1
|
Yang J, Guo W, Pang X, You C, Zhou C, Gui Y, Ma D. fMRI used to observe the acute craniocerebral response of esophageal cancer related depressive patients treated by rTMS: Initial experience. Medicine (Baltimore) 2024; 103:e40253. [PMID: 39654206 PMCID: PMC11631008 DOI: 10.1097/md.0000000000040253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 12/12/2024] Open
Abstract
To observe the immediate craniocerebral response, changes of spontaneous nerve activity and functional connection after repeated transcranial magnetic stimulation (rTMS) in esophageal cancer patients with depression (ECPD) by functional magnetic resonance imaging (fMRI), and to explore the therapeutic effect, neuroactivity response and mechanism. Eleven patients with ECPD were enrolled to treated with single rTMS. The patients were examined by fMRI before and after the treatment. The changes of low frequency amplitude (ALFF) and the functional connection network between different brain regions of ALFF in patients were compared before and after rTMS treatment. Compared with those before rTMS treatment, the Hamilton Depression Rating Scale (HAMD) score decreased significantly after rTMS treatment (t = -7.63, P = .0001). The ALFF of bilateral putamen, left thalamus, left posterior cingulate gyrus and right middle temporal gyrus decreased significantly (P = .02). In addition, the functional connection between the cortex-limbic system-striatum-thalamus nerve loop increased in patients after rTMS treatment. rTMS may achieve the effect of rehabilitation treatment by improving the spontaneous neural activity and regulating the neural connection network of cortical-limbic systems-triatum-thalamus loop in ECPD.
Collapse
Affiliation(s)
- Jianquan Yang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Institute of Materia Medica, North Sichuan Medical College, Sichuan, China
| | - Wen Guo
- Institute of Materia Medica, North Sichuan Medical College, Sichuan, China
| | - Xuezhou Pang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chuanyu You
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chunyang Zhou
- Institute of Materia Medica, North Sichuan Medical College, Sichuan, China
| | - Yan Gui
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Daiyuan Ma
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
2
|
Andrade K, Pacella V. The unique role of anosognosia in the clinical progression of Alzheimer's disease: a disorder-network perspective. Commun Biol 2024; 7:1384. [PMID: 39448784 PMCID: PMC11502706 DOI: 10.1038/s42003-024-07076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Alzheimer's disease (AD) encompasses a long continuum from a preclinical phase, characterized by neuropathological alterations albeit normal cognition, to a symptomatic phase, marked by its clinical manifestations. Yet, the neural mechanisms responsible for cognitive decline in AD patients remain poorly understood. Here, we posit that anosognosia, emerging from an error-monitoring failure due to early amyloid-β deposits in the posterior cingulate cortex, plays a causal role in the clinical progression of AD by preventing patients from being aware of their deficits and implementing strategies to cope with their difficulties, thus fostering a vicious circle of cognitive decline.
Collapse
Affiliation(s)
- Katia Andrade
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne University, Pitié-Salpêtrière Hospital, 75013, Paris, France.
- FrontLab, Paris Brain Institute (Institut du Cerveau, ICM), AP-HP, Pitié-Salpêtrière Hospital, 75013, Paris, France.
| | - Valentina Pacella
- IUSS Cognitive Neuroscience (ICON) Center, Scuola Universitaria Superiore IUSS, Pavia, 27100, Italy
- Brain Connectivity and Behaviour Laboratory, Paris, France
| |
Collapse
|
3
|
Klöbl M, Reed MB, Handschuh P, Kaufmann U, Konadu ME, Ritter V, Spurny-Dworak B, Kranz GS, Lanzenberger R, Spies M. Gender Dysphoria and Sexual Euphoria: A Bayesian Perspective on the Influence of Gender-Affirming Hormone Therapy on Sexual Arousal. ARCHIVES OF SEXUAL BEHAVIOR 2024; 53:1859-1871. [PMID: 38216784 PMCID: PMC11106106 DOI: 10.1007/s10508-023-02778-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
Self-reported sexual orientation of transgender individuals occasionally changes over transition. Using functional magnetic resonance imaging, we tested the hypothesis that neural and behavioral patterns of sexual arousal in transgender individuals would shift from the assigned to the experienced gender (e.g., trans women's responses becoming more dissimilar to those of cis men and more similar to those of cis women). To this aim, trans women (N = 12) and trans men (N = 20) as well as cisgender women (N = 24) and cisgender men (N = 14) rated visual stimuli showing male-female, female-female or male-male intercourse for sexual arousal before and after four months of gender-affirming hormone therapy. A Bayesian framework allowed us to incorporate previous behavioral findings. The hypothesized changes could indeed be observed in the behavioral responses with the strongest results for trans men and female-female scenes. Activation of the ventral striatum supported our hypothesis only for female-female scenes in trans women. The respective application or depletion of androgens in trans men and trans women might partly explain this observation. The prominent role of female-female stimuli might be based on the differential responses they elicit in cis women and men or, in theory, the controversial concept of autogynephilia. We show that correlates of sexual arousal in transgender individuals might change in the direction of the experienced gender. Future investigations should elucidate the mechanistic role of sex hormones and the cause of the differential neural and behavioral findings.The study was registered at ClinicalTrials.gov (NCT02715232), March 22, 2016.
Collapse
Affiliation(s)
- Manfred Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Murray Bruce Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Patricia Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Ulrike Kaufmann
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Melisande Elisabeth Konadu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Vera Ritter
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Benjamin Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Reed MB, Handschuh PA, Klöbl M, Konadu ME, Kaufmann U, Hahn A, Kranz GS, Spies M, Lanzenberger R. The influence of sex steroid treatment on insular connectivity in gender dysphoria. Psychoneuroendocrinology 2023; 155:106336. [PMID: 37499299 DOI: 10.1016/j.psyneuen.2023.106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Sex-specific differences in brain connectivity were found in various neuroimaging studies, though little is known about sex steroid effects on insular functioning. Based on well-characterized sex differences in emotion regulation, interoception and higher-level cognition, gender-dysphoric individuals receiving gender-affirming hormone therapy represent an interesting cohort to investigate how sex hormones might influence insular connectivity and related brain functions. METHODS To analyze the potential effect of sex steroids on insular connectivity at rest, 11 transgender women, 14 transgender men, 20 cisgender women, and 11 cisgender men were recruited. All participants underwent two magnetic resonance imaging sessions involving resting-state acquisitions separated by a median time period of 4.5 months and also completed the Bermond-Vorst alexithymia questionnaire at the initial and final examination. Between scans, transgender subjects received gender-affirming hormone therapy. RESULTS A seed based functional connectivity analysis revealed a significant 2-way interaction effect of group-by-time between right insula, cingulum, left middle frontal gyrus and left angular gyrus. Post-hoc tests demonstrated an increase in connectivity for transgender women when compared to cisgender men. Furthermore, spectral dynamic causal modelling showed reduced effective connectivity from the posterior cingulum and left angular gyrus to the left middle frontal gyrus as well as from the right insula to the left middle frontal gyrus. Alexithymia changes were found after gender-affirming hormone therapy for transgender women in both fantasizing and identifying. CONCLUSION These findings suggest a considerable influence of estrogen administration and androgen suppression on brain networks implicated in interoception, own-body perception and higher-level cognition.
Collapse
Affiliation(s)
- Murray B Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Patricia A Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Manfred Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Melisande E Konadu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Ulrike Kaufmann
- Department of Obstetrics and Gynecology, Medical University of Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, China
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| |
Collapse
|
5
|
Klöbl M, Prillinger K, Diehm R, Doganay K, Lanzenberger R, Poustka L, Plener P, Konicar L. Individual brain regulation as learned via neurofeedback is related to affective changes in adolescents with autism spectrum disorder. Child Adolesc Psychiatry Ment Health 2023; 17:6. [PMID: 36635760 PMCID: PMC9837918 DOI: 10.1186/s13034-022-00549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/18/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Emotions often play a role in neurofeedback (NF) regulation strategies. However, investigations of the relationship between the induced neuronal changes and improvements in affective domains are scarce in electroencephalography-based studies. Thus, we extended the findings of the first study on slow cortical potential (SCP) NF in autism spectrum disorder (ASD) by linking affective changes to whole-brain activity during rest and regulation. METHODS Forty-one male adolescents with ASD were scanned twice at rest using functional magnetic resonance imaging. Between scans, half underwent NF training, whereas the other half received treatment as usual. Furthermore, parents reported on their child's affective characteristics at each measurement. The NF group had to alternatingly produce negative and positive SCP shifts during training and was additionally scanned using functional magnetic resonance imaging while applying their developed regulation strategies. RESULTS No significant treatment group-by-time interactions in affective or resting-state measures were found. However, we found increases of resting activity in the anterior cingulate cortex and right inferior temporal gyrus as well as improvements in affective characteristics over both groups. Activation corresponding to SCP differentiation in these regions correlated with the affective improvements. A further correlation was found for Rolandic operculum activation corresponding to positive SCP shifts. There were no significant correlations with the respective achieved SCP regulation during NF training. CONCLUSION SCP NF in ASD did not lead to superior improvements in neuronal or affective functioning compared to treatment as usual. However, the affective changes might be related to the individual strategies and their corresponding activation patterns as indicated by significant correlations on the whole-brain level. Trial registration This clinical trial was registered at drks.de (DRKS00012339) on 20th April, 2017.
Collapse
Affiliation(s)
- Manfred Klöbl
- Department of Psychiatry & Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Karin Prillinger
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Robert Diehm
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Kamer Doganay
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry & Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry, Medical University of Göttingen, Göttingen, Germany
| | - Paul Plener
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Ulm, Ulm, Germany
| | - Lilian Konicar
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Dehghani A, Soltanian-Zadeh H, Hossein-Zadeh GA. Probing fMRI brain connectivity and activity changes during emotion regulation by EEG neurofeedback. Front Hum Neurosci 2023; 16:988890. [PMID: 36684847 PMCID: PMC9853008 DOI: 10.3389/fnhum.2022.988890] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Despite the existence of several emotion regulation studies using neurofeedback, interactions among a small number of regions were evaluated, and therefore, further investigation is needed to understand the interactions of the brain regions involved in emotion regulation. We implemented electroencephalography (EEG) neurofeedback with simultaneous functional magnetic resonance imaging (fMRI) using a modified happiness-inducing task through autobiographical memories to upregulate positive emotion. Then, an explorative analysis of whole brain regions was done to understand the effect of neurofeedback on brain activity and the interaction of whole brain regions involved in emotion regulation. The participants in the control and experimental groups were asked to do emotion regulation while viewing positive images of autobiographical memories and getting sham or real (based on alpha asymmetry) EEG neurofeedback, respectively. The proposed multimodal approach quantified the effects of EEG neurofeedback in changing EEG alpha power, fMRI blood oxygenation level-dependent (BOLD) activity of prefrontal, occipital, parietal, and limbic regions (up to 1.9% increase), and functional connectivity in/between prefrontal, parietal, limbic system, and insula in the experimental group. New connectivity links were identified by comparing the brain functional connectivity between experimental conditions (Upregulation and View blocks) and also by comparing the brain connectivity of the experimental and control groups. Psychometric assessments confirmed significant changes in positive and negative mood states in the experimental group by neurofeedback. Based on the exploratory analysis of activity and connectivity among all brain regions involved in emotion regions, we found significant BOLD and functional connectivity increases due to EEG neurofeedback in the experimental group, but no learning effect was observed in the control group. The results reveal several new connections among brain regions as a result of EEG neurofeedback which can be justified according to emotion regulation models and the role of those regions in emotion regulation and recalling positive autobiographical memories.
Collapse
Affiliation(s)
- Amin Dehghani
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran,Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States,*Correspondence: Amin Dehghani, ,
| | - Hamid Soltanian-Zadeh
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran,Medical Image Analysis Lab, Department of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, United States,School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Gholam-Ali Hossein-Zadeh
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran,School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
7
|
Orth L, Meeh J, Gur RC, Neuner I, Sarkheil P. Frontostriatal circuitry as a target for fMRI-based neurofeedback interventions: A systematic review. Front Hum Neurosci 2022; 16:933718. [PMID: 36092647 PMCID: PMC9449529 DOI: 10.3389/fnhum.2022.933718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Dysregulated frontostriatal circuitries are viewed as a common target for the treatment of aberrant behaviors in various psychiatric and neurological disorders. Accordingly, experimental neurofeedback paradigms have been applied to modify the frontostriatal circuitry. The human frontostriatal circuitry is topographically and functionally organized into the "limbic," the "associative," and the "motor" subsystems underlying a variety of affective, cognitive, and motor functions. We conducted a systematic review of the literature regarding functional magnetic resonance imaging-based neurofeedback studies that targeted brain activations within the frontostriatal circuitry. Seventy-nine published studies were included in our survey. We assessed the efficacy of these studies in terms of imaging findings of neurofeedback intervention as well as behavioral and clinical outcomes. Furthermore, we evaluated whether the neurofeedback targets of the studies could be assigned to the identifiable frontostriatal subsystems. The majority of studies that targeted frontostriatal circuitry functions focused on the anterior cingulate cortex, the dorsolateral prefrontal cortex, and the supplementary motor area. Only a few studies (n = 14) targeted the connectivity of the frontostriatal regions. However, post-hoc analyses of connectivity changes were reported in more cases (n = 32). Neurofeedback has been frequently used to modify brain activations within the frontostriatal circuitry. Given the regulatory mechanisms within the closed loop of the frontostriatal circuitry, the connectivity-based neurofeedback paradigms should be primarily considered for modifications of this system. The anatomical and functional organization of the frontostriatal system needs to be considered in decisions pertaining to the neurofeedback targets.
Collapse
Affiliation(s)
- Linda Orth
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Johanna Meeh
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany
| | - Pegah Sarkheil
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| |
Collapse
|
8
|
Lubianiker N, Paret C, Dayan P, Hendler T. Neurofeedback through the lens of reinforcement learning. Trends Neurosci 2022; 45:579-593. [PMID: 35550813 DOI: 10.1016/j.tins.2022.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/11/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
Despite decades of experimental and clinical practice, the neuropsychological mechanisms underlying neurofeedback (NF) training remain obscure. NF is a unique form of reinforcement learning (RL) task, during which participants are provided with rewarding feedback regarding desired changes in neural patterns. However, key RL considerations - including choices during practice, prediction errors, credit-assignment problems, or the exploration-exploitation tradeoff - have infrequently been considered in the context of NF. We offer an RL-based framework for NF, describing different internal states, actions, and rewards in common NF protocols, thus fashioning new proposals for characterizing, predicting, and hastening the course of learning. In this way we hope to advance current understanding of neural regulation via NF, and ultimately to promote its effectiveness, personalization, and clinical utility.
Collapse
Affiliation(s)
- Nitzan Lubianiker
- School of Psychological Sciences, Gershon H. Gordon Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - Christian Paret
- School of Psychological Sciences, Gershon H. Gordon Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Peter Dayan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; University of Tübingen, Tübingen, Germany
| | - Talma Hendler
- School of Psychological Sciences, Gershon H. Gordon Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol school of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
9
|
Serotonergic modulation of effective connectivity in an associative relearning network during task and rest. Neuroimage 2022; 249:118887. [PMID: 34999203 DOI: 10.1016/j.neuroimage.2022.118887] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022] Open
Abstract
An essential core function of one's cognitive flexibility is the use of acquired knowledge and skills to adapt to ongoing environmental changes. Animal models have highlighted the influence serotonin has on neuroplasticity. These effects have been predominantly demonstrated during emotional relearning which is theorized as a possible model for depression. However, translation of these mechanisms is in its infancy. To this end, we assessed changes in effective connectivity at rest and during associative learning as a proxy of neuroplastic changes in healthy volunteers. 76 participants underwent 6 weeks of emotional or non-emotional (re)learning (face-matching or Chinese character-German noun matching). During relearning participants either self-administered 10 mg/day of the selective serotonin reuptake inhibitor (SSRI) escitalopram or placebo in a double-blind design. Associative learning tasks, resting-state and structural images were recorded before and after both learning phases (day 1, 21 and 42). Escitalopram intake modulated relearning changes in a network encompassing the right insula, anterior cingulate cortex and right angular gyrus. Here, the process of relearning during SSRI intake showed a greater decrease in effective connectivity from the right insula to both the anterior cingulate cortex and right angular gyrus, with increases in the opposite direction when compared to placebo. In contrast, intrinsic connections and those at resting-state were only marginally affected by escitalopram. Further investigation of gray matter volume changes in these functionally active regions revealed no significant SSRI-induced structural changes. These findings indicate that the right insula plays a central role in the process of relearning and SSRIs further potentiate this effect. In sum, we demonstrated that SSRIs amplify learning-induced effective connections rather than affecting the intrinsic task connectivity or that of resting-state.
Collapse
|
10
|
Escitalopram modulates learning content-specific neuroplasticity of functional brain networks. Neuroimage 2021; 247:118829. [PMID: 34923134 DOI: 10.1016/j.neuroimage.2021.118829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023] Open
Abstract
Learning-induced neuroplastic changes, further modulated by content and setting, are mirrored in brain functional connectivity (FC). In animal models, selective serotonin reuptake inhibitors (SSRIs) have been shown to facilitate neuroplasticity. This is especially prominent during emotional relearning, such as fear extinction, which may translate to clinical improvements in patients. To investigate a comparable modulation of neuroplasticity in humans, 99 healthy subjects underwent three weeks of emotional (matching faces) or non-emotional learning (matching Chinese characters to unrelated German nouns). Shuffled pairings of the original content were subsequently relearned for the same time. During relearning, subjects received either a daily dose of the SSRI escitalopram or placebo. Resting-state functional magnetic resonance imaging was performed before and after the (re-)learning phases. FC changes in a network comprising Broca's area, the medial prefrontal cortex, the right inferior temporal and left lingual gyrus were modulated by escitalopram intake. More specifically, it increased the bidirectional connectivity between medial prefrontal cortex and lingual gyrus for non-emotional and the connectivity from medial prefrontal cortex to Broca's area for emotional relearning. The context dependence of these effects together with behavioral correlations supports the assumption that SSRIs in clinical practice improve neuroplasticity rather than psychiatric symptoms per se. Beyond expanding the complexities of learning, these findings emphasize the influence of external factors on human neuroplasticity.
Collapse
|
11
|
Direito B, Ramos M, Pereira J, Sayal A, Sousa T, Castelo-Branco M. Directly Exploring the Neural Correlates of Feedback-Related Reward Saliency and Valence During Real-Time fMRI-Based Neurofeedback. Front Hum Neurosci 2021; 14:578119. [PMID: 33613202 PMCID: PMC7893090 DOI: 10.3389/fnhum.2020.578119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/28/2020] [Indexed: 01/04/2023] Open
Abstract
Introduction: The potential therapeutic efficacy of real-time fMRI Neurofeedback has received increasing attention in a variety of psychological and neurological disorders and as a tool to probe cognition. Despite its growing popularity, the success rate varies significantly, and the underlying neural mechanisms are still a matter of debate. The question whether an individually tailored framework positively influences neurofeedback success remains largely unexplored. Methods: To address this question, participants were trained to modulate the activity of a target brain region, the visual motion area hMT+/V5, based on the performance of three imagery tasks with increasing complexity: imagery of a static dot, imagery of a moving dot with two and with four opposite directions. Participants received auditory feedback in the form of vocalizations with either negative, neutral or positive valence. The modulation thresholds were defined for each participant according to the maximum BOLD signal change of their target region during the localizer run. Results: We found that 4 out of 10 participants were able to modulate brain activity in this region-of-interest during neurofeedback training. This rate of success (40%) is consistent with the neurofeedback literature. Whole-brain analysis revealed the recruitment of specific cortical regions involved in cognitive control, reward monitoring, and feedback processing during neurofeedback training. Individually tailored feedback thresholds did not correlate with the success level. We found region-dependent neuromodulation profiles associated with task complexity and feedback valence. Discussion: Findings support the strategic role of task complexity and feedback valence on the modulation of the network nodes involved in monitoring and feedback control, key variables in neurofeedback frameworks optimization. Considering the elaborate design, the small sample size here tested (N = 10) impairs external validity in comparison to our previous studies. Future work will address this limitation. Ultimately, our results contribute to the discussion of individually tailored solutions, and justify further investigation concerning volitional control over brain activity.
Collapse
Affiliation(s)
- Bruno Direito
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Manuel Ramos
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
| | - João Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Alexandre Sayal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Siemens Healthineers, Lisbon, Portugal
| | - Teresa Sousa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Konicar L, Radev S, Prillinger K, Klöbl M, Diehm R, Birbaumer N, Lanzenberger R, Plener PL, Poustka L. Volitional modification of brain activity in adolescents with Autism Spectrum Disorder: A Bayesian analysis of Slow Cortical Potential neurofeedback. Neuroimage Clin 2021; 29:102557. [PMID: 33486138 PMCID: PMC7829342 DOI: 10.1016/j.nicl.2021.102557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/18/2020] [Accepted: 01/02/2021] [Indexed: 11/29/2022]
Abstract
Autism spectrum disorder is (ASD) characterized by a persisting triad of impairments of social interaction, language as well as inflexible, stereotyped and ritualistic behaviors. Increasingly, scientific evidence suggests a neurobiological basis of these emotional, social and cognitive deficits in individuals with ASD. The aim of this randomized controlled brain self-regulation intervention study was to investigate whether the core symptomatology of ASD could be reduced via an electroencephalography (EEG) based brain self-regulation training of Slow Cortical Potentials (SCP). 41 male adolescents with ASD were recruited and allocated to a) an experimental group undergoing 24 sessions of EEG-based brain training (n1 = 21), or to b) an active control group undergoing conventional treatment (n2 = 20), that is, clinical counseling during a 3-months intervention period. We employed real-time neurofeedback training recorded from a fronto-central electrode intended to enable participants to volitionally regulate their brain activity. Core autistic symptomatology was measured at six time points during the intervention and analyzed with Bayesian multilevel approach to characterize changes in core symptomatology. Additional Bayesian models were formulated to describe the neural dynamics of the training process as indexed by SCP (time-domain) and power density (PSD, frequency-domain) measures. The analysis revealed a substantial improvement in the core symptomatology of ASD in the experimental group (reduction of 21.38 points on the Social Responsiveness Scale, SD = 5.29), which was slightly superior to that observed in the control group (evidence Ratio = 5.79). Changes in SCP manifested themselves as different trajectories depending on the different feedback conditions and tasks. Further, the model of PSD revealed a continuous decrease in delta power, parallel to an increase in alpha power. Most notably, a non-linear (quadratic) model turned out to be better at predicting the data than a linear model across all analyses. Taken together, our analyses suggest that behavioral and neural processes of change related to neurofeedback training are complex and non-linear. Moreover, they have implications for the design of future trials and training protocols.
Collapse
Affiliation(s)
- L Konicar
- Department of Child and Adolescence Psychiatry, Medical University of Vienna, Vienna, Austria.
| | - S Radev
- Department of Child and Adolescence Psychiatry, Medical University of Vienna, Vienna, Austria; Institute of Psychology, University of Heidelberg, Germany
| | - K Prillinger
- Department of Child and Adolescence Psychiatry, Medical University of Vienna, Vienna, Austria
| | - M Klöbl
- Neuroimaging Labs, Department of Psychiatry & Psychotherapy, Medical University of Vienna, Austria
| | - R Diehm
- Department of Child and Adolescence Psychiatry, Medical University of Vienna, Vienna, Austria
| | - N Birbaumer
- Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - R Lanzenberger
- Neuroimaging Labs, Department of Psychiatry & Psychotherapy, Medical University of Vienna, Austria
| | - P L Plener
- Department of Child and Adolescence Psychiatry, Medical University of Vienna, Vienna, Austria
| | - L Poustka
- Department of Child and Adolescence Psychiatry, Medical University of Göttingen, Göttingen, Germany
| |
Collapse
|