1
|
Smith CR, Baird JF, Buitendorp J, Horton H, Watkins M, Stewart JC. Implicit motor sequence learning using three-dimensional reaching movements with the non-dominant left arm. Exp Brain Res 2024; 242:2715-2726. [PMID: 39377917 PMCID: PMC11569025 DOI: 10.1007/s00221-024-06934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Interlimb differences in reach control could impact the learning of a motor sequence that requires whole-arm movements. The purpose of this study was to investigate the learning of an implicit, 3-dimensional whole-arm sequence task with the non-dominant left arm compared to the dominant right arm. Thirty-one right-hand dominant adults completed two consecutive days of practice of a motor sequence task presented in a virtual environment with either their dominant right or non-dominant left arm. Targets were presented one-at-a-time alternating between Random and Repeated sequences. Task performance was indicated by the time to complete the sequence (response time), and kinematic measures (hand path distance, peak velocity) were used to examine how movements changed over time. While the Left Arm group was slower than the Right Arm group at baseline, both groups significantly improved response time with practice with the Left Arm group demonstrating greater gains. The Left Arm group improved performance by decreasing hand path distance (straighter path to targets) while the Right Arm group improved performance through a smaller decrease in hand path distance combined with increasing peak velocity. Gains made during practice on Day 1 were retained on Day 2 for both groups. Overall, individuals reaching with the non-dominant left arm learned the whole-arm motor sequence task but did so through a different strategy than individuals reaching with the dominant right arm. The strategy adopted for the learning of movement sequences that require whole-arm movements may be impacted by differences in reach control between the nondominant and dominant arms.
Collapse
Affiliation(s)
- Charles R Smith
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Jessica F Baird
- Johns Hopkins Trial Innovation Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joelle Buitendorp
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Hannah Horton
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Macie Watkins
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Jill C Stewart
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
2
|
Moore RT, Piitz MA, Singh N, Dukelow SP, Cluff T. The independence of impairments in proprioception and visuomotor adaptation after stroke. J Neuroeng Rehabil 2024; 21:81. [PMID: 38762552 PMCID: PMC11102216 DOI: 10.1186/s12984-024-01360-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/18/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Proprioceptive impairments are common after stroke and are associated with worse motor recovery and poor rehabilitation outcomes. Motor learning may also be an important factor in motor recovery, and some evidence in healthy adults suggests that reduced proprioceptive function is associated with reductions in motor learning. It is unclear how impairments in proprioception and motor learning relate after stroke. Here we used robotics and a traditional clinical assessment to examine the link between impairments in proprioception after stroke and a type of motor learning known as visuomotor adaptation. METHODS We recruited participants with first-time unilateral stroke and controls matched for overall age and sex. Proprioceptive impairments in the more affected arm were assessed using robotic arm position- (APM) and movement-matching (AMM) tasks. We also assessed proprioceptive impairments using a clinical scale (Thumb Localization Test; TLT). Visuomotor adaptation was assessed using a task that systematically rotated hand cursor feedback during reaching movements (VMR). We quantified how much participants adapted to the disturbance and how many trials they took to adapt to the same levels as controls. Spearman's rho was used to examine the relationship between proprioception, assessed using robotics and the TLT, and visuomotor adaptation. Data from healthy adults were used to identify participants with stroke who were impaired in proprioception and visuomotor adaptation. The independence of impairments in proprioception and adaptation were examined using Fisher's exact tests. RESULTS Impairments in proprioception (58.3%) and adaptation (52.1%) were common in participants with stroke (n = 48; 2.10% acute, 70.8% subacute, 27.1% chronic stroke). Performance on the APM task, AMM task, and TLT scores correlated weakly with measures of visuomotor adaptation. Fisher's exact tests demonstrated that impairments in proprioception, assessed using robotics and the TLT, were independent from impairments in visuomotor adaptation in our sample. CONCLUSION Our results suggest impairments in proprioception may be independent from impairments in visuomotor adaptation after stroke. Further studies are needed to understand factors that influence the relationship between motor learning, proprioception and other rehabilitation outcomes throughout stroke recovery.
Collapse
Affiliation(s)
- Robert T Moore
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
| | - Mark A Piitz
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
| | - Nishita Singh
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada
| | - Tyler Cluff
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada.
- Faculty of Kinesiology, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada.
| |
Collapse
|
3
|
Kitchen NM, Dexheimer B, Yuk J, Maenza C, Ruelos PR, Kim T, Sainburg RL. The complementary dominance hypothesis: a model for remediating the 'good' hand in stroke survivors. J Physiol 2024:10.1113/JP285561. [PMID: 38733166 PMCID: PMC11610521 DOI: 10.1113/jp285561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The complementary dominance hypothesis is a novel model of motor lateralization substantiated by decades of research examining interlimb differences in the control of upper extremity movements in neurotypical adults and hemisphere-specific motor deficits in stroke survivors. In contrast to earlier ideas that attribute handedness to the specialization of one hemisphere, our model proposes complementary motor control specializations in each hemisphere. The dominant hemisphere mediates optimal control of limb dynamics as required for smooth and efficient movements, whereas the non-dominant hemisphere mediates impedance control, important for countering unexpected mechanical conditions and achieving steady-state limb positions. Importantly, this model proposes that each hemisphere contributes its specialization to both arms (though with greater influence from either arm's contralateral hemisphere) and thus predicts that lesions to one hemisphere should produce hemisphere-specific motor deficits in not only the contralesional arm, but also the ipsilesional arm of stroke survivors - a powerful prediction now supported by a growing body of evidence. Such ipsilesional arm motor deficits vary with contralesional arm impairment, and thus individuals with little to no functional use of the contralesional arm experience both the greatest impairments in the ipsilesional arm, as well as the greatest reliance on it to serve as the main or sole manipulator for activities of daily living. Accordingly, we have proposed and tested a novel intervention that reduces hemisphere-specific ipsilesional arm deficits and thereby improves functional independence in stroke survivors with severe contralesional impairment.
Collapse
Affiliation(s)
- Nick M. Kitchen
- Dept. of Neurology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
- Dept. of Kinesiology, Pennsylvania State University, University Park, PA, United States
| | - Brooke Dexheimer
- Dept. of Occupational Therapy, Virginia Commonwealth University, Richmond, VA, United States
| | - Jisung Yuk
- Dept. of Kinesiology, Pennsylvania State University, University Park, PA, United States
| | - Candice Maenza
- Dept. of Neurology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Paul R. Ruelos
- Dept. of Kinesiology, Pennsylvania State University, University Park, PA, United States
| | - Taewon Kim
- Dept. of Kinesiology, Pennsylvania State University, University Park, PA, United States
- Dept. of Physical Medicine and Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, PA, United States
- Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA, United States
| | - Robert L. Sainburg
- Dept. of Neurology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
- Dept. of Kinesiology, Pennsylvania State University, University Park, PA, United States
- Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA, United States
| |
Collapse
|
4
|
Dexheimer B, Sainburg R, Sharp S, Philip BA. Roles of Handedness and Hemispheric Lateralization: Implications for Rehabilitation of the Central and Peripheral Nervous Systems: A Rapid Review. Am J Occup Ther 2024; 78:7802180120. [PMID: 38305818 PMCID: PMC11017742 DOI: 10.5014/ajot.2024.050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
IMPORTANCE Handedness and motor asymmetry are important features of occupational performance. With an increased understanding of the basic neural mechanisms surrounding handedness, clinicians will be better able to implement targeted, evidence-based neurorehabilitation interventions to promote functional independence. OBJECTIVE To review the basic neural mechanisms behind handedness and their implications for central and peripheral nervous system injury. DATA SOURCES Relevant published literature obtained via MEDLINE. FINDINGS Handedness, along with performance asymmetries observed between the dominant and nondominant hands, may be due to hemispheric specializations for motor control. These specializations contribute to predictable motor control deficits that are dependent on which hemisphere or limb has been affected. Clinical practice recommendations for occupational therapists and other rehabilitation specialists are presented. CONCLUSIONS AND RELEVANCE It is vital that occupational therapists and other rehabilitation specialists consider handedness and hemispheric lateralization during evaluation and treatment. With an increased understanding of the basic neural mechanisms surrounding handedness, clinicians will be better able to implement targeted, evidence-based neurorehabilitation interventions to promote functional independence. Plain-Language Summary: The goal of this narrative review is to increase clinicians' understanding of the basic neural mechanisms related to handedness (the tendency to select one hand over the other for specific tasks) and their implications for central and peripheral nervous system injury and rehabilitation. An enhanced understanding of these mechanisms may allow clinicians to better tailor neurorehabilitation interventions to address motor deficits and promote functional independence.
Collapse
Affiliation(s)
- Brooke Dexheimer
- Brooke Dexheimer, PhD, OTD, OTR/L, is Assistant Professor, Department of Occupational Therapy, Virginia Commonwealth University, Richmond;
| | - Robert Sainburg
- Robert Sainburg, PhD, OTR, is Professor and Huck Institutes Distinguished Chair, Department of Kinesiology, Pennsylvania State University, University Park, and Department of Neurology, Pennsylvania State College of Medicine, Hershey
| | - Sydney Sharp
- Sydney Sharp, is Occupational Therapy Doctoral Student, Department of Occupational Therapy, Virginia Commonwealth University, Richmond
| | - Benjamin A Philip
- Benjamin A. Philip, PhD, is Assistant Professor, Program in Occupational Therapy, Department of Neurology and Department of Surgery, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
5
|
Petruseviciene L, Sack AT, Kubilius R, Savickas R. High-Frequency Ipsilesional versus Low-Frequency Contralesional Transcranial Magnetic Stimulation after Stroke: Differential Effects on Ipsilesional Upper Extremity Motor Recovery. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1955. [PMID: 38004004 PMCID: PMC10672822 DOI: 10.3390/medicina59111955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: Stroke is a major cause of death and disability worldwide; therefore, transcranial magnetic stimulation (TMS) is being widely studied and clinically applied to improve motor deficits in the affected arm. However, recent studies indicate that the function of both arms can be affected after stroke. It currently remains unknown how various TMS methods affect the function of the ipsilesional upper extremity. Materials and Methods: Thirty-five subacute stroke patients with upper extremity motor deficits were enrolled in this study and randomly allocated into three groups, receiving either (1) low-frequency rTMS over the contralesional hemisphere; (2) high-frequency rTMS over the ipsilesional hemisphere; or (3) no stimulation. Experimental groups received 10 rTMS sessions over two weeks alongside standard rehabilitation, and the control group received the same procedures except for rTMS. Both affected and unaffected upper extremity motor function was evaluated using hand grip strength and Functional Independence Measure (FIM) tests before and after rehabilitation (7 weeks apart). Results: All groups showed significant improvement in both the affected and unaffected hand grip and FIM scores (p < 0.05). HF-rTMS led to a notably higher increase in unaffected hand grip strength than the control group (p = 0.007). There was no difference in the improvement in affected upper extremity motor function between the groups. The FIM score increase was lower in the control group compared to experimental groups, although not statistically significant. Conclusions: This study demonstrates the positive effect of ipsilesional HF-rTMS on the improvement in unaffected arm motor function and reveals the positive effect of both LF- and HF-rTMS on the affected upper extremity motor function recovery.
Collapse
Affiliation(s)
- Laura Petruseviciene
- Department of Rehabilitation, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (R.K.); (R.S.)
- Department of Physical Medicine and Rehabilitation, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, 50161 Kaunas, Lithuania
| | - Alexander T. Sack
- Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Raimondas Kubilius
- Department of Rehabilitation, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (R.K.); (R.S.)
- Department of Physical Medicine and Rehabilitation, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, 50161 Kaunas, Lithuania
| | - Raimondas Savickas
- Department of Rehabilitation, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (R.K.); (R.S.)
- Department of Physical Medicine and Rehabilitation, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, 50161 Kaunas, Lithuania
| |
Collapse
|
6
|
Lustosa L, Silva AEL, Carvalho RDP, Vargas CD. Upper limb joint coordination preserves hand kinematics after a traumatic brachial plexus injury. Front Hum Neurosci 2022; 16:944638. [PMID: 36277047 PMCID: PMC9583840 DOI: 10.3389/fnhum.2022.944638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTraumatic brachial plexus injury (TBPI) causes a sensorimotor deficit in upper limb (UL) movements.ObjectiveOur aim was to investigate the arm–forearm coordination of both the injured and uninjured UL of TBPI subjects.MethodsTBPI participants (n = 13) and controls (n = 10) matched in age, gender, and anthropometric characteristics were recruited. Kinematics from the shoulder, elbow, wrist, and index finger markers were collected, while upstanding participants transported a cup to their mouth and returned the UL to a starting position. The UL coordination was measured through the relative phase (RP) between arm and forearm phase angles and analyzed as a function of the hand kinematics.ResultsFor all participants, the hand transport had a shorter time to peak velocity (p < 0.01) compared to the return. Also, for the control and the uninjured TBPI UL, the RP showed a coordination pattern that favored forearm movements in the peak velocity of the transport phase (p < 0.001). TBPI participants' injured UL showed a longer movement duration in comparison to controls (p < 0.05), but no differences in peak velocity, time to peak velocity, and trajectory length, indicating preserved hand kinematics. The RP of the injured UL revealed altered coordination in favor of arm movements compared to controls and the uninjured UL (p < 0.001). Finally, TBPI participants' uninjured UL showed altered control of arm and forearm phase angles during the deceleration of hand movements compared to controls (p < 0.05).ConclusionThese results suggest that UL coordination is reorganized after a TBPI so as to preserve hand kinematics.
Collapse
Affiliation(s)
- Luiggi Lustosa
- Laboratório de Neurobiologia do Movimento, Instituto de Biofísica Carlos Chagas Filho – Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Núcleo de Pesquisa em Neurociências e Reabilitação, Instituto de Neurologia Deolindo Couto – Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Elisa Lemos Silva
- Núcleo de Pesquisa em Neurociências e Reabilitação, Instituto de Neurologia Deolindo Couto – Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel de Paula Carvalho
- Departamento de Ciências do Movimento Humano, Instituto Saúde e Sociedade, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Claudia D. Vargas
- Laboratório de Neurobiologia do Movimento, Instituto de Biofísica Carlos Chagas Filho – Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Núcleo de Pesquisa em Neurociências e Reabilitação, Instituto de Neurologia Deolindo Couto – Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Claudia D. Vargas
| |
Collapse
|
7
|
Dexheimer B, Przybyla A, Murphy TE, Akpinar S, Sainburg R. Reaction time asymmetries provide insight into mechanisms underlying dominant and non-dominant hand selection. Exp Brain Res 2022; 240:2791-2802. [PMID: 36066589 PMCID: PMC10130955 DOI: 10.1007/s00221-022-06451-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
Abstract
Handedness is often thought of as a hand "preference" for specific tasks or components of bimanual tasks. Nevertheless, hand selection decisions depend on many factors beyond hand dominance. While these decisions are likely influenced by which hand might show performance advantages for the particular task and conditions, there also appears to be a bias toward the dominant hand, regardless of performance advantage. This study examined the impact of hand selection decisions and workspace location on reaction time and movement quality. Twenty-six neurologically intact participants performed targeted reaching across the horizontal workspace in a 2D virtual reality environment, and we compared reaction time across two groups: those selecting which hand to use on a trial-by-trial basis (termed the choice group) and those performing the task with a preassigned hand (the no-choice group). Along with reaction time, we also compared reach performance for each group across two ipsilateral workspaces: medial and lateral. We observed a significant difference in reaction time between the hands in the choice group, regardless of workspace. In contrast, both hands showed shorter but similar reaction times and differences between the lateral and medial workspaces in the no-choice group. We conclude that the shorter reaction times of the dominant hand under choice conditions may be due to dominant hand bias in the selection process that is not dependent upon interlimb performance differences.
Collapse
Affiliation(s)
- Brooke Dexheimer
- Department of Kinesiology, The Pennsylvania State University, PA, 16802, University Park, USA.
| | - Andrzej Przybyla
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA
| | - Terrence E Murphy
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Selcuk Akpinar
- Department of Physical Education and Sport, Nevsehir Bektas Veli University, Nevsehir, Turkey
| | - Robert Sainburg
- Department of Kinesiology, The Pennsylvania State University, PA, 16802, University Park, USA.,Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
8
|
Moore RT, Piitz MA, Singh N, Dukelow SP, Cluff T. Assessing Impairments in Visuomotor Adaptation After Stroke. Neurorehabil Neural Repair 2022; 36:415-425. [PMID: 35616370 PMCID: PMC9198391 DOI: 10.1177/15459683221095166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: Motor impairment in the arms is common after stroke and many individuals participate in therapy to improve function. It is assumed that individuals with stroke can adapt and improve their movements using feedback that arises from movement or is provided by a therapist. Here we investigated visuomotor adaptation in individuals with sub-acute and chronic stroke. Objective: We examined the impact of the stroke-affected arm (dominant or non-dominant), time post-stroke, and relationships with clinical measures of motor impairment and functional independence. Methods: Participants performed reaching movements with their arm supported in a robotic exoskeleton. We rotated the relationship between the motion of the participant’s hand and a feedback cursor displayed in their workspace. Outcome measures included the amount that participants adapted their arm movements and the number of trials they required to adapt. Results: Participants with stroke (n = 36) adapted less and required more trials to adapt than controls (n = 29). Stroke affecting the dominant arm impaired the amount of adaptation more than stroke affecting the non-dominant arm. Overall, 53% of participants with stroke were impaired in one or more measures of visuomotor adaptation. Initial adaptation was weakly correlated with time post-stroke, and the amount of adaptation correlated moderately with clinical measures of motor impairment and functional independence. Conclusion: Our findings reveal impairments in visuomotor adaptation that are associated with motor impairment and function after stroke. Longitudinal studies are needed to understand the relationship between adaptation and recovery attained in a therapy setting.
Collapse
Affiliation(s)
- Robert T Moore
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Mark A Piitz
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Nishita Singh
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Tyler Cluff
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| |
Collapse
|
9
|
Maenza C, Sainburg RL, Varghese R, Dexheimer B, Demers M, Bishop L, Jayasinghe SAL, Wagstaff DA, Winstein C. Ipsilesional arm training in severe stroke to improve functional independence (IPSI): phase II protocol. BMC Neurol 2022; 22:141. [PMID: 35413856 PMCID: PMC9002228 DOI: 10.1186/s12883-022-02643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously characterized hemisphere-specific motor control deficits in the ipsilesional, less-impaired arm of unilaterally lesioned stroke survivors. Our preliminary data indicate these deficits are substantial and functionally limiting in patients with severe paresis. METHODS We have designed an intervention ("IPSI") to remediate the hemisphere-specific deficits in the ipsilesional arm, using a virtual-reality platform, followed by manipulation training with a variety of real objects, designed to facilitate generalization and transfer to functional behaviors encountered in the natural environment. This is a 2-site (primary site - Penn State College of Medicine, secondary site - University of Southern California), two-group randomized intervention with an experimental group, which receives unilateral training of the ipsilesional arm throughout 3 one-hour sessions per week for 5 weeks, through our Virtual Reality and Manipulation Training (VRMT) protocol. Our control group receives a conventional intervention on the contralesional arm, 3 one-hour sessions per week for 5 weeks, guided by recently released practice guidelines for upper limb rehabilitation in adult stroke. The study aims to include a total of 120 stroke survivors (60 per group) whose stroke was in the territory of the middle cerebral artery (MCA) resulting in severe upper-extremity motor impairments. Outcome measures (Primary: Jebsen-Taylor Hand Function Test, Fugl-Meyer Assessment, Abilhand, Barthel Index) are assessed at five evaluation points: Baseline 1, Baseline 2, immediate post-intervention (primary endpoint), and 3-weeks (short-term retention) and 6-months post-intervention (long-term retention). We hypothesize that both groups will improve performance of the targeted arm, but that the ipsilesional arm remediation group will show greater improvements in functional independence. DISCUSSION The results of this study are expected to inform upper limb evaluation and treatment to consider ipsilesional arm function, as part of a comprehensive physical rehabilitation strategy that includes evaluation and remediation of both arms. TRIAL REGISTRATION This study is registered with ClinicalTrials.gov (Registration ID: NCT03634397 ; date of registration: 08/16/2018).
Collapse
Affiliation(s)
- Candice Maenza
- Department of Neurology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA. .,Department of Kinesiology, Pennsylvania State University, 27 Rec Hall, University Park, PA, 16802, USA.
| | - Robert L Sainburg
- Department of Neurology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.,Department of Kinesiology, Pennsylvania State University, 27 Rec Hall, University Park, PA, 16802, USA
| | - Rini Varghese
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Brooke Dexheimer
- Department of Kinesiology, Pennsylvania State University, 27 Rec Hall, University Park, PA, 16802, USA
| | - Marika Demers
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Lauri Bishop
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Shanie A L Jayasinghe
- Department of Neurology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - David A Wagstaff
- Department of Human Development and Family Studies, Pennsylvania State University, 102 HHD Building, University Park, PA, 16802, USA
| | - Carolee Winstein
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
10
|
Jayasinghe SAL, Scheidt RA, Sainburg RL. Neural Control of Stopping and Stabilizing the Arm. Front Integr Neurosci 2022; 16:835852. [PMID: 35264934 PMCID: PMC8899537 DOI: 10.3389/fnint.2022.835852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 11/27/2022] Open
Abstract
Stopping is a crucial yet under-studied action for planning and producing meaningful and efficient movements. In this review, we discuss classical human psychophysics studies as well as those using engineered systems that aim to develop models of motor control of the upper limb. We present evidence for a hybrid model of motor control, which has an evolutionary advantage due to division of labor between cerebral hemispheres. Stopping is a fundamental aspect of movement that deserves more attention in research than it currently receives. Such research may provide a basis for understanding arm stabilization deficits that can occur following central nervous system (CNS) damage.
Collapse
Affiliation(s)
- Shanie A. L. Jayasinghe
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Robert A. Scheidt
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert L. Sainburg
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Kinesiology, Pennsylvania State University, State College, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, United States
| |
Collapse
|