1
|
Dmytriw AA, Hadjinicolaou A, Ntolkeras G, Tamilia E, Pesce M, Berto LF, Grant PE, Pang E, Ahtam B. Magnetoencephalography for the pediatric population, indications, acquisition and interpretation for the clinician. Neuroradiol J 2024:19714009241260801. [PMID: 38864180 PMCID: PMC11571317 DOI: 10.1177/19714009241260801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Magnetoencephalography (MEG) is an imaging technique that enables the assessment of cortical activity via direct measures of neurophysiology. It is a non-invasive and passive technique that is completely painless. MEG has gained increasing prominence in the field of pediatric neuroimaging. This dedicated review article for the pediatric population summarizes the fundamental technical and clinical aspects of MEG for the clinician. We discuss methods tailored for children to improve data quality, including child-friendly MEG facility environments and strategies to mitigate motion artifacts. We provide an in-depth overview on accurate localization of neural sources and different analysis methods, as well as data interpretation. The contemporary platforms and approaches of two quaternary pediatric referral centers are illustrated, shedding light on practical implementations in clinical settings. Finally, we describe the expanding clinical applications of MEG, including its pivotal role in presurgical evaluation of epilepsy patients, presurgical mapping of eloquent cortices (somatosensory and motor cortices, visual and auditory cortices, lateralization of language), its emerging relevance in autism spectrum disorder research and potential future clinical applications, and its utility in assessing mild traumatic brain injury. In conclusion, this review serves as a comprehensive resource of clinicians as well as researchers, offering insights into the evolving landscape of pediatric MEG. It discusses the importance of technical advancements, data acquisition strategies, and expanding clinical applications in harnessing the full potential of MEG to study neurological conditions in the pediatric population.
Collapse
Affiliation(s)
- Adam A. Dmytriw
- Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
- Division of Neuroradiology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Aristides Hadjinicolaou
- Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children’s Hospital, Boston, MA, USA
| | - Georgios Ntolkeras
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - Eleonora Tamilia
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - Matthew Pesce
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - Laura F. Berto
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - P. Ellen Grant
- Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - Elizabeth Pang
- Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Banu Ahtam
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Zhao C, Ong JH, Veic A, Patel AD, Jiang C, Fogel AR, Wang L, Hou Q, Das D, Crasto C, Chakrabarti B, Williams TI, Loutrari A, Liu F. Predictive processing of music and language in autism: Evidence from Mandarin and English speakers. Autism Res 2024; 17:1230-1257. [PMID: 38651566 DOI: 10.1002/aur.3133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Atypical predictive processing has been associated with autism across multiple domains, based mainly on artificial antecedents and consequents. As structured sequences where expectations derive from implicit learning of combinatorial principles, language and music provide naturalistic stimuli for investigating predictive processing. In this study, we matched melodic and sentence stimuli in cloze probabilities and examined musical and linguistic prediction in Mandarin- (Experiment 1) and English-speaking (Experiment 2) autistic and non-autistic individuals using both production and perception tasks. In the production tasks, participants listened to unfinished melodies/sentences and then produced the final notes/words to complete these items. In the perception tasks, participants provided expectedness ratings of the completed melodies/sentences based on the most frequent notes/words in the norms. While Experiment 1 showed intact musical prediction but atypical linguistic prediction in autism in the Mandarin sample that demonstrated imbalanced musical training experience and receptive vocabulary skills between groups, the group difference disappeared in a more closely matched sample of English speakers in Experiment 2. These findings suggest the importance of taking an individual differences approach when investigating predictive processing in music and language in autism, as the difficulty in prediction in autism may not be due to generalized problems with prediction in any type of complex sequence processing.
Collapse
Affiliation(s)
- Chen Zhao
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Jia Hoong Ong
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Anamarija Veic
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Aniruddh D Patel
- Department of Psychology, Tufts University, Medford, Massachusetts, USA
- Program in Brain, Mind, and Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada
| | - Cunmei Jiang
- Music College, Shanghai Normal University, Shanghai, China
| | - Allison R Fogel
- Department of Psychology, Tufts University, Medford, Massachusetts, USA
| | - Li Wang
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Qingqi Hou
- Department of Music and Dance, Nanjing Normal University of Special Education, Nanjing, China
| | - Dipsikha Das
- School of Psychology, Keele University, Staffordshire, UK
| | - Cara Crasto
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Bhismadev Chakrabarti
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Tim I Williams
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Ariadne Loutrari
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Fang Liu
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| |
Collapse
|
3
|
Lai B, Yi A, Zhang F, Wang S, Xin J, Li S, Yu L. Atypical brain lateralization for speech processing at the sublexical level in autistic children revealed by fNIRS. Sci Rep 2024; 14:2776. [PMID: 38307983 PMCID: PMC10837203 DOI: 10.1038/s41598-024-53128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Autistic children often exhibit atypical brain lateralization of language processing, but it is unclear what aspects of language contribute to this phenomenon. This study employed functional near-infrared spectroscopy to measure hemispheric lateralization by estimating hemodynamic responses associated with processing linguistic and non-linguistic auditory stimuli. The study involved a group of autistic children (N = 20, mean age = 5.8 years) and a comparison group of nonautistic peers (N = 20, mean age = 6.5 years). The children were presented with stimuli with systematically decreasing linguistic relevance: naturalistic native speech, meaningless native speech with scrambled word order, nonnative speech, and music. The results revealed that both groups showed left lateralization in the temporal lobe when listening to naturalistic native speech. However, the distinction emerged between autism and nonautistic in terms of processing the linguistic hierarchy. Specifically, the nonautistic comparison group demonstrated a systematic reduction in left lateralization as linguistic relevance decreased. In contrast, the autism group displayed no such pattern and showed no lateralization when listening to scrambled native speech accompanied by enhanced response in the right hemisphere. These results provide evidence of atypical neural specialization for spoken language in preschool- and school-age autistic children and shed new light on the underlying linguistic correlates contributing to such atypicality at the sublexical level.
Collapse
Affiliation(s)
- Baojun Lai
- Center for Autism Research, School of Education, Guangzhou University, Guangzhou, China
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Tiyudong Road Primary School (Xingguo), Guangzhou, China
| | - Aiwen Yi
- Department of Obstetrics and Gynecology, Department of Pediatrics; Guangdong Provincial Key Laboratory of Major 0bstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Laboratory of Maternal-Fetal Joint Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fen Zhang
- VITO Health, Flemish Institute for Technological Research, Mol, Belgium
| | - Suiping Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
| | - Jing Xin
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Suping Li
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Luodi Yu
- Center for Autism Research, School of Education, Guangzhou University, Guangzhou, China.
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
4
|
You Y, Correas A, White DR, Wagner LC, Jao Keehn RJ, Rosen BQ, Alemu K, Müller RA, Marinkovic K. Mapping access to meaning in adolescents with autism: Atypical lateralization and spatiotemporal patterns as a function of language ability. Neuroimage Clin 2023; 39:103467. [PMID: 37454468 PMCID: PMC10371850 DOI: 10.1016/j.nicl.2023.103467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/22/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Individuals with autism spectrum disorders (ASD) vary in their language abilities, associated with atypical patterns of brain activity. However, few studies have examined the spatiotemporal profiles of lexico-semantic processing in ASD, particularly as a function of language heterogeneity. Thirty-nine high-functioning adolescents with ASD and 21 typically developing (TD) peers took part in a lexical decision task that combined semantic access with demands on cognitive control. Spatiotemporal characteristics of the processing stages were examined with a multimodal anatomically-constrained magnetoencephalography (aMEG) approach, which integrates MEG with structural MRI. Additional EEG data were acquired from a limited montage simultaneously with MEG. TD adolescents showed the canonical left-dominant activity in frontotemporal regions during both early (N250m) and late (N400m) stages of lexical access and semantic integration. In contrast, the ASD participants showed bilateral engagement of the frontotemporal language network, indicative of compensatory recruitment of the right hemisphere. The left temporal N400m was prominent in both groups, confirming preserved attempts to access meaning. In contrast, the left prefrontal N400m was reduced in ASD participants, consistent with impaired semantic/contextual integration and inhibitory control. To further investigate the impact of language proficiency, the ASD sample was stratified into high- and low-performing (H-ASD and L-ASD) subgroups based on their task accuracy. The H-ASD subgroup performed on par with the TD group and showed greater activity in the right prefrontal and bilateral temporal cortices relative to the L-ASD subgroup, suggesting compensatory engagement. The L-ASD subgroup additionally showed reduced and delayed left prefrontal N400m, consistent with more profound semantic and executive impairments in this subgroup. These distinct spatiotemporal activity profiles reveal the neural underpinnings of the ASD-specific access to meaning and provide insight into the phenotypic heterogeneity of language in ASD, which may be a result of different neurodevelopmental trajectories and adoption of compensatory strategies.
Collapse
Affiliation(s)
- Yuqi You
- Department of Psychology, San Diego State University, San Diego, CA, United States; Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Angeles Correas
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - David R White
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Laura C Wagner
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - R Joanne Jao Keehn
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Burke Q Rosen
- Department of Psychology, San Diego State University, San Diego, CA, United States; Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| | - Kalekirstos Alemu
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Ralph-Axel Müller
- Department of Psychology, San Diego State University, San Diego, CA, United States; Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California San Diego, San Diego, CA, United States
| | - Ksenija Marinkovic
- Department of Psychology, San Diego State University, San Diego, CA, United States; Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California San Diego, San Diego, CA, United States; Department of Radiology, University of California San Diego, San Diego, CA, United States.
| |
Collapse
|
5
|
Braeutigam S, Scaife JC, Aziz T, Park RJ. A Longitudinal Magnetoencephalographic Study of the Effects of Deep Brain Stimulation on Neuronal Dynamics in Severe Anorexia Nervosa. Front Behav Neurosci 2022; 16:841843. [PMID: 35692383 PMCID: PMC9178415 DOI: 10.3389/fnbeh.2022.841843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
Anorexia Nervosa (AN) is a debilitating psychiatric disorder characterized by the relentless pursuit of thinness, leading to severe emaciation. Magnetoencephalography (MEG)was used to record the neuronal response in seven patients with treatment-resistant AN while completing a disorder-relevant food wanting task. The patients underwent a 15-month protocol, where MEG scans were conducted pre-operatively, post-operatively prior to deep brain stimulation (DBS) switch on, twice during a blind on/off month and at protocol end. Electrodes were implanted bilaterally into the nucleus accumbens with stimulation at the anterior limb of the internal capsule using rechargeable implantable pulse generators. Three patients met criteria as responders at 12 months of stimulation, showing reductions of eating disorder psychopathology of over 35%. An increase in alpha power, as well as evoked power at latencies typically associated with visual processing, working memory, and contextual integration was observed in ON compared to OFF sessions across all seven patients. Moreover, an increase in evoked power at P600-like latencies as well as an increase in γ-band phase-locking over anterior-to-posterior regions were observed for high- compared to low-calorie food image only in ON sessions. These findings indicate that DBS modulates neuronal process in regions far outside the stimulation target site and at latencies possibly reflecting task specific processing, thereby providing further evidence that deep brain stimulation can play a role in the treatment of otherwise intractable psychiatric disorders.
Collapse
Affiliation(s)
- Sven Braeutigam
- Oxford Centre for Human Brain Activity, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Wellcome Centre For Integrative Neuroimaging, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- *Correspondence: Sven Braeutigam
| | - Jessica Clare Scaife
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Tipu Aziz
- Nuffield Department of Surgical Sciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Department of Neurosurgery, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Rebecca J. Park
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
6
|
Alho J, Bharadwaj H, Khan S, Mamashli F, Perrachione TK, Losh A, McGuiggan NM, Joseph RM, Hämäläinen MS, Kenet T. Altered maturation and atypical cortical processing of spoken sentences in autism spectrum disorder. Prog Neurobiol 2021; 203:102077. [PMID: 34033856 DOI: 10.1016/j.pneurobio.2021.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/14/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Autism spectrum disorder (ASD) is associated with widespread receptive language impairments, yet the neural mechanisms underlying these deficits are poorly understood. Neuroimaging has shown that processing of socially-relevant sounds, including speech and non-speech, is atypical in ASD. However, it is unclear how the presence of lexical-semantic meaning affects speech processing in ASD. Here, we recorded magnetoencephalography data from individuals with ASD (N = 22, ages 7-17, 4 females) and typically developing (TD) peers (N = 30, ages 7-17, 5 females) during unattended listening to meaningful auditory speech sentences and meaningless jabberwocky sentences. After adjusting for age, ASD individuals showed stronger responses to meaningless jabberwocky sentences than to meaningful speech sentences in the same left temporal and parietal language regions where TD individuals exhibited stronger responses to meaningful speech. Maturational trajectories of meaningful speech responses were atypical in temporal, but not parietal, regions in ASD. Temporal responses were associated with ASD severity, while parietal responses were associated with aberrant involuntary attentional shifting in ASD. Our findings suggest a receptive speech processing dysfunction in ASD, wherein unattended meaningful speech elicits abnormal engagement of the language system, while unattended meaningless speech, filtered out in TD individuals, engages the language system through involuntary attention capture.
Collapse
Affiliation(s)
- Jussi Alho
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Hari Bharadwaj
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Speech, Language, and Hearing Sciences, and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sheraz Khan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fahimeh Mamashli
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tyler K Perrachione
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, USA
| | - Ainsley Losh
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Graduate School of Education, University of California, Riverside, CA, USA
| | - Nicole M McGuiggan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert M Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Matti S Hämäläinen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tal Kenet
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|