1
|
de Zwart B, Ruis C. An update on tests used for intraoperative monitoring of cognition during awake craniotomy. Acta Neurochir (Wien) 2024; 166:204. [PMID: 38713405 PMCID: PMC11076349 DOI: 10.1007/s00701-024-06062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE Mapping higher-order cognitive functions during awake brain surgery is important for cognitive preservation which is related to postoperative quality of life. A systematic review from 2018 about neuropsychological tests used during awake craniotomy made clear that until 2017 language was most often monitored and that the other cognitive domains were underexposed (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). The field of awake craniotomy and cognitive monitoring is however developing rapidly. The aim of the current review is therefore, to investigate whether there is a change in the field towards incorporation of new tests and more complete mapping of (higher-order) cognitive functions. METHODS We replicated the systematic search of the study from 2018 in PubMed and Embase from February 2017 to November 2023, yielding 5130 potentially relevant articles. We used the artificial machine learning tool ASReview for screening and included 272 papers that gave a detailed description of the neuropsychological tests used during awake craniotomy. RESULTS Comparable to the previous study of 2018, the majority of studies (90.4%) reported tests for assessing language functions (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). Nevertheless, an increasing number of studies now also describe tests for monitoring visuospatial functions, social cognition, and executive functions. CONCLUSIONS Language remains the most extensively tested cognitive domain. However, a broader range of tests are now implemented during awake craniotomy and there are (new developed) tests which received more attention. The rapid development in the field is reflected in the included studies in this review. Nevertheless, for some cognitive domains (e.g., executive functions and memory), there is still a need for developing tests that can be used during awake surgery.
Collapse
Affiliation(s)
- Beleke de Zwart
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands.
| | - Carla Ruis
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Riaz H, Uzair M, Arshad M, Hamza A, Bukhari N, Azam F, Bashir S. Navigated Transcranial Magnetic Stimulation (nTMS) based Preoperative Planning for Brain Tumor Treatment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:883-893. [PMID: 37340739 DOI: 10.2174/1871527322666230619103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/22/2023]
Abstract
Transcranial Magnetic Stimulation (TMS) is a non-invasive technique for analyzing the central and peripheral nervous system. TMS could be a powerful therapeutic technique for neurological disorders. TMS has also shown potential in treating various neurophysiological complications, such as depression, anxiety, and obsessive-compulsive disorders, without pain and analgesics. Despite advancements in diagnosis and treatment, there has been an increase in the prevalence of brain cancer globally. For surgical planning, mapping brain tumors has proven challenging, particularly those localized in expressive regions. Preoperative brain tumor mapping may lower the possibility of postoperative morbidity in surrounding areas. A navigated TMS (nTMS) uses magnetic resonance imaging (MRI) to enable precise mapping during navigated brain stimulation. The resulting magnetic impulses can be precisely applied to the target spot in the cortical region by employing nTMS. This review focuses on nTMS for preoperative planning for brain cancer. This study reviews several studies on TMS and its subtypes in treating cancer and surgical planning. nTMS gives wider and improved dimensions of preoperative planning of the motor-eloquent areas in brain tumor patients. nTMS also predicts postoperative neurological deficits, which might be helpful in counseling patients. nTMS have the potential for finding possible abnormalities in the motor cortex areas.
Collapse
Affiliation(s)
- Hammad Riaz
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Ali Hamza
- Brno University of Technology, Brno, Czech Republic
| | - Nedal Bukhari
- Oncology Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
- Department of Internal Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faisal Azam
- Oncology Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
3
|
Padayachy L, Prada F. Multimodality Structural and Functional Monitoring in Brain Tumor Surgery: The Role of IONM and IOUS. Adv Tech Stand Neurosurg 2024; 53:1-12. [PMID: 39287799 DOI: 10.1007/978-3-031-67077-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Brain tumor surgery represents the pinnacle of technical and technological advances in the neurosurgery. The goal remains optimized extent of resection with preservation of neurological function. The benefit of a multimodal structural and functional intra-operative monitoring approach is to improve the ability of the surgeon to achieve the goal of optimized surgical resection. Despite significant technological advances, challenges in defining tumor and functional neural tissue interface remain a significant barrier. The opportunity to address this challenge, however, presents us with an exciting path ahead.
Collapse
Affiliation(s)
- Llewellyn Padayachy
- Brain Tumor and Translational Neuroscience Centre, Department of Neurosurgery, University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Francesco Prada
- Acoustic Neuro-Imaging and Therapy Lab (ANTY-Lab), Department of Neurosurgery, Fondazione IRCCS Istituto C. Besta, Milan, Italy.
| |
Collapse
|
4
|
Weiss Lucas C, Faymonville AM, Loução R, Schroeter C, Nettekoven C, Oros-Peusquens AM, Langen KJ, Shah NJ, Stoffels G, Neuschmelting V, Blau T, Neuschmelting H, Hellmich M, Kocher M, Grefkes C, Goldbrunner R. Surgery of Motor Eloquent Glioblastoma Guided by TMS-Informed Tractography: Driving Resection Completeness Towards Prolonged Survival. Front Oncol 2022; 12:874631. [PMID: 35692752 PMCID: PMC9186060 DOI: 10.3389/fonc.2022.874631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background Surgical treatment of patients with glioblastoma affecting motor eloquent brain regions remains critically discussed given the risk–benefit dilemma of prolonging survival at the cost of motor-functional damage. Tractography informed by navigated transcranial magnetic stimulation (nTMS-informed tractography, TIT) provides a rather robust estimate of the individual location of the corticospinal tract (CST), a highly vulnerable structure with poor functional reorganisation potential. We hypothesised that by a more comprehensive, individualised surgical decision-making using TIT, tumours in close relationship to the CST can be resected with at least equal probability of gross total resection (GTR) than less eloquently located tumours without causing significantly more gross motor function harm. Moreover, we explored whether the completeness of TIT-aided resection translates to longer survival. Methods A total of 61 patients (median age 63 years, m = 34) with primary glioblastoma neighbouring or involving the CST were operated on between 2010 and 2015. TIT was performed to inform surgical planning in 35 of the patients (group T; vs. 26 control patients). To achieve largely unconfounded group comparisons for each co-primary outcome (i.e., gross-motor functional worsening, GTR, survival), (i) uni- and multivariate regression analyses were performed to identify features of optimal outcome prediction; (ii), optimal propensity score matching (PSM) was applied to balance those features pairwise across groups, followed by (iii) pairwise group comparison. Results Patients in group T featured a significantly higher lesion-CST overlap compared to controls (8.7 ± 10.7% vs. 3.8 ± 5.7%; p = 0.022). The frequency of gross motor worsening was higher in group T, albeit non-significant (n = 5/35 vs. n = 0/26; p = 0.108). PSM-based paired-sample comparison, controlling for the confounders of preoperative tumour volume and vicinity to the delicate vasculature of the insula, showed higher GTR rates in group T (77% vs. 69%; p = 0.025), particularly in patients with a priori intended GTR (87% vs. 78%; p = 0.003). This translates into a prolonged PFS in the same PSM subgroup (8.9 vs. 5.8 months; p = 0.03), with GTR representing the strongest predictor of PFS (p = 0.001) and OS (p = 0.0003) overall. Conclusion The benefit of TIT-aided GTR appears to overcome the drawbacks of potentially elevated motor functional risk in motor eloquent tumour localisation, leading to prolonged survival of patients with primary glioblastoma close to the CST.
Collapse
Affiliation(s)
- Carolin Weiss Lucas
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andrea Maria Faymonville
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Neurosurgery, University Hospital Mannheim, Mannheim, Germany
| | - Ricardo Loução
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Stereotaxy and Functional Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Julich, Juelich, Germany
| | - Catharina Schroeter
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Charlotte Nettekoven
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Karl Josef Langen
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Julich, Juelich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Julich, Juelich, Germany.,JARA - BRAIN - Translational Medicine, Aachen, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Julich, Juelich, Germany
| | - Volker Neuschmelting
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Tobias Blau
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hannah Neuschmelting
- Institute of Pathology and Neuropathology, University Hospital Essen, Essen, Germany
| | - Martin Hellmich
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Kocher
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Stereotaxy and Functional Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Julich, Juelich, Germany
| | - Christian Grefkes
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Julich, Juelich, Germany.,Institute for Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roland Goldbrunner
- Department of General Neurosurgery, Center of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Mazzucchi E, La Rocca G, Hiepe P, Pignotti F, Galieri G, Policicchio D, Boccaletti R, Rinaldi P, Gaudino S, Ius T, Sabatino G. Intraoperative integration of multimodal imaging to improve neuronavigation: a technical note. World Neurosurg 2022; 164:330-340. [PMID: 35667553 DOI: 10.1016/j.wneu.2022.05.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Brain shift may cause significant error in neuronavigation leading the surgeon to possible mistakes. Intraoperative MRI is the most reliable technique in brain tumor surgery. Unfortunately, it is highly expensive and time consuming and, at the moment, it is available only in few neurosurgical centers. METHODS In this case series the surgical workflow for brain tumor surgery is described where neuronavigation of pre-operative MRI, intraoperative CT scan and US as well as rigid and elastic image fusion between preoperative MRI and intraoperative US and CT, respectively, was applied to four brain tumor patients in order to compensate for surgical induced brain shift by using a commercially available software (Elements Image Fusion 4.0 with Virtual iMRI Cranial; Brainlab AG). RESULTS Three exemplificative cases demonstrated successful integration of different components of the described intraoperative surgical workflow. The data indicates that intraoperative navigation update is feasible by applying intraoperative 3D US and CT scanning as well as rigid and elastic image fusion applied depending on the degree of observed brain shift. CONCLUSIONS Integration of multiple intraoperative imaging techniques combined with rigid and elastic image fusion of preoperative MRI may reduce the risk of incorrect neuronavigation during brain tumor resection. Further studies are needed to confirm the present findings in a larger population.
Collapse
Affiliation(s)
- Edoardo Mazzucchi
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy; Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy.
| | - Giuseppe La Rocca
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy; Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | | | - Fabrizio Pignotti
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy; Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | - Gianluca Galieri
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy; Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | | | | | | | - Simona Gaudino
- Institute of Radiology, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Giovanni Sabatino
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy; Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| |
Collapse
|
6
|
Millán AP, van Straaten ECW, Stam CJ, Nissen IA, Idema S, Baayen JC, Van Mieghem P, Hillebrand A. Epidemic models characterize seizure propagation and the effects of epilepsy surgery in individualized brain networks based on MEG and invasive EEG recordings. Sci Rep 2022; 12:4086. [PMID: 35260657 PMCID: PMC8904850 DOI: 10.1038/s41598-022-07730-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 02/24/2022] [Indexed: 11/08/2022] Open
Abstract
Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients. However, seizure-freedom is currently achieved in only 2/3 of the patients after surgery. In this study we have developed an individualized computational model based on MEG brain networks to explore seizure propagation and the efficacy of different virtual resections. Eventually, the goal is to obtain individualized models to optimize resection strategy and outcome. We have modelled seizure propagation as an epidemic process using the susceptible-infected (SI) model on individual brain networks derived from presurgical MEG. We included 10 patients who had received epilepsy surgery and for whom the surgery outcome at least one year after surgery was known. The model parameters were tuned in in order to reproduce the patient-specific seizure propagation patterns as recorded with invasive EEG. We defined a personalized search algorithm that combined structural and dynamical information to find resections that maximally decreased seizure propagation for a given resection size. The optimal resection for each patient was defined as the smallest resection leading to at least a 90% reduction in seizure propagation. The individualized model reproduced the basic aspects of seizure propagation for 9 out of 10 patients when using the resection area as the origin of epidemic spreading, and for 10 out of 10 patients with an alternative definition of the seed region. We found that, for 7 patients, the optimal resection was smaller than the resection area, and for 4 patients we also found that a resection smaller than the resection area could lead to a 100% decrease in propagation. Moreover, for two cases these alternative resections included nodes outside the resection area. Epidemic spreading models fitted with patient specific data can capture the fundamental aspects of clinically observed seizure propagation, and can be used to test virtual resections in silico. Combined with optimization algorithms, smaller or alternative resection strategies, that are individually targeted for each patient, can be determined with the ultimate goal to improve surgery outcome. MEG-based networks can provide a good approximation of structural connectivity for computational models of seizure propagation, and facilitate their clinical use.
Collapse
Affiliation(s)
- Ana P Millán
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Elisabeth C W van Straaten
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ida A Nissen
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sander Idema
- Department of Neurosurgery, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Johannes C Baayen
- Department of Neurosurgery, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Piet Van Mieghem
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Rahman R, Rahman S, Al-Salihi MM, Sarwar ASM, Rahman MM, Habib R, Hoq MZ. Letter: Fluorescence Guidance and Intraoperative Adjuvants to Maximize Extent of Resection. Neurosurgery 2022; 90:e137-e138. [PMID: 35238808 DOI: 10.1227/neu.0000000000001916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/19/2021] [Indexed: 01/09/2023] Open
Affiliation(s)
- Raphia Rahman
- Department of Osteopathic Medicine, Rowan School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Sabrina Rahman
- Department of Public Health, Independent University-Bangladesh, Dhaka, Bangladesh
| | | | | | - Md Moshiur Rahman
- Department of Neurosurgery, Holy Family Red Crescent Medical College, Dhaka, Bangladesh
| | | | - Md Ziaul Hoq
- Department of Pediatric Neurosurgery, NINS, Bangladesh
| |
Collapse
|
8
|
Wang SH, Zhou Q, Yang M, Zhang YD. ADVIAN: Alzheimer's Disease VGG-Inspired Attention Network Based on Convolutional Block Attention Module and Multiple Way Data Augmentation. Front Aging Neurosci 2021; 13:687456. [PMID: 34220487 PMCID: PMC8250430 DOI: 10.3389/fnagi.2021.687456] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022] Open
Abstract
Aim: Alzheimer's disease is a neurodegenerative disease that causes 60-70% of all cases of dementia. This study is to provide a novel method that can identify AD more accurately. Methods: We first propose a VGG-inspired network (VIN) as the backbone network and investigate the use of attention mechanisms. We proposed an Alzheimer's Disease VGG-Inspired Attention Network (ADVIAN), where we integrate convolutional block attention modules on a VIN backbone. Also, 18-way data augmentation is proposed to avoid overfitting. Ten runs of 10-fold cross-validation are carried out to report the unbiased performance. Results: The sensitivity and specificity reach 97.65 ± 1.36 and 97.86 ± 1.55, respectively. Its precision and accuracy are 97.87 ± 1.53 and 97.76 ± 1.13, respectively. The F1 score, MCC, and FMI are obtained as 97.75 ± 1.13, 95.53 ± 2.27, and 97.76 ± 1.13, respectively. The AUC is 0.9852. Conclusion: The proposed ADVIAN gives better results than 11 state-of-the-art methods. Besides, experimental results demonstrate the effectiveness of 18-way data augmentation.
Collapse
Affiliation(s)
- Shui-Hua Wang
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China
- School of Mathematics and Actuarial Science, University of Leicester, Leicester, United Kingdom
| | - Qinghua Zhou
- School of Informatics, University of Leicester, Leicester, United Kingdom
| | - Ming Yang
- Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Dong Zhang
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China
- School of Informatics, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
9
|
Baro V, Caliri S, Sartori L, Facchini S, Guarrera B, Zangrossi P, Anglani M, Denaro L, d’Avella D, Ferreri F, Landi A. Preoperative Repetitive Navigated TMS and Functional White Matter Tractography in a Bilingual Patient with a Brain Tumor in Wernike Area. Brain Sci 2021; 11:brainsci11050557. [PMID: 33924964 PMCID: PMC8145512 DOI: 10.3390/brainsci11050557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/10/2023] Open
Abstract
Awake surgery and intraoperative neuromonitoring represent the gold standard for surgery of lesion located in language-eloquent areas of the dominant hemisphere, enabling the maximal safe resection while preserving language function. Nevertheless, this functional mapping is invasive; it can be executed only during surgery and in selected patients. Moreover, the number of neuro-oncological bilingual patients is constantly growing, and performing awake surgery in this group of patients can be difficult. In this scenario, the application of accurate, repeatable and non-invasive preoperative mapping procedures is needed, in order to define the anatomical distribution of both languages. Repetitive navigated transcranial magnetic stimulation (rnTMS) associated with functional subcortical fiber tracking (nTMS-based DTI-FT) represents a promising and comprehensive mapping tool to display language pathway and function reorganization in neurosurgical patients. Herein we report a case of a bilingual patient affected by brain tumor in the left temporal lobe, who underwent rnTMS mapping for both languages (Romanian and Italian), disclosing the true eloquence of the anterior part of the lesion in both tests. After surgery, language abilities were intact at follow-up in both languages. This case represents a preliminary application of nTMS-based DTI-FT in neurosurgery for brain tumor in eloquent areas in a bilingual patient.
Collapse
Affiliation(s)
- Valentina Baro
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
- Correspondence:
| | - Samuel Caliri
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| | - Luca Sartori
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| | - Silvia Facchini
- Department of Neuroscience DNS, University of Padova, 35128 Padova, Italy;
| | - Brando Guarrera
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| | - Pietro Zangrossi
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| | | | - Luca Denaro
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| | - Domenico d’Avella
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| | - Florinda Ferreri
- Unit of Neurology and Neurophysiology, Department of Neuroscience, University of Padova, 35128 Padova, Italy;
| | - Andrea Landi
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| |
Collapse
|