sessions over 6 weeks of at-home training with our Tele-REINVENT system is feasible and may improve individuated muscle activity as well as scores on standard clinical assessments (e.g., Fugl-Meyer Assessment, Action Research Arm Test, active wrist range of motion) for some individuals. Furthermore, tests of neuromuscular control suggest modest changes in the synchronization of electroencephalography (EEG) and EMG signals within the beta band (12-30 Hz). Finally, all participants showed high adherence to the training protocol and reported enjoying using the system. These preliminary results suggest that using low-cost technology for home-based telerehabilitation after severe chronic stroke is feasible and may be effective in improving motor control via feedback of individuated muscle activity.
Collapse
Affiliation(s)
- Octavio Marin-Pardo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Miranda Rennie Donnelly
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Coralie S. Phanord
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Kira Wong
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Jessica Pan
- Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Sook-Lei Liew
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
- Stevens Neuroinformatics Institute, Department of Neurology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
24
|
Behboodi A, Lee WA, Hinchberger VS, Damiano DL. Determining optimal mobile neurofeedback methods for motor neurorehabilitation in children and adults with non-progressive neurological disorders: a scoping review. J Neuroeng Rehabil 2022; 19:104. [PMID: 36171602 PMCID: PMC9516814 DOI: 10.1186/s12984-022-01081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Background Brain–computer interfaces (BCI), initially designed to bypass the peripheral motor system to externally control movement using brain signals, are additionally being utilized for motor rehabilitation in stroke and other neurological disorders. Also called neurofeedback training, multiple approaches have been developed to link motor-related cortical signals to assistive robotic or electrical stimulation devices during active motor training with variable, but mostly positive, functional outcomes reported. Our specific research question for this scoping review was: for persons with non-progressive neurological injuries who have the potential to improve voluntary motor control, which mobile BCI-based neurofeedback methods demonstrate or are associated with improved motor outcomes for Neurorehabilitation applications? Methods We searched PubMed, Web of Science, and Scopus databases with all steps from study selection to data extraction performed independently by at least 2 individuals. Search terms included: brain machine or computer interfaces, neurofeedback and motor; however, only studies requiring a motor attempt, versus motor imagery, were retained. Data extraction included participant characteristics, study design details and motor outcomes. Results From 5109 papers, 139 full texts were reviewed with 23 unique studies identified. All utilized EEG and, except for one, were on the stroke population. The most commonly reported functional outcomes were the Fugl-Meyer Assessment (FMA; n = 13) and the Action Research Arm Test (ARAT; n = 6) which were then utilized to assess effectiveness, evaluate design features, and correlate with training doses. Statistically and functionally significant pre-to post training changes were seen in FMA, but not ARAT. Results did not differ between robotic and electrical stimulation feedback paradigms. Notably, FMA outcomes were positively correlated with training dose. Conclusion This review on BCI-based neurofeedback training confirms previous findings of effectiveness in improving motor outcomes with some evidence of enhanced neuroplasticity in adults with stroke. Associative learning paradigms have emerged more recently which may be particularly feasible and effective methods for Neurorehabilitation. More clinical trials in pediatric and adult neurorehabilitation to refine methods and doses and to compare to other evidence-based training strategies are warranted.
Collapse
Affiliation(s)
- Ahad Behboodi
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Walker A Lee
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | | | - Diane L Damiano
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Gao W, Cui Z, Yu Y, Mao J, Xu J, Ji L, Kan X, Shen X, Li X, Zhu S, Hong Y. Application of a Brain-Computer Interface System with Visual and Motor Feedback in Limb and Brain Functional Rehabilitation after Stroke: Case Report. Brain Sci 2022; 12:1083. [PMID: 36009146 PMCID: PMC9405856 DOI: 10.3390/brainsci12081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
(1) Objective: To investigate the feasibility, safety, and effectiveness of a brain-computer interface (BCI) system with visual and motor feedback in limb and brain function rehabilitation after stroke. (2) Methods: First, we recruited three hemiplegic stroke patients to perform rehabilitation training using a BCI system with visual and motor feedback for two consecutive days (four sessions) to verify the feasibility and safety of the system. Then, we recruited five other hemiplegic stroke patients for rehabilitation training (6 days a week, lasting for 12-14 days) using the same BCI system to verify the effectiveness. The mean and Cohen's w were used to compare the changes in limb motor and brain functions before and after training. (3) Results: In the feasibility verification, the continuous motor state switching time (CMSST) of the three patients was 17.8 ± 21.0s, and the motor state percentages (MSPs) in the upper and lower limb training were 52.6 ± 25.7% and 72.4 ± 24.0%, respectively. The effective training revolutions (ETRs) per minute were 25.8 ± 13.0 for upper limb and 24.8 ± 6.4 for lower limb. There were no adverse events during the training process. Compared with the baseline, the motor function indices of the five patients were improved, including sitting balance ability, upper limb Fugel-Meyer assessment (FMA), lower limb FMA, 6 min walking distance, modified Barthel index, and root mean square (RMS) value of triceps surae, which increased by 0.4, 8.0, 5.4, 11.4, 7.0, and 0.9, respectively, and all had large effect sizes (Cohen's w ≥ 0.5). The brain function indices of the five patients, including the amplitudes of the motor evoked potentials (MEP) on the non-lesion side and lesion side, increased by 3.6 and 3.7, respectively; the latency of MEP on the non-lesion side was shortened by 2.6 ms, and all had large effect sizes (Cohen's w ≥ 0.5). (4) Conclusions: The BCI system with visual and motor feedback is applicable in active rehabilitation training of stroke patients with hemiplegia, and the pilot results show potential multidimensional benefits after a short course of treatment.
Collapse
Affiliation(s)
- Wen Gao
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei 230601, China
| | - Zhengzhe Cui
- Zhejiang Laboratory, Department of Intelligent Robot, Keji Avenue, Yuhang Zone, Hangzhou 311100, China
| | - Yang Yu
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei 230601, China
| | - Jing Mao
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei 230601, China
| | - Jun Xu
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei 230601, China
| | - Leilei Ji
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei 230601, China
| | - Xiuli Kan
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei 230601, China
| | - Xianshan Shen
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei 230601, China
| | - Xueming Li
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei 230601, China
| | - Shiqiang Zhu
- Zhejiang Laboratory, Department of Intelligent Robot, Keji Avenue, Yuhang Zone, Hangzhou 311100, China
- Ocean College, Zhejiang University, No. 866 Yuhangtang Road, Xihu Zone, Hangzhou 310030, China
| | - Yongfeng Hong
- Department of Rehabilitation Medicine, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei 230601, China
| |
Collapse
|
26
|
Berger LM, Wood G, Kober SE. Effects of virtual reality-based feedback on neurofeedback training performance—A sham-controlled study. Front Hum Neurosci 2022; 16:952261. [PMID: 36034118 PMCID: PMC9411512 DOI: 10.3389/fnhum.2022.952261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022] Open
Abstract
Electroencephalography-neurofeedback (EEG-NF) has become a valuable tool in the field of psychology, e.g., to improve cognitive function. Nevertheless, a large percentage of NF users seem to be unable to control their own brain activation. Therefore, the aim of this study was to examine whether a different kind of visual feedback could positively influence NF performance after one training session. Virtual reality (VR) seems to have beneficial training effects and has already been reported to increase motivational training aspects. In the present study, we tested 61 young healthy adults (mean age: 23.48 years; 28 female) to investigate, whether 3D VR-based NF training has a more beneficial effect on the sensorimotor rhythm (SMR, 12–15 Hz) power increase than a mere 2D conventional NF paradigm. In the 3D group, participants had to roll a ball along a predefined path in an immersive virtual environment, whereas the 2D group had to increase the height of a bar. Both paradigms were presented using VR goggles. Participants completed one baseline and six feedback runs with 3 min each, in which they should try to increase SMR power over Cz. Half of the participants received real feedback whereas the other half received sham feedback. Participants receiving 3D VR-based feedback showed a linear increase in SMR power over the feedback runs within one training session. This was the case for the real as well as for the sham 3D feedback group and might be related to more general VR-related effects. The 2D group receiving the conventional bar feedback showed no changes in SMR power over the feedback runs. The present study underlines that the visual feedback modality has differential effects on the NF training performance and that 3D VR-based feedback has advantages over conventional 2D feedback.
Collapse
Affiliation(s)
- Lisa M. Berger
- Institute of Psychology, University of Graz, Graz, Austria
- *Correspondence: Lisa M. Berger,
| | - Guilherme Wood
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Silvia E. Kober
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
27
|
Le Franc S, Herrera Altamira G, Guillen M, Butet S, Fleck S, Lécuyer A, Bougrain L, Bonan I. Toward an Adapted Neurofeedback for Post-stroke Motor Rehabilitation: State of the Art and Perspectives. Front Hum Neurosci 2022; 16:917909. [PMID: 35911589 PMCID: PMC9332194 DOI: 10.3389/fnhum.2022.917909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
Stroke is a severe health issue, and motor recovery after stroke remains an important challenge in the rehabilitation field. Neurofeedback (NFB), as part of a brain–computer interface, is a technique for modulating brain activity using on-line feedback that has proved to be useful in motor rehabilitation for the chronic stroke population in addition to traditional therapies. Nevertheless, its use and applications in the field still leave unresolved questions. The brain pathophysiological mechanisms after stroke remain partly unknown, and the possibilities for intervention on these mechanisms to promote cerebral plasticity are limited in clinical practice. In NFB motor rehabilitation, the aim is to adapt the therapy to the patient’s clinical context using brain imaging, considering the time after stroke, the localization of brain lesions, and their clinical impact, while taking into account currently used biomarkers and technical limitations. These modern techniques also allow a better understanding of the physiopathology and neuroplasticity of the brain after stroke. We conducted a narrative literature review of studies using NFB for post-stroke motor rehabilitation. The main goal was to decompose all the elements that can be modified in NFB therapies, which can lead to their adaptation according to the patient’s context and according to the current technological limits. Adaptation and individualization of care could derive from this analysis to better meet the patients’ needs. We focused on and highlighted the various clinical and technological components considering the most recent experiments. The second goal was to propose general recommendations and enhance the limits and perspectives to improve our general knowledge in the field and allow clinical applications. We highlighted the multidisciplinary approach of this work by combining engineering abilities and medical experience. Engineering development is essential for the available technological tools and aims to increase neuroscience knowledge in the NFB topic. This technological development was born out of the real clinical need to provide complementary therapeutic solutions to a public health problem, considering the actual clinical context of the post-stroke patient and the practical limits resulting from it.
Collapse
Affiliation(s)
- Salomé Le Franc
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- Hybrid Team, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
- *Correspondence: Salomé Le Franc,
| | | | - Maud Guillen
- Hybrid Team, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
- Neurology Unit, University Hospital of Rennes, Rennes, France
| | - Simon Butet
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- Empenn Unit U1228, Inserm, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| | - Stéphanie Fleck
- Université de Lorraine, CNRS, LORIA, Nancy, France
- EA7312 Laboratoire de Psychologie Ergonomique et Sociale pour l’Expérience Utilisateurs (PERSEUS), Metz, France
| | - Anatole Lécuyer
- Hybrid Team, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| | | | - Isabelle Bonan
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- Empenn Unit U1228, Inserm, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| |
Collapse
|
28
|
Al Boustani G, Weiß LJK, Li H, Meyer SM, Hiendlmeier L, Rinklin P, Menze B, Hemmert W, Wolfrum B. Influence of Auditory Cues on the Neuronal Response to Naturalistic Visual Stimuli in a Virtual Reality Setting. Front Hum Neurosci 2022; 16:809293. [PMID: 35721351 PMCID: PMC9201822 DOI: 10.3389/fnhum.2022.809293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Virtual reality environments offer great opportunities to study the performance of brain-computer interfaces (BCIs) in real-world contexts. As real-world stimuli are typically multimodal, their neuronal integration elicits complex response patterns. To investigate the effect of additional auditory cues on the processing of visual information, we used virtual reality to mimic safety-related events in an industrial environment while we concomitantly recorded electroencephalography (EEG) signals. We simulated a box traveling on a conveyor belt system where two types of stimuli – an exploding and a burning box – interrupt regular operation. The recordings from 16 subjects were divided into two subsets, a visual-only and an audio-visual experiment. In the visual-only experiment, the response patterns for both stimuli elicited a similar pattern – a visual evoked potential (VEP) followed by an event-related potential (ERP) over the occipital-parietal lobe. Moreover, we found the perceived severity of the event to be reflected in the signal amplitude. Interestingly, the additional auditory cues had a twofold effect on the previous findings: The P1 component was significantly suppressed in the case of the exploding box stimulus, whereas the N2c showed an enhancement for the burning box stimulus. This result highlights the impact of multisensory integration on the performance of realistic BCI applications. Indeed, we observed alterations in the offline classification accuracy for a detection task based on a mixed feature extraction (variance, power spectral density, and discrete wavelet transform) and a support vector machine classifier. In the case of the explosion, the accuracy slightly decreased by –1.64% p. in an audio-visual experiment compared to the visual-only. Contrarily, the classification accuracy for the burning box increased by 5.58% p. when additional auditory cues were present. Hence, we conclude, that especially in challenging detection tasks, it is favorable to consider the potential of multisensory integration when BCIs are supposed to operate under (multimodal) real-world conditions.
Collapse
Affiliation(s)
- George Al Boustani
- Neuroelectronics – Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
| | - Lennart Jakob Konstantin Weiß
- Neuroelectronics – Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
| | - Hongwei Li
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Svea Marie Meyer
- Neuroelectronics – Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
| | - Lukas Hiendlmeier
- Neuroelectronics – Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
| | - Philipp Rinklin
- Neuroelectronics – Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
| | - Bjoern Menze
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Werner Hemmert
- Bio-Inspired Information Processing – Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
| | - Bernhard Wolfrum
- Neuroelectronics – Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
- *Correspondence: Bernhard Wolfrum,
| |
Collapse
|
29
|
Vatinno AA, Simpson A, Ramakrishnan V, Bonilha HS, Bonilha L, Seo NJ. The Prognostic Utility of Electroencephalography in Stroke Recovery: A Systematic Review and Meta-Analysis. Neurorehabil Neural Repair 2022; 36:255-268. [PMID: 35311412 PMCID: PMC9007868 DOI: 10.1177/15459683221078294] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
BACKGROUND Improved ability to predict patient recovery would guide post-stroke care by helping clinicians personalize treatment and maximize outcomes. Electroencephalography (EEG) provides a direct measure of the functional neuroelectric activity in the brain that forms the basis for neuroplasticity and recovery, and thus may increase prognostic ability. OBJECTIVE To examine evidence for the prognostic utility of EEG in stroke recovery via systematic review/meta-analysis. METHODS Peer-reviewed journal articles that examined the relationship between EEG and subsequent clinical outcome(s) in stroke were searched using electronic databases. Two independent researchers extracted data for synthesis. Linear meta-regressions were performed across subsets of papers with common outcome measures to quantify the association between EEG and outcome. RESULTS 75 papers were included. Association between EEG and clinical outcomes was seen not only early post-stroke, but more than 6 months post-stroke. The most studied prognostic potential of EEG was in predicting independence and stroke severity in the standard acute stroke care setting. The meta-analysis showed that EEG was associated with subsequent clinical outcomes measured by the Modified Rankin Scale, National Institutes of Health Stroke Scale, and Fugl-Meyer Upper Extremity Assessment (r = .72, .70, and .53 from 8, 13, and 12 papers, respectively). EEG improved prognostic abilities beyond prediction afforded by standard clinical assessments. However, the EEG variables examined were highly variable across studies and did not converge. CONCLUSIONS EEG shows potential to predict post-stroke recovery outcomes. However, evidence is largely explorative, primarily due to the lack of a definitive set of EEG measures to be used for prognosis.
Collapse
Affiliation(s)
- Amanda A Vatinno
- Department of Health Sciences and Research, College of Health Professions, 2345Medical University of South Carolina (MUSC), Charleston, SC, USA
| | - Annie Simpson
- Department of Health Sciences and Research, College of Health Professions, 2345Medical University of South Carolina (MUSC), Charleston, SC, USA
- Department of Healthcare Leadership and Management, College of Health Professions, 2345MUSC, Charleston, SC, USA
| | | | - Heather S Bonilha
- Department of Health Sciences and Research, College of Health Professions, 2345Medical University of South Carolina (MUSC), Charleston, SC, USA
| | - Leonardo Bonilha
- Department of Neurology, College of Medicine, 2345MUSC, Charleston, SC, USA
| | - Na Jin Seo
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Department of Health Sciences and Research, 2345MUSC, Charleston, SC, USA
- Division of Occupational Therapy, Department of Rehabilitation Sciences, MUSC, Charleston, SC, USA
| |
Collapse
|
30
|
Implementation of the Modern Immersive Learning Model CPLM. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The digitalization of industrial processes is being driven forward worldwide. In parallel, the education system must also be transformed. Currently, education does not follow the opportunities and development of technologies. We can ask ourselves how we can integrate technologies into a traditional learning process or how we can adapt the learning process to these technologies. We focused on robotics education in secondary vocational education. The paper contains research results from a modern learning model that addresses student problem-solving using cyber–physical systems. We proposed a reference model for industrial robotics education in the 21st century based on an innovative cyber-physical didactic model (CPLM). We conducted procedure time measurements, questionnaire evaluations, and EEG evaluations. We could use VR to influence the improvement of spatial and visual memory. The more intense representation of the given information influences multiple centers in the brain and, thus, the formation of multiple neural connections. We can influence knowledge, learning more effectively with short-term training in the virtual world than with classical learning methods. From the studied resources, we can conclude that the newer approach to teaching robotics is not yet available in this form. The emerging modern technologies and the possibility of developing training in this area should be investigated further.
Collapse
|
31
|
Yuan Z, Peng Y, Wang L, Song S, Chen S, Yang L, Liu H, Wang H, Shi G, Han C, Cammon JA, Zhang Y, Qiao J, Wang G. Effect of BCI-Controlled Pedaling Training System With Multiple Modalities of Feedback on Motor and Cognitive Function Rehabilitation of Early Subacute Stroke Patients. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2569-2577. [PMID: 34871175 DOI: 10.1109/tnsre.2021.3132944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Brain-computer interfaces (BCIs) are currently integrated into traditional rehabilitation interventions after stroke. Although BCIs bring many benefits to the rehabilitation process, their effects are limited since many patients cannot concentrate during training. Despite this outcome post-stroke motor-attention dual-task training using BCIs has remained mostly unexplored. This study was a randomized placebo-controlled blinded-endpoint clinical trial to investigate the effects of a BCI-controlled pedaling training system (BCI-PT) on the motor and cognitive function of stroke patients during rehabilitation. A total of 30 early subacute ischemic stroke patients with hemiplegia and cognitive impairment were randomly assigned to the BCI-PT or traditional pedaling training. We used single-channel Fp1 to collect electroencephalography data and analyze the attention index. The BCI-PT system timely provided visual, auditory, and somatosensory feedback to enhance the patient's participation to pedaling based on the real-time attention index. After 24 training sessions, the attention index of the experimental group was significantly higher than that of the control group. The lower limbs motor function (FMA-L) increased by an average of 4.5 points in the BCI-PT group and 2.1 points in the control group (P = 0.022) after treatments. The difference was still significant after adjusting for the baseline indicators ( β = 2.41 , 95%CI: 0.48-4.34, P = 0.024). We found that BCI-PT significantly improved the patient's lower limb motor function by increasing the patient's participation. (clinicaltrials.gov: NCT04612426).
Collapse
|
32
|
Montag M, Paschall C, Ojemann J, Rao R, Herron J. A Platform for Virtual Reality Task Design with Intracranial Electrodes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6659-6662. [PMID: 34892635 DOI: 10.1109/embc46164.2021.9630231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Research with human intracranial electrodes has traditionally been constrained by the limitations of the inpatient clinical setting. Immersive virtual reality (VR), however, can transcend setting and enable novel task design with precise control over visual and auditory stimuli. This control over visual and auditory feedback makes VR an exciting platform for new in-patient, human electrocorticography (ECOG) and stereo-electroencephalography (sEEG) research. The integration of intracranial electrode recording and stimulation with VR task dynamics required foundational systems engineering. In this work, we present a custom API that bridges Unity, the leading VR game development engine, and Synapse, the proprietary software of the Tucker Davis Technologies (TDT) neural recording and stimulation platform. To demonstrate the functionality and efficiency of our API, we developed a closed-loop brain-computer interface (BCI) task in which filtered neural signals controlled the movement of a virtual object and virtual object dynamics triggered neural stimulation. This closed-loop VR-BCI task confirmed the utility, safety, and efficacy of our API and its readiness for human task deployment.
Collapse
|
33
|
Peterson V, Nieto N, Wyser D, Lambercy O, Gassert R, Milone DH, Spies RD. Transfer Learning based on Optimal Transport for Motor Imagery Brain-Computer Interfaces. IEEE Trans Biomed Eng 2021; 69:807-817. [PMID: 34406935 DOI: 10.1109/tbme.2021.3105912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE This paper tackles the cross-sessions variability of electroencephalography-based brain-computer interfaces (BCIs) in order to avoid the lengthy recalibration step of the decoding method before every use. METHODS We develop a new approach of domain adaptation based on optimal transport to tackle brain signal variability between sessions of motor imagery BCIs. We propose a backward method where, unlike the original formulation, the data from a new session are transported to a calibration session, and thereby avoiding model retraining. Several domain adaptation approaches are evaluated and compared. We simulated two possible online scenarios: i) block-wise adaptation and ii) sample-wise adaptation. In this study, we collect a dataset of 10 subjects performing a hand motor imagery task in 2 sessions. A publicly available dataset is also used. RESULTS For the first scenario, results indicate that classifier retraining can be avoided by means of our backward formulation yielding to equivalent classification performance as compared to retraining solutions. In the second scenario, classification performance rises up to 90.23\% overall accuracy when the label of the indicated mental task is used to learn the transport. Adaptive time is between 10 and 80 times faster than the other methods. CONCLUSIONS The proposed method is able to mitigate the cross-session variability in motor imagery BCIs. SIGNIFICANCE The backward formulation is an efficient retraining-free approach built to avoid lengthy calibration times. Thus, the BCI can be actively used after just a few minutes of setup. This is important for practical applications such as BCI-based motor rehabilitation.
Collapse
|
34
|
Nann M, Haslacher D, Colucci A, Eskofier B, von Tscharner V, Soekadar SR. Heart rate variability predicts decline in sensorimotor rhythm control. J Neural Eng 2021; 18. [PMID: 34229308 DOI: 10.1088/1741-2552/ac1177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/06/2021] [Indexed: 11/11/2022]
Abstract
Objective.Voluntary control of sensorimotor rhythms (SMRs, 8-12 Hz) can be used for brain-computer interface (BCI)-based operation of an assistive hand exoskeleton, e.g. in finger paralysis after stroke. To gain SMR control, stroke survivors are usually instructed to engage in motor imagery (MI) or to attempt moving the paralyzed fingers resulting in task- or event-related desynchronization (ERD) of SMR (SMR-ERD). However, as these tasks are cognitively demanding, especially for stroke survivors suffering from cognitive impairments, BCI control performance can deteriorate considerably over time. Therefore, it would be important to identify biomarkers that predict decline in BCI control performance within an ongoing session in order to optimize the man-machine interaction scheme.Approach.Here we determine the link between BCI control performance over time and heart rate variability (HRV). Specifically, we investigated whether HRV can be used as a biomarker to predict decline of SMR-ERD control across 17 healthy participants using Granger causality. SMR-ERD was visually displayed on a screen. Participants were instructed to engage in MI-based SMR-ERD control over two consecutive runs of 8.5 min each. During the 2nd run, task difficulty was gradually increased.Main results.While control performance (p= .18) and HRV (p= .16) remained unchanged across participants during the 1st run, during the 2nd run, both measures declined over time at high correlation (performance: -0.61%/10 s,p= 0; HRV: -0.007 ms/10 s,p< .001). We found that HRV exhibited predictive characteristics with regard to within-session BCI control performance on an individual participant level (p< .001).Significance.These results suggest that HRV can predict decline in BCI performance paving the way for adaptive BCI control paradigms, e.g. to individualize and optimize assistive BCI systems in stroke.
Collapse
Affiliation(s)
- Marius Nann
- Applied Neurotechnology Lab, Department of Psychiatry and Psychotherapy, University Hospital of Tübingen, Tübingen, Germany.,Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - David Haslacher
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Annalisa Colucci
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Bjoern Eskofier
- Machine Learning and Data Analytics Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Surjo R Soekadar
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
35
|
Jamil N, Belkacem AN, Ouhbi S, Lakas A. Noninvasive Electroencephalography Equipment for Assistive, Adaptive, and Rehabilitative Brain-Computer Interfaces: A Systematic Literature Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:4754. [PMID: 34300492 PMCID: PMC8309653 DOI: 10.3390/s21144754] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022]
Abstract
Humans interact with computers through various devices. Such interactions may not require any physical movement, thus aiding people with severe motor disabilities in communicating with external devices. The brain-computer interface (BCI) has turned into a field involving new elements for assistive and rehabilitative technologies. This systematic literature review (SLR) aims to help BCI investigator and investors to decide which devices to select or which studies to support based on the current market examination. This examination of noninvasive EEG devices is based on published BCI studies in different research areas. In this SLR, the research area of noninvasive BCIs using electroencephalography (EEG) was analyzed by examining the types of equipment used for assistive, adaptive, and rehabilitative BCIs. For this SLR, candidate studies were selected from the IEEE digital library, PubMed, Scopus, and ScienceDirect. The inclusion criteria (IC) were limited to studies focusing on applications and devices of the BCI technology. The data used herein were selected using IC and exclusion criteria to ensure quality assessment. The selected articles were divided into four main research areas: education, engineering, entertainment, and medicine. Overall, 238 papers were selected based on IC. Moreover, 28 companies were identified that developed wired and wireless equipment as means of BCI assistive technology. The findings of this review indicate that the implications of using BCIs for assistive, adaptive, and rehabilitative technologies are encouraging for people with severe motor disabilities and healthy people. With an increasing number of healthy people using BCIs, other research areas, such as the motivation of players when participating in games or the security of soldiers when observing certain areas, can be studied and collaborated using the BCI technology. However, such BCI systems must be simple (wearable), convenient (sensor fabrics and self-adjusting abilities), and inexpensive.
Collapse
Affiliation(s)
- Nuraini Jamil
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (N.J.); (S.O.)
| | - Abdelkader Nasreddine Belkacem
- Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Sofia Ouhbi
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (N.J.); (S.O.)
| | - Abderrahmane Lakas
- Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
36
|
Takac M, Collett J, Conduit R, De Foe A. Addressing virtual reality misclassification: A hardware-based qualification matrix for virtual reality technology. Clin Psychol Psychother 2021; 28:538-556. [PMID: 34110659 DOI: 10.1002/cpp.2624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/22/2021] [Indexed: 01/19/2023]
Abstract
Through its unique sensory synchronized design, virtual reality (VR) provides a convincing, user-centred experience of highly controllable scenarios. Importantly, VR is a promising modality for healthcare, where treatment efficacy has been recognized for a range of conditions. It is equally valuable across wider research disciplines. However, there is a lack of suitable criteria and consistent terminology with which to define VR technology. A considerable number of studies have misclassified VR hardware (e.g. defining laptops as VR), hindering validity and research comparisons. This review addresses these limitations and establishes a standardized VR qualification framework. As a result of a comprehensive theoretical and literature review, the hardware-based VR qualification matrix is proposed. The matrix criteria consist of (1) three-dimensional (3D) synchronized sensory stimulation; (2) degrees of freedom tracking; and (3) visual suppression of physical stimuli. To validate the model and quantify the current scale/diversity of VR misclassification, a 2019 sectional review of health-related studies was conducted. Of the 115 studies examined against standardized criteria, 35.7% utilized VR, 31.3% misclassified VR, 18.3% were considered quasi-VR, and 14.8% omitted critical specifications. The proposed model demonstrates good validity and reliability for qualifying and classifying VR. Key Practitioner Messages Virtual reality (VR) therapy has gained rapid empirical support, although many practitioners do not understand the difference between genuine and less-realistic VR variations. That has resulted from an evident lack of suitable criteria to define VR across a range of studies and protocols. Our proposed hardware-based virtual reality qualification matrix addresses issues to do with misclassification, via the introduction of standardised criteria. Applying the matrix to existing literature has revealed that more than 30% of VR studies use hardware that does not fit the high standards of rigour required for immersion in a simulated space. The model is a practical tool researchers and practitioners can use to quality and verify VR standards across research studies.
Collapse
|
37
|
左 词, 毛 盈, 刘 倩, 王 行, 金 晶. [Research on performance of motor-imagery-based brain-computer interface in different complexity of Chinese character patterns]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2021; 38:417-424. [PMID: 34180186 PMCID: PMC9927774 DOI: 10.7507/1001-5515.202010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/18/2021] [Indexed: 11/03/2022]
Abstract
The traditional paradigm of motor-imagery-based brain-computer interface (BCI) is abstract, which cannot effectively guide users to modulate brain activity, thus limiting the activation degree of the sensorimotor cortex. It was found that the motor imagery task of Chinese characters writing was better accepted by users and helped guide them to modulate their sensorimotor rhythms. However, different Chinese characters have different writing complexity (number of strokes), and the effect of motor imagery tasks of Chinese characters with different writing complexity on the performance of motor-imagery-based BCI is still unclear. In this paper, a total of 12 healthy subjects were recruited for studying the effects of motor imagery tasks of Chinese characters with two different writing complexity (5 and 10 strokes) on the performance of motor-imagery-based BCI. The experimental results showed that, compared with Chinese characters with 5 strokes, motor imagery task of Chinese characters writing with 10 strokes obtained stronger sensorimotor rhythm and better recognition performance ( P < 0.05). This study indicated that, appropriately increasing the complexity of the motor imagery task of Chinese characters writing can obtain stronger motor imagery potential and improve the recognition accuracy of motor-imagery-based BCI, which provides a reference for the design of the motor-imagery-based BCI paradigm in the future.
Collapse
Affiliation(s)
- 词立 左
- 华东理工大学 化工过程先进控制和优化技术教育部重点实验室(上海 200237)Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - 盈 毛
- 华东理工大学 化工过程先进控制和优化技术教育部重点实验室(上海 200237)Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - 倩倩 刘
- 华东理工大学 化工过程先进控制和优化技术教育部重点实验室(上海 200237)Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - 行愚 王
- 华东理工大学 化工过程先进控制和优化技术教育部重点实验室(上海 200237)Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - 晶 金
- 华东理工大学 化工过程先进控制和优化技术教育部重点实验室(上海 200237)Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, P.R. China
| |
Collapse
|
38
|
Camargo-Vargas D, Callejas-Cuervo M, Mazzoleni S. Brain-Computer Interfaces Systems for Upper and Lower Limb Rehabilitation: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:4312. [PMID: 34202546 PMCID: PMC8271710 DOI: 10.3390/s21134312] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022]
Abstract
In recent years, various studies have demonstrated the potential of electroencephalographic (EEG) signals for the development of brain-computer interfaces (BCIs) in the rehabilitation of human limbs. This article is a systematic review of the state of the art and opportunities in the development of BCIs for the rehabilitation of upper and lower limbs of the human body. The systematic review was conducted in databases considering using EEG signals, interface proposals to rehabilitate upper/lower limbs using motor intention or movement assistance and utilizing virtual environments in feedback. Studies that did not specify which processing system was used were excluded. Analyses of the design processing or reviews were excluded as well. It was identified that 11 corresponded to applications to rehabilitate upper limbs, six to lower limbs, and one to both. Likewise, six combined visual/auditory feedback, two haptic/visual, and two visual/auditory/haptic. In addition, four had fully immersive virtual reality (VR), three semi-immersive VR, and 11 non-immersive VR. In summary, the studies have demonstrated that using EEG signals, and user feedback offer benefits including cost, effectiveness, better training, user motivation and there is a need to continue developing interfaces that are accessible to users, and that integrate feedback techniques.
Collapse
Affiliation(s)
- Daniela Camargo-Vargas
- Software Research Group, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150002, Colombia;
| | - Mauro Callejas-Cuervo
- School of Computer Science, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150002, Colombia
| | - Stefano Mazzoleni
- Department of Electrical and Information Engineering, Politecnico di Bari, 70126 Bari, Italy;
| |
Collapse
|
39
|
Exploring the Use of Brain-Computer Interfaces in Stroke Neurorehabilitation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9967348. [PMID: 34239936 PMCID: PMC8235968 DOI: 10.1155/2021/9967348] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022]
Abstract
With the continuous development of artificial intelligence technology, "brain-computer interfaces" are gradually entering the field of medical rehabilitation. As a result, brain-computer interfaces (BCIs) have been included in many countries' strategic plans for innovating this field, and subsequently, major funding and talent have been invested in this technology. In neurological rehabilitation for stroke patients, the use of BCIs opens up a new chapter in "top-down" rehabilitation. In our study, we first reviewed the latest BCI technologies, then presented recent research advances and landmark findings in BCI-based neurorehabilitation for stroke patients. Neurorehabilitation was focused on the areas of motor, sensory, speech, cognitive, and environmental interactions. Finally, we summarized the shortcomings of BCI use in the field of stroke neurorehabilitation and the prospects for BCI technology development for rehabilitation.
Collapse
|
40
|
Yoo IG. Electroencephalogram-based neurofeedback training in persons with stroke: A scoping review in occupational therapy. NeuroRehabilitation 2021; 48:9-18. [PMID: 33386824 DOI: 10.3233/nre-201579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neurofeedback training targets the relevant brain response under minimal stress. It could be a promising approach for the treatment of patients with brain injury. OBJECTIVE This review aimed to examine the existing literature to confirm the effectiveness of applied electroencephalogram (EEG)-based neurofeedback training in the area of occupational therapy for upper limb stroke rehabilitation. METHOD All relevant literature published until July 1, 2020 in five prominent databases (PubMed, CINAHL, PsycINFO, MEDLINE Complete, and Web of Science) was reviewed, based on the five-step review framework proposed by Arksey and O'Malley. RESULTS After a thorough review, a total of 14 studies were included in this review. Almost studies reported significant improvements as a result of EEG-based neurofeedback training, but this had not always account for the differences in effectiveness between groups. However, the results of these studies suggested that neurofeedback training was effective as compared to the traditional treatment and more effective in combination with EEG than that with simple equipment application. CONCLUSION This review demonstrated the effectiveness of the combination of occupational therapy and EEG-based neurofeedback training. Most of these treatments are intended for inpatients, but they may be more effective for outpatients, especially if customized to their requirements. Also, such explorations to assess the suitability of the treatment for patient rehabilitation will help reduce barriers to effective interventions. An analysis of the opinions of participants and experts through satisfaction surveys will be helpful.
Collapse
Affiliation(s)
- I G Yoo
- Department of Occupational Therapy, College of Medical Sciences, Jeonju University, Hyoja-dong 3-ga, Wansan-gu, Jeonju-si, Jeollabuk-do, 560-759, Republic of Korea
| |
Collapse
|
41
|
Converging Robotic Technologies in Targeted Neural Rehabilitation: A Review of Emerging Solutions and Challenges. SENSORS 2021; 21:s21062084. [PMID: 33809721 PMCID: PMC8002299 DOI: 10.3390/s21062084] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 11/17/2022]
Abstract
Recent advances in the field of neural rehabilitation, facilitated through technological innovation and improved neurophysiological knowledge of impaired motor control, have opened up new research directions. Such advances increase the relevance of existing interventions, as well as allow novel methodologies and technological synergies. New approaches attempt to partially overcome long-term disability caused by spinal cord injury, using either invasive bridging technologies or noninvasive human-machine interfaces. Muscular dystrophies benefit from electromyography and novel sensors that shed light on underlying neuromotor mechanisms in people with Duchenne. Novel wearable robotics devices are being tailored to specific patient populations, such as traumatic brain injury, stroke, and amputated individuals. In addition, developments in robot-assisted rehabilitation may enhance motor learning and generate movement repetitions by decoding the brain activity of patients during therapy. This is further facilitated by artificial intelligence algorithms coupled with faster electronics. The practical impact of integrating such technologies with neural rehabilitation treatment can be substantial. They can potentially empower nontechnically trained individuals-namely, family members and professional carers-to alter the programming of neural rehabilitation robotic setups, to actively get involved and intervene promptly at the point of care. This narrative review considers existing and emerging neural rehabilitation technologies through the perspective of replacing or restoring functions, enhancing, or improving natural neural output, as well as promoting or recruiting dormant neuroplasticity. Upon conclusion, we discuss the future directions for neural rehabilitation research, diagnosis, and treatment based on the discussed technologies and their major roadblocks. This future may eventually become possible through technological evolution and convergence of mutually beneficial technologies to create hybrid solutions.
Collapse
|
42
|
Development of a Low-Cost, Modular Muscle-Computer Interface for At-Home Telerehabilitation for Chronic Stroke. SENSORS 2021; 21:s21051806. [PMID: 33807691 PMCID: PMC7961888 DOI: 10.3390/s21051806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022]
Abstract
Stroke is a leading cause of long-term disability in the United States. Recent studies have shown that high doses of repeated task-specific practice can be effective at improving upper-limb function at the chronic stage. Providing at-home telerehabilitation services with therapist supervision may allow higher dose interventions targeted to this population. Additionally, muscle biofeedback to train patients to avoid unwanted simultaneous activation of antagonist muscles (co-contractions) may be incorporated into telerehabilitation technologies to improve motor control. Here, we present the development and feasibility of a low-cost, portable, telerehabilitation biofeedback system called Tele-REINVENT. We describe our modular electromyography acquisition, processing, and feedback algorithms to train differentiated muscle control during at-home therapist-guided sessions. Additionally, we evaluated the performance of low-cost sensors for our training task with two healthy individuals. Finally, we present the results of a case study with a stroke survivor who used the system for 40 sessions over 10 weeks of training. In line with our previous research, our results suggest that using low-cost sensors provides similar results to those using research-grade sensors for low forces during an isometric task. Our preliminary case study data with one patient with stroke also suggest that our system is feasible, safe, and enjoyable to use during 10 weeks of biofeedback training, and that improvements in differentiated muscle activity during volitional movement attempt may be induced during a 10-week period. Our data provide support for using low-cost technology for individuated muscle training to reduce unintended coactivation during supervised and unsupervised home-based telerehabilitation for clinical populations, and suggest this approach is safe and feasible. Future work with larger study populations may expand on the development of meaningful and personalized chronic stroke rehabilitation.
Collapse
|
43
|
Saha S, Mamun KA, Ahmed K, Mostafa R, Naik GR, Darvishi S, Khandoker AH, Baumert M. Progress in Brain Computer Interface: Challenges and Opportunities. Front Syst Neurosci 2021; 15:578875. [PMID: 33716680 PMCID: PMC7947348 DOI: 10.3389/fnsys.2021.578875] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Brain computer interfaces (BCI) provide a direct communication link between the brain and a computer or other external devices. They offer an extended degree of freedom either by strengthening or by substituting human peripheral working capacity and have potential applications in various fields such as rehabilitation, affective computing, robotics, gaming, and neuroscience. Significant research efforts on a global scale have delivered common platforms for technology standardization and help tackle highly complex and non-linear brain dynamics and related feature extraction and classification challenges. Time-variant psycho-neurophysiological fluctuations and their impact on brain signals impose another challenge for BCI researchers to transform the technology from laboratory experiments to plug-and-play daily life. This review summarizes state-of-the-art progress in the BCI field over the last decades and highlights critical challenges.
Collapse
Affiliation(s)
- Simanto Saha
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
- Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh
| | - Khondaker A. Mamun
- Advanced Intelligent Multidisciplinary Systems (AIMS) Lab, Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
| | - Khawza Ahmed
- Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh
| | - Raqibul Mostafa
- Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh
| | - Ganesh R. Naik
- Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sam Darvishi
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
| | - Ahsan H. Khandoker
- Healthcare Engineering Innovation Center, Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mathias Baumert
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
44
|
Virtual Reality for Neurorehabilitation and Cognitive Enhancement. Brain Sci 2021; 11:brainsci11020221. [PMID: 33670277 PMCID: PMC7918687 DOI: 10.3390/brainsci11020221] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/23/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Our access to computer-generated worlds changes the way we feel, how we think, and how we solve problems. In this review, we explore the utility of different types of virtual reality, immersive or non-immersive, for providing controllable, safe environments that enable individual training, neurorehabilitation, or even replacement of lost functions. The neurobiological effects of virtual reality on neuronal plasticity have been shown to result in increased cortical gray matter volumes, higher concentration of electroencephalographic beta-waves, and enhanced cognitive performance. Clinical application of virtual reality is aided by innovative brain–computer interfaces, which allow direct tapping into the electric activity generated by different brain cortical areas for precise voluntary control of connected robotic devices. Virtual reality is also valuable to healthy individuals as a narrative medium for redesigning their individual stories in an integrative process of self-improvement and personal development. Future upgrades of virtual reality-based technologies promise to help humans transcend the limitations of their biological bodies and augment their capacity to mold physical reality to better meet the needs of a globalized world.
Collapse
|
45
|
Huo CC, Zheng Y, Lu WW, Zhang TY, Wang DF, Xu DS, Li ZY. Prospects for intelligent rehabilitation techniques to treat motor dysfunction. Neural Regen Res 2021; 16:264-269. [PMID: 32859773 PMCID: PMC7896219 DOI: 10.4103/1673-5374.290884] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/06/2019] [Accepted: 02/26/2020] [Indexed: 11/26/2022] Open
Abstract
More than half of stroke patients live with different levels of motor dysfunction after receiving routine rehabilitation treatments. Therefore, new rehabilitation technologies are urgently needed as auxiliary treatments for motor rehabilitation. Based on routine rehabilitation treatments, a new intelligent rehabilitation platform has been developed for accurate evaluation of function and rehabilitation training. The emerging intelligent rehabilitation techniques can promote the development of motor function rehabilitation in terms of informatization, standardization, and intelligence. Traditional assessment methods are mostly subjective, depending on the experience and expertise of clinicians, and lack standardization and precision. It is therefore difficult to track functional changes during the rehabilitation process. Emerging intelligent rehabilitation techniques provide objective and accurate functional assessment for stroke patients that can promote improvement of clinical guidance for treatment. Artificial intelligence and neural networks play a critical role in intelligent rehabilitation. Multiple novel techniques, such as brain-computer interfaces, virtual reality, neural circuit-magnetic stimulation, and robot-assisted therapy, have been widely used in the clinic. This review summarizes the emerging intelligent rehabilitation techniques for the evaluation and treatment of motor dysfunction caused by nervous system diseases.
Collapse
Affiliation(s)
- Cong-Cong Huo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| | - Ya Zheng
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Wei-Wei Lu
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Teng-Yu Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| | - Dai-Fa Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Dong-Sheng Xu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zeng-Yong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| |
Collapse
|
46
|
Mishra S, Kumar A, Padmanabhan P, Gulyás B. Neurophysiological Correlates of Cognition as Revealed by Virtual Reality: Delving the Brain with a Synergistic Approach. Brain Sci 2021; 11:brainsci11010051. [PMID: 33466371 PMCID: PMC7824819 DOI: 10.3390/brainsci11010051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/16/2020] [Accepted: 12/25/2020] [Indexed: 12/11/2022] Open
Abstract
The synergy of perceptual psychology, technology, and neuroscience can be used to comprehend how virtual reality affects cognition of human brain. Numerous studies have used neuroimaging modalities to assess the cognitive state and response of the brain with various external stimulations. The virtual reality-based devices are well known to incur visual, auditory, and haptic induced perceptions. Neurophysiological recordings together with virtual stimulations can assist in correlating humans’ physiological perception with response in the environment designed virtually. The effective combination of these two has been utilized to study human behavior, spatial navigation performance, and spatial presence, to name a few. Moreover, virtual reality-based devices can be evaluated for the neurophysiological correlates of cognition through neurophysiological recordings. Challenges exist in the integration of real-time neuronal signals with virtual reality-based devices, and enhancing the experience together with real-time feedback and control through neuronal signals. This article provides an overview of neurophysiological correlates of cognition as revealed by virtual reality experience, together with a description of perception and virtual reality-based neuromodulation, various applications, and existing challenges in this field of research.
Collapse
Affiliation(s)
- Sachin Mishra
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore; (S.M.); (A.K.)
| | - Ajay Kumar
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore; (S.M.); (A.K.)
- Institute of Biomedical Sciences, National Sun Yat-sen University, Gushan District, Kaohsiung 804, Taiwan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Gushan District, Kaohsiung 804, Taiwan
| | - Parasuraman Padmanabhan
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore; (S.M.); (A.K.)
- Correspondence: (P.P.); (B.G.)
| | - Balázs Gulyás
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore; (S.M.); (A.K.)
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 608232, Singapore
- Correspondence: (P.P.); (B.G.)
| |
Collapse
|
47
|
Wen D, Liang B, Zhou Y, Chen H, Jung TP. The Current Research of Combining Multi-Modal Brain-Computer Interfaces With Virtual Reality. IEEE J Biomed Health Inform 2020; 25:3278-3287. [PMID: 33373308 DOI: 10.1109/jbhi.2020.3047836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Combing brain-computer interfaces (BCI) and virtual reality (VR) is a novel technique in the field of medical rehabilitation and game entertainment. However, the limitations of BCI such as a limited number of action commands and low accuracy hinder the widespread use of BCI-VR. Recent studies have used hybrid BCIs that combine multiple BCI paradigms and/or the multi-modal biosensors to alleviate these issues, which may become the mainstream of BCIs in the future. The main purpose of this review is to discuss the current status of multi-modal BCI-VR. This study first reviewed the development of the BCI-VR, and explored the advantages and disadvantages of incorporating eye tracking, motor capture, and myoelectric sensing into the BCI-VR system. Then, this study discussed the development trend of the multi-modal BCI-VR, hoping to provide a pathway for further research in this field.
Collapse
|
48
|
Su F, Xu W. Enhancing Brain Plasticity to Promote Stroke Recovery. Front Neurol 2020; 11:554089. [PMID: 33192987 PMCID: PMC7661553 DOI: 10.3389/fneur.2020.554089] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Stroke disturbs both the structural and functional integrity of the brain. The understanding of stroke pathophysiology has improved greatly in the past several decades. However, effective therapy is still limited, especially for patients who are in the subacute or chronic phase. Multiple novel therapies have been developed to improve clinical outcomes by improving brain plasticity. These approaches either focus on improving brain remodeling and restoration or on constructing a neural bypass to avoid brain injury. This review describes emerging therapies, including modern rehabilitation, brain stimulation, cell therapy, brain-computer interfaces, and peripheral nervous transfer, and highlights treatment-induced plasticity. Key evidence from basic studies on the underlying mechanisms is also briefly discussed. These insights should lead to a deeper understanding of the overall neural circuit changes, the clinical relevance of these changes in stroke, and stroke treatment progress, which will assist in the development of future approaches to enhance brain function after stroke.
Collapse
Affiliation(s)
| | - Wendong Xu
- Department of Hand Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Stanica IC, Moldoveanu F, Portelli GP, Dascalu MI, Moldoveanu A, Ristea MG. Flexible Virtual Reality System for Neurorehabilitation and Quality of Life Improvement. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6045. [PMID: 33114272 PMCID: PMC7672612 DOI: 10.3390/s20216045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022]
Abstract
As life expectancy is mostly increasing, the incidence of many neurological disorders is also constantly growing. For improving the physical functions affected by a neurological disorder, rehabilitation procedures are mandatory, and they must be performed regularly. Unfortunately, neurorehabilitation procedures have disadvantages in terms of costs, accessibility and a lack of therapists. This paper presents Immersive Neurorehabilitation Exercises Using Virtual Reality (INREX-VR), our innovative immersive neurorehabilitation system using virtual reality. The system is based on a thorough research methodology and is able to capture real-time user movements and evaluate joint mobility for both upper and lower limbs, record training sessions and save electromyography data. The use of the first-person perspective increases immersion, and the joint range of motion is calculated with the help of both the HTC Vive system and inverse kinematics principles applied on skeleton rigs. Tutorial exercises are demonstrated by a virtual therapist, as they were recorded with real-life physicians, and sessions can be monitored and configured through tele-medicine. Complex movements are practiced in gamified settings, encouraging self-improvement and competition. Finally, we proposed a training plan and preliminary tests which show promising results in terms of accuracy and user feedback. As future developments, we plan to improve the system's accuracy and investigate a wireless alternative based on neural networks.
Collapse
Affiliation(s)
- Iulia-Cristina Stanica
- Department of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- Computer Science and Engineering Department, University Politehnica of Bucharest, 060042 Bucharest, Romania; (F.M.); (A.M.)
| | - Florica Moldoveanu
- Computer Science and Engineering Department, University Politehnica of Bucharest, 060042 Bucharest, Romania; (F.M.); (A.M.)
| | - Giovanni-Paul Portelli
- Department 4, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Maria-Iuliana Dascalu
- Department of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Alin Moldoveanu
- Computer Science and Engineering Department, University Politehnica of Bucharest, 060042 Bucharest, Romania; (F.M.); (A.M.)
| | | |
Collapse
|
50
|
Clinical Application of Virtual Reality for Upper Limb Motor Rehabilitation in Stroke: Review of Technologies and Clinical Evidence. J Clin Med 2020; 9:jcm9103369. [PMID: 33096678 PMCID: PMC7590210 DOI: 10.3390/jcm9103369] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
Neurorehabilitation for stroke is important for upper limb motor recovery. Conventional rehabilitation such as occupational therapy has been used, but novel technologies are expected to open new opportunities for better recovery. Virtual reality (VR) is a technology with a set of informatics that provides interactive environments to patients. VR can enhance neuroplasticity and recovery after a stroke by providing more intensive, repetitive, and engaging training due to several advantages, including: (1) tasks with various difficulty levels for rehabilitation, (2) augmented real-time feedback, (3) more immersive and engaging experiences, (4) more standardized rehabilitation, and (5) safe simulation of real-world activities of daily living. In this comprehensive narrative review of the application of VR in motor rehabilitation after stroke, mainly for the upper limbs, we cover: (1) the technologies used in VR rehabilitation, including sensors; (2) the clinical application of and evidence for VR in stroke rehabilitation; and (3) considerations for VR application in stroke rehabilitation. Meta-analyses for upper limb VR rehabilitation after stroke were identified by an online search of Ovid-MEDLINE, Ovid-EMBASE, the Cochrane Library, and KoreaMed. We expect that this review will provide insights into successful clinical applications or trials of VR for motor rehabilitation after stroke.
Collapse
|