1
|
Merner AR, Frazier TW, Ford PJ, Lapin B, Wilt J, Racine E, Gase N, Leslie E, Machado A, Vitek JL, Kubu CS. A Patient-Centered Perspective on Changes in Personal Characteristics After Deep Brain Stimulation. JAMA Netw Open 2024; 7:e2434255. [PMID: 39292457 PMCID: PMC11411387 DOI: 10.1001/jamanetworkopen.2024.34255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Importance Deep brain stimulation (DBS) results in improvements in motor function and quality of life in patients with Parkinson disease (PD), which might impact a patient's perception of valued personal characteristics. Prior studies investigating whether DBS causes unwanted changes to oneself or one's personality have methodological limitations that should be addressed. Objective To determine whether DBS is associated with changes in characteristics that patients with PD identify as personally meaningful. Design, Setting, and Participants This cohort study assessed changes in visual analog scale (VAS) ratings reflecting the extent to which patients with PD manifested individually identified personal characteristics before and 6 and 12 months after DBS at a large academic medical center from February 21, 2018, to December 9, 2021. The VAS findings were tailored to reflect the top 3 individually identified personal characteristics the patient most feared losing. The VASs were scored from 0 to 10, with 0 representing the least and 10 the most extreme manifestation of the trait. Change scores were examined at the individual level. Content analysis was used to code the qualitative data. Qualitative and quantitative analyses were performed from January 12, 2019 (initial qualitative coding), to December 15, 2023. Exposure Deep brain stimulation. Main Outcomes and Measures The primary outcome variable was the mean VAS score for the top 3 personal characteristics. The secondary outcome was the incidence of meaningful changes on the patients' top 3 characteristics at the individual level. Results Fifty-two of 54 dyads of patients with PD and their care partners (96.3%) were recruited from a consecutive series approved for DBS (36 patients [69.2%] were male and 45 care partners [86.5%] were female; mean [SD] age of patients, 61.98 [8.55] years). Two patients and 1 care partner were lost to follow-up. Increases in the mean VAS score (indicative of greater manifestation of [ie, positive changes in] specific characteristics) were apparent following DBS for ratings of both the patients (Wald χ2 = 16.104; P < .001) and care partners (Wald χ2 = 6.746; P < .001) over time. The slopes of the changes for both the patient and care partners were correlated, indicating agreement in observed changes over time. The individual level analyses indicated that scores for most patients and care partners remained the same or increased. Conclusions and Relevance In this cohort study, participants reported greater (more positive) manifestations of individually identified, valued characteristics after DBS. These findings may be relevant to informing decision-making for patients with advanced PD who are considering DBS.
Collapse
Affiliation(s)
- Amanda R Merner
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, Ohio
- Center for Bioethics, Harvard Medical School, Boston, Massachusetts
| | - Thomas W Frazier
- Department of Psychology, John Carroll University, University Heights, Ohio
- Department of Pediatrics, SUNY Upstate New York, Syracuse
- Department of Psychology, SUNY Upstate New York, Syracuse
| | - Paul J Ford
- Center for Bioethics, Cleveland Clinic, Cleveland, Ohio
- Department of Neurology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Brittany Lapin
- Department of Neurology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Center for Outcomes Research and Evaluation, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Joshua Wilt
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Eric Racine
- Montreal Clinical Research Institute, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Natalie Gase
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, Ohio
| | - Essence Leslie
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, Ohio
| | - Andre Machado
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, Ohio
- Department of Neurology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis
| | - Cynthia S Kubu
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, Ohio
- Department of Neurology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
2
|
Özütemiz C, White M, Elvendahl W, Eryaman Y, Marjańska M, Metzger GJ, Patriat R, Kulesa J, Harel N, Watanabe Y, Grant A, Genovese G, Cayci Z. Use of a Commercial 7-T MRI Scanner for Clinical Brain Imaging: Indications, Protocols, Challenges, and Solutions-A Single-Center Experience. AJR Am J Roentgenol 2023; 221:788-804. [PMID: 37377363 PMCID: PMC10825876 DOI: 10.2214/ajr.23.29342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The first commercially available 7-T MRI scanner (Magnetom Terra) was approved by the FDA in 2017 for clinical imaging of the brain and knee. After initial protocol development and sequence optimization efforts in volunteers, the 7-T system, in combination with an FDA-approved 1-channel transmit/32-channel receive array head coil, can now be routinely used for clinical brain MRI examinations. The ultrahigh field strength of 7-T MRI has the advantages of improved spatial resolution, increased SNR, and increased CNR but also introduces an array of new technical challenges. The purpose of this article is to describe an institutional experience with the use of the commercially available 7-T MRI scanner for routine clinical brain imaging. Specific clinical indications for which 7-T MRI may be useful for brain imaging include brain tumor evaluation with possible perfusion imaging and/or spectroscopy, radiotherapy planning; evaluation of multiple sclerosis and other demyelinating diseases, evaluation of Parkinson disease and guidance of deep brain stimulator placement, high-detail intracranial MRA and vessel wall imaging, evaluation of pituitary pathology, and evaluation of epilepsy. Detailed protocols, including sequence parameters, for these various indications are presented, and implementation challenges (including artifacts, safety, and side effects) and potential solutions are explored.
Collapse
Affiliation(s)
- Can Özütemiz
- Department of Radiology, University of Minnesota, 420 Delaware St SE, MMC 292, Minneapolis, MN 55455
| | - Matthew White
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Wendy Elvendahl
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Rémi Patriat
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Jeramy Kulesa
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Noam Harel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Yoichi Watanabe
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN
| | - Andrea Grant
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Guglielmo Genovese
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Zuzan Cayci
- Department of Radiology, University of Minnesota, 420 Delaware St SE, MMC 292, Minneapolis, MN 55455
- Center for Clinical Imaging Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
3
|
Sadeghi-Tarakameh A, DelaBarre L, Zulkarnain NIH, Harel N, Eryaman Y. Implant-friendly MRI of deep brain stimulation electrodes at 7 T. Magn Reson Med 2023; 90:2627-2642. [PMID: 37533196 PMCID: PMC10543551 DOI: 10.1002/mrm.29825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE The purpose of this study is to present a strategy to calculate the implant-friendly (IF) excitation modes-which mitigate the RF heating at the contacts of deep brain stimulation (DBS) electrodes-of multichannel RF coils at 7 T. METHODS An induced RF current on an implantable electrode generates a scattered magnetic field whose left-handed circularly polarizing component (B 1 + $$ B{1}^{+} $$ ) is approximated using aB 1 + $$ B{1}^{+} $$ -mapping technique and subsequently used as a gauge for the electrode's induced current. Using this approach, the relative induced currents resulting from each channel of a multichannel RF coil on the DBS electrode were calculated. The IF modes of the corresponding multichannel coil were determined by calculating the null space of the relative induced currents. The proposed strategy was tested and validated for unilateral and bilateral commercial DBS electrodes (directional lead; Infinity DBS system, Abbott Laboratories) placed inside a uniform phantom by performing heating and imaging studies on a 7T MRI scanner using a 16-channel transceive RF coil. RESULTS Neither individual IF modes nor shim solutions obtained from IF modes induced significant temperature increase when used for a high-power turbo spin-echo sequence. In contrast, shimming with the scanner's toolbox (i.e., based on per-channelB 1 + $$ B{1}^{+} $$ fields) resulted in a more than 2°C temperature increase for the same amount of input power. CONCLUSION A strategy for calculating the IF modes of a multichannel RF coil is presented. This strategy was validated using a 16-channel RF coil at 7 T for unilateral and bilateral commercial DBS electrodes inside a uniform phantom.
Collapse
Affiliation(s)
| | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Noam Harel
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Kremer NI, Roberts MJ, Potters WV, Dilai J, Mathiopoulou V, Rijks N, Drost G, van Laar T, van Dijk JMC, Beudel M, de Bie RMA, van den Munckhof P, Janssen MLF, Schuurman PR, Bot M. Dorsal subthalamic nucleus targeting in deep brain stimulation: microelectrode recording versus 7-Tesla connectivity. Brain Commun 2023; 5:fcad298. [PMID: 38025271 PMCID: PMC10664414 DOI: 10.1093/braincomms/fcad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Connectivity-derived 7-Tesla MRI segmentation and intraoperative microelectrode recording can both assist subthalamic nucleus targeting for deep brain stimulation in Parkinson's disease. It remains unclear whether deep brain stimulation electrodes placed in the 7-Tesla MRI segmented subdivision with predominant projections to cortical motor areas (hyperdirect pathway) achieve superior motor improvement and whether microelectrode recording can accurately distinguish the motor subdivision. In 25 patients with Parkinson's disease, deep brain stimulation electrodes were evaluated for being inside or outside the predominantly motor-connected subthalamic nucleus (motor-connected subthalamic nucleus or non-motor-connected subthalamic nucleus, respectively) based on 7-Tesla MRI connectivity segmentation. Hemi-body motor improvement (Movement Disorder Society Unified Parkinson's Disease Rating Scale, Part III) and microelectrode recording characteristics of multi- and single-unit activities were compared between groups. Deep brain stimulation electrodes placed in the motor-connected subthalamic nucleus resulted in higher hemi-body motor improvement, compared with electrodes placed in the non-motor-connected subthalamic nucleus (80% versus 52%, P < 0.0001). Multi-unit activity was found slightly higher in the motor-connected subthalamic nucleus versus the non-motor-connected subthalamic nucleus (P < 0.001, receiver operating characteristic 0.63); single-unit activity did not differ between groups. Deep brain stimulation in the connectivity-derived 7-Tesla MRI subthalamic nucleus motor segment produced a superior clinical outcome; however, microelectrode recording did not accurately distinguish this subdivision within the subthalamic nucleus.
Collapse
Affiliation(s)
- Naomi I Kremer
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Mark J Roberts
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6211 LK, The Netherlands
| | - Wouter V Potters
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - José Dilai
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Varvara Mathiopoulou
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Niels Rijks
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Gea Drost
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Teus van Laar
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - J Marc C van Dijk
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Martijn Beudel
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Rob M A de Bie
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Pepijn van den Munckhof
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Marcus L F Janssen
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht 6229 HX, The Netherlands
| | - P Richard Schuurman
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Maarten Bot
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
5
|
Welton T, Hartono S, Shih YC, Schwarz ST, Xing Y, Tan EK, Auer DP, Harel N, Chan LL. Ultra-high-field 7T MRI in Parkinson's disease: ready for clinical use?-a narrative review. Quant Imaging Med Surg 2023; 13:7607-7620. [PMID: 37969629 PMCID: PMC10644128 DOI: 10.21037/qims-23-509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/15/2023] [Indexed: 11/17/2023]
Abstract
Background and Objective The maturation of ultra-high-field magnetic resonance imaging (MRI) [≥7 Tesla (7T)] has improved our capability to depict and characterise brain structures efficiently, with better signal-to-noise ratio (SNR) and spatial resolution. We evaluated whether these improvements benefit the clinical detection and management of Parkinson's disease (PD). Methods We performed a literature search in March 2023 in PubMed (MEDLINE), EMBASE and Google Scholar for articles on "7T MRI" AND "Parkinson*", written in English, published between inception and 1st March, 2023, which we synthesised in narrative form. Key Content and Findings In deep-brain stimulation (DBS) surgical planning, early studies show that 7T MRI can distinguish anatomical substructures, and that this results in reduced adverse effects. In other areas, while there is strong evidence for improved accuracy and precision of 7T MRI-based measurements for PD, there is limited evidence for meaningful clinical translation. In particular, neuromelanin-iron complex quantification and visualisation in midbrain nuclei is enhanced, enabling depiction of nigrosomes 1-5, improved morphometry and vastly improved radiological assessments; however, studies on the related clinical outcomes, diagnosis, subtyping, differentiation of atypical parkinsonisms, and monitoring of treatment response using 7T MRI are lacking. Moreover, improvements in clinical utility must be great enough to justify the additional costs. Conclusions Together, current evidence supports feasible future clinical implementation of 7T MRI for PD. Future impacts to clinical decision making for diagnosis, differentiation, and monitoring of progression or treatment response are likely; however, to achieve this, further longitudinal studies using 7T MRI are needed in prodromal, early-stage PD and parkinsonism cohorts focusing on clinical translational potential.
Collapse
Affiliation(s)
- Thomas Welton
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Septian Hartono
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore
| | - Yao-Chia Shih
- Duke-NUS Medical School, Singapore, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore
- Graduate Institute of Medicine, Yuan Ze University and National Taiwan University, Taipei
| | - Stefan T. Schwarz
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Radiology, Cardiff and Vale University Health Board, Cardiff, Wales, UK
| | - Yue Xing
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Eng-King Tan
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Dorothee P. Auer
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Ling-Ling Chan
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
6
|
Kremer NI, van Laar T, Lange SF, Statius Muller S, la Bastide-van Gemert S, Oterdoom DM, Drost G, van Dijk JMC. STN-DBS electrode placement accuracy and motor improvement in Parkinson's disease: systematic review and individual patient meta-analysis. J Neurol Neurosurg Psychiatry 2023; 94:236-244. [PMID: 36207065 DOI: 10.1136/jnnp-2022-329192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective neurosurgical treatment for Parkinson's disease. Surgical accuracy is a critical determinant to achieve an adequate DBS effect on motor performance. A two-millimetre surgical accuracy is commonly accepted, but scientific evidence is lacking. A systematic review and meta-analysis of study-level and individual patient data (IPD) was performed by a comprehensive search in MEDLINE, EMBASE and Cochrane Library. Primary outcome measures were (1) radial error between the implanted electrode and target; (2) DBS motor improvement on the Unified Parkinson's Disease Rating Scale part III (motor examination). On a study level, meta-regression analysis was performed. Also, publication bias was assessed. For IPD meta-analysis, a linear mixed effects model was used. Forty studies (1391 patients) were included, reporting radial errors of 0.45-1.86 mm. Errors within this range did not significantly influence the DBS effect on motor improvement. Additional IPD analysis (206 patients) revealed that a mean radial error of 1.13±0.75 mm did not significantly change the extent of DBS motor improvement. Our meta-analysis showed a huge publication bias on accuracy data in DBS. Therefore, the current literature does not provide an unequivocal upper threshold for acceptable accuracy of STN-DBS surgery. Based on the current literature, DBS-electrodes placed within a 2 mm range of the intended target do not have to be repositioned to enhance motor improvement after STN-DBS for Parkinson's disease. However, an indisputable upper cut-off value for surgical accuracy remains to be established. PROSPERO registration number is CRD42018089539.
Collapse
Affiliation(s)
- Naomi I Kremer
- Neurosurgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Teus van Laar
- Neurology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Stèfan F Lange
- Neurosurgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Sijmen Statius Muller
- Neurosurgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Dl Marinus Oterdoom
- Neurosurgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Gea Drost
- Neurosurgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Neurology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - J Marc C van Dijk
- Neurosurgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Mathiopoulou V, Rijks N, Caan MWA, Liebrand LC, Ferreira F, de Bie RMA, van den Munckhof P, Schuurman PR, Bot M. Utilizing 7-Tesla Subthalamic Nucleus Connectivity in Deep Brain Stimulation for Parkinson Disease. Neuromodulation 2023; 26:333-339. [PMID: 35216874 DOI: 10.1016/j.neurom.2022.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a highly effective surgical treatment for patients with advanced Parkinson disease (PD). Combining 7.0-Tesla (7T) T2- and diffusion-weighted imaging (DWI) sequences allows for selective segmenting of the motor part of the STN and, thus, for possible optimization of DBS. MATERIALS AND METHODS 7T T2 and DWI sequences were obtained, and probabilistic segmentation of motor, associative, and limbic STN segments was performed. Left- and right-sided motor outcome (Movement Disorders Society Unified Parkinson's Disease Rating Scale) scores were used for evaluating the correspondence between the active electrode contacts in selectively segmented STN and the clinical DBS effect. The Bejjani line was reviewed for crossing of segments. RESULTS A total of 50 STNs were segmented in 25 patients and proved highly feasible. Although the highest density of motor connections was situated in the dorsolateral STN for all patients, the exact partitioning of segments differed considerably. For all the active electrode contacts situated within the predominantly motor-connected segment of the STN, the average hemi-body Unified Parkinson's Disease Rating Scale motor improvement was 80%; outside this segment, it was 52% (p < 0.01). The Bejjani line was situated in the motor segment for 32 STNs. CONCLUSION The implementation of 7T T2 and DWI segmentation of the STN in DBS for PD is feasible and offers insight into the location of the motor segment. Segmentation-guided electrode placement is likely to further improve motor response in DBS for PD. However, commercially available DBS software for postprocessing imaging would greatly facilitate widespread implementation.
Collapse
Affiliation(s)
| | - Niels Rijks
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, The Netherlands
| | - Matthan W A Caan
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Luka C Liebrand
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Francisca Ferreira
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, UK
| | - Rob M A de Bie
- Department of Neurology, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | - Maarten Bot
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Wu B, Ling Y, Zhang C, Liu Y, Xuan R, Xu J, Li Y, Guo Q, Wang S, Liu L, Jiang L, Huang Z, Chu J, Chen L, Jiang N, Liu J. Risk Factors for Hiccups after Deep Brain Stimulation of Subthalamic Nucleus for Parkinson's Disease. Brain Sci 2022; 12:brainsci12111447. [PMID: 36358373 PMCID: PMC9688754 DOI: 10.3390/brainsci12111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: After deep brain stimulation (DBS), hiccups as a complication may lead to extreme fatigue, sleep deprivation, or affected prognosis. Currently, the causes and risk factors of postoperative hiccups are unclear. In this study, we investigated the risk factors for hiccups after DBS of the subthalamic nucleus (STN) for Parkinson’s disease (PD) under general anesthesia. Methods: We retrospectively included patients who underwent STN DBS in the study, and collected data of demographic characteristics, clinical evaluations, and medications. According to the occurrence of hiccups within seven days after operation, the patients were divided into a hiccups group and non-hiccups group. The potentially involved risk factors for postoperative hiccups were statistically analyzed by logistic regression analysis. Results: A total of 191 patients were included in the study, of which 34 (17.80%) had postoperative transient persistent hiccups. Binary univariate logistic regression analysis showed that male, higher body mass index (BMI), smoker, Hoehn and Yahr stage (off), preoperative use of amantadine, hypnotic, Hamilton anxiety scale and Hamilton depression scale scores, and postoperative limited noninfectious peri-electrode edema in deep white matter were suspected risk factors for postoperative hiccups (p < 0.1). In binary multivariate logistic regression analysis, male (compared to female, OR 14.00; 95% CI, 1.74−112.43), postoperative limited noninfectious peri-electrode edema in deep white matter (OR, 7.63; 95% CI, 1.37−42.37), preoperative use of amantadine (OR, 3.64; 95% CI, 1.08−12.28), and higher BMI (OR, 3.50; 95% CI, 1.46−8.36) were independent risk factors for postoperative hiccups. Conclusions: This study is the first report about the risk factors of hiccups after STN DBS under general anesthesia for PD patients. The study suggests that male, higher BMI, preoperative use of amantadine, and postoperative limited noninfectious peri-electrode edema in deep white matter are independent risk factors for postoperative hiccups of STN-DBS for PD patients. Most hiccups after STN-DBS for PD patients were transient and self-limiting.
Collapse
Affiliation(s)
- Bin Wu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yuting Ling
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Changming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yi Liu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ruoheng Xuan
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jiakun Xu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yongfu Li
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Qianqian Guo
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Simin Wang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lige Liu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lulu Jiang
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zihuan Huang
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jianping Chu
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Nan Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jinlong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Correspondence: ; Tel.: +86-13802777636
| |
Collapse
|
9
|
Vitek JL, Patriat R, Ingham L, Reich MM, Volkmann J, Harel N. Lead location as a determinant of motor benefit in subthalamic nucleus deep brain stimulation for Parkinson’s disease. Front Neurosci 2022; 16:1010253. [PMID: 36267235 PMCID: PMC9577320 DOI: 10.3389/fnins.2022.1010253] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Background Subthalamic nucleus (STN) deep brain stimulation (DBS) is regarded as an effective treatment for patients with advanced Parkinson’s disease (PD). Clinical benefit, however, varies significantly across patients. Lead location has been hypothesized to play a critical role in determining motor outcome and may account for much of the observed variability reported among patients. Objective To retrospectively evaluate the relationship of lead location to motor outcomes in patients who had been implanted previously at another center by employing a novel visualization technology that more precisely determines the location of the DBS lead and its contacts with respect to each patient’s individually defined STN. Methods Anatomical models were generated using novel imaging in 40 PD patients who had undergone bilateral STN DBS (80 electrodes) at another center. Patient-specific models of each STN were evaluated to determine DBS electrode contact locations with respect to anterior to posterior and medial to lateral regions of the individualized STNs and compared to the change in the contralateral hemi-body Unified Parkinson’s Disease Rating Scale Part III (UPDRS-III) motor score. Results The greatest improvement in hemi-body motor function was found when active contacts were located within the posterolateral portion of the STN (71.5%). Motor benefit was 52 and 36% for central and anterior segments, respectively. Active contacts within the posterolateral portion also demonstrated the greatest reduction in levodopa dosage (77%). Conclusion The degree of motor benefit was dependent on the location of the stimulating contact within the STN. Although other factors may play a role, we provide further evidence in support of the hypothesis that lead location is a critical factor in determining clinical outcomes in STN DBS.
Collapse
Affiliation(s)
- Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Jerrold L. Vitek,
| | - Rémi Patriat
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | | | - Martin M. Reich
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Noam Harel
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
10
|
Wu C, Ferreira F, Fox M, Harel N, Hattangadi-Gluth J, Horn A, Jbabdi S, Kahan J, Oswal A, Sheth SA, Tie Y, Vakharia V, Zrinzo L, Akram H. Clinical applications of magnetic resonance imaging based functional and structural connectivity. Neuroimage 2021; 244:118649. [PMID: 34648960 DOI: 10.1016/j.neuroimage.2021.118649] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 12/23/2022] Open
Abstract
Advances in computational neuroimaging techniques have expanded the armamentarium of imaging tools available for clinical applications in clinical neuroscience. Non-invasive, in vivo brain MRI structural and functional network mapping has been used to identify therapeutic targets, define eloquent brain regions to preserve, and gain insight into pathological processes and treatments as well as prognostic biomarkers. These tools have the real potential to inform patient-specific treatment strategies. Nevertheless, a realistic appraisal of clinical utility is needed that balances the growing excitement and interest in the field with important limitations associated with these techniques. Quality of the raw data, minutiae of the processing methodology, and the statistical models applied can all impact on the results and their interpretation. A lack of standardization in data acquisition and processing has also resulted in issues with reproducibility. This limitation has had a direct impact on the reliability of these tools and ultimately, confidence in their clinical use. Advances in MRI technology and computational power as well as automation and standardization of processing methods, including machine learning approaches, may help address some of these issues and make these tools more reliable in clinical use. In this review, we will highlight the current clinical uses of MRI connectomics in the diagnosis and treatment of neurological disorders; balancing emerging applications and technologies with limitations of connectivity analytic approaches to present an encompassing and appropriate perspective.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, 909 Walnut Street, Third Floor, Philadelphia, PA 19107, USA; Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor, Philadelphia, PA 19107, USA.
| | - Francisca Ferreira
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Michael Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, 2021 Sixth Street S.E., Minneapolis, MN 55455, USA.
| | - Jona Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, Center for Precision Radiation Medicine, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92037, USA.
| | - Andreas Horn
- Neurology Department, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Charitéplatz 1, D-10117, Berlin, Germany.
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Joshua Kahan
- Department of Neurology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA.
| | - Ashwini Oswal
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Mansfield Rd, Oxford OX1 3TH, UK.
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge, Ninth Floor, Houston, TX 77030, USA.
| | - Yanmei Tie
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Vejay Vakharia
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK.
| | - Ludvic Zrinzo
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Harith Akram
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
11
|
Isaacs BR, Heijmans M, Kuijf ML, Kubben PL, Ackermans L, Temel Y, Keuken MC, Forstmann BU. Variability in subthalamic nucleus targeting for deep brain stimulation with 3 and 7 Tesla magnetic resonance imaging. NEUROIMAGE-CLINICAL 2021; 32:102829. [PMID: 34560531 PMCID: PMC8463907 DOI: 10.1016/j.nicl.2021.102829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 12/13/2022]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective surgical treatment for Parkinson's disease (PD). Side-effects may, however, be induced when the DBS lead is placed suboptimally. Currently, lower field magnetic resonance imaging (MRI) at 1.5 or 3 Tesla (T) is used for targeting. Ultra-high-field MRI (7 T and above) can obtain superior anatomical information and might therefore be better suited for targeting. This study aims to test whether optimized 7 T imaging protocols result in less variable targeting of the STN for DBS compared to clinically utilized 3 T images. Three DBS-experienced neurosurgeons determined the optimal STN DBS target site on three repetitions of 3 T-T2, 7 T-T2*, 7 T-R2* and 7 T-QSM images for five PD patients. The distance in millimetres between the three repetitive coordinates was used as an index of targeting variability and was compared between field strength, MRI contrast and repetition with a Bayesian ANOVA. Further, the target coordinates were registered to MNI space, and anatomical coordinates were compared between field strength, MRI contrast and repetition using a Bayesian ANOVA. The results indicate that the neurosurgeons are stable in selecting the DBS target site across MRI field strength, MRI contrast and repetitions. The analysis of the coordinates in MNI space however revealed that the actual selected location of the electrode is seemingly more ventral when using the 3 T scan compared to the 7 T scans.
Collapse
Affiliation(s)
- Bethany R Isaacs
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands; Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Margot Heijmans
- Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Mark L Kuijf
- Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Pieter L Kubben
- Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Linda Ackermans
- Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Yasin Temel
- Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Max C Keuken
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - Birte U Forstmann
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Merola A, Singh J, Reeves K, Changizi B, Goetz S, Rossi L, Pallavaram S, Carcieri S, Harel N, Shaikhouni A, Sammartino F, Krishna V, Verhagen L, Dalm B. New Frontiers for Deep Brain Stimulation: Directionality, Sensing Technologies, Remote Programming, Robotic Stereotactic Assistance, Asleep Procedures, and Connectomics. Front Neurol 2021; 12:694747. [PMID: 34367055 PMCID: PMC8340024 DOI: 10.3389/fneur.2021.694747] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022] Open
Abstract
Over the last few years, while expanding its clinical indications from movement disorders to epilepsy and psychiatry, the field of deep brain stimulation (DBS) has seen significant innovations. Hardware developments have introduced directional leads to stimulate specific brain targets and sensing electrodes to determine optimal settings via feedback from local field potentials. In addition, variable-frequency stimulation and asynchronous high-frequency pulse trains have introduced new programming paradigms to efficiently desynchronize pathological neural circuitry and regulate dysfunctional brain networks not responsive to conventional settings. Overall, these innovations have provided clinicians with more anatomically accurate programming and closed-looped feedback to identify optimal strategies for neuromodulation. Simultaneously, software developments have simplified programming algorithms, introduced platforms for DBS remote management via telemedicine, and tools for estimating the volume of tissue activated within and outside the DBS targets. Finally, the surgical accuracy has improved thanks to intraoperative magnetic resonance or computerized tomography guidance, network-based imaging for DBS planning and targeting, and robotic-assisted surgery for ultra-accurate, millimetric lead placement. These technological and imaging advances have collectively optimized DBS outcomes and allowed “asleep” DBS procedures. Still, the short- and long-term outcomes of different implantable devices, surgical techniques, and asleep vs. awake procedures remain to be clarified. This expert review summarizes and critically discusses these recent innovations and their potential impact on the DBS field.
Collapse
Affiliation(s)
- Aristide Merola
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jaysingh Singh
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Kevin Reeves
- Department of Psychiatry, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Barbara Changizi
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Steven Goetz
- Medtronic PLC Neuromodulation, Minneapolis, MN, United States
| | | | | | | | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Ammar Shaikhouni
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Francesco Sammartino
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Vibhor Krishna
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Leo Verhagen
- Movement Disorder Section, Department of Neurological Sciences, Rush University, Chicago, IL, United States
| | - Brian Dalm
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|