1
|
Wang Y, Zeng GQ, Wang M, Zhang M, Chang C, Liu Q, Wang K, Ma R, Wang Y, Zhang X. The safety and efficacy of applying a high-current temporal interference electrical stimulation in humans. Front Hum Neurosci 2024; 18:1484593. [PMID: 39677408 PMCID: PMC11638170 DOI: 10.3389/fnhum.2024.1484593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Background Temporal interference electrical stimulation (TI) is promise in targeting deep brain regions focally. However, limited electric field intensity challenges its efficacy. Objective This study aimed to introduce a high-current TI electrical stimulation protocol to enhance its intensity and evaluate its safety and efficacy when applied to the primary motor cortex (M1) in the human brain. Methods Safety assessments included a battery of biochemical and neuropsychological tests (NSE, MoCA, PPT, VAMS-R, and SAS measurements), 5-min resting-state electroencephalography (EEG) recordings before and after 30-min high-current TI electrical stimulation sessions (20 Hz, 70 Hz, sham). Adverse reactions were also documented post-stimulation. Efficacy evaluations involved two motor tasks, the simple reaction time (SRT) task and the one-increment task, to investigate the distinct contributions of beta (20 Hz) and gamma (70 Hz) oscillations to motor functions. Results Biochemical and neuropsychological tests revealed no significant differences between the groups. Additionally, no epileptic activities were detected in the EEG recordings. In the one-increment task, 20 Hz stimulation delayed participants' reaction time compared to the 70 Hz and sham groups. Conversely, in the SRT task, 70 Hz stimulation exhibited a tendency to enhance participants' performance relative to the sham group. Conclusion The proposed high-current TI electrical stimulation is both safe and effective for stimulating the human brain. Moreover, the distinct effects observed in motor tasks underscore the dissociative roles of beta and gamma oscillations in motor functions, offering valuable insights into the potential applications of high-current TI electrical stimulation in brain stimulation research.
Collapse
Affiliation(s)
- Yan Wang
- School of Mental Health, Bengbu Medical University, Bengbu, China
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Ginger Qinghong Zeng
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Mengmeng Wang
- School of Mental Health, Bengbu Medical University, Bengbu, China
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Mingsong Zhang
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Chuangchuang Chang
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Qiongwei Liu
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Keqing Wang
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Ru Ma
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Ying Wang
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Stereotactic Neurosurgical Institute, Anhui Province Key Laboratory of Brain Function and Brain Disease Hefei, Hefei, China
| | - Xiaochu Zhang
- School of Mental Health, Bengbu Medical University, Bengbu, China
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
- Department of Psychology, School of Humanities and Social Science, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Qi S, Yu J, Li L, Dong C, Ji Z, Cao L, Wei Z, Liang Z. Advances in non-invasive brain stimulation: enhancing sports performance function and insights into exercise science. Front Hum Neurosci 2024; 18:1477111. [PMID: 39677404 PMCID: PMC11638246 DOI: 10.3389/fnhum.2024.1477111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
The cerebral cortex, as the pinnacle of human complexity, poses formidable challenges to contemporary neuroscience. Recent advancements in non-invasive brain stimulation have been pivotal in enhancing human locomotor functions, a burgeoning area of interest in exercise science. Techniques such as transcranial direct current stimulation, transcranial alternating current stimulation, transcranial random noise stimulation, and transcranial magnetic stimulation are widely recognized for their neuromodulator capabilities. Despite their broad applications, these methods are not without limitations, notably in spatial and temporal resolution and their inability to target deep brain structures effectively. The advent of innovative non-invasive brain stimulation modalities, including transcranial focused ultrasound stimulation and temporal interference stimulation technology, heralds a new era in neuromodulation. These approaches offer superior spatial and temporal precision, promising to elevate athletic performance, accelerate sport science research, and enhance recovery from sports-related injuries and neurological conditions. This comprehensive review delves into the principles, applications, and future prospects of non-invasive brain stimulation in the realm of exercise science. By elucidating the mechanisms of action and potential benefits, this study aims to arm researchers with the tools necessary to modulate targeted brain regions, thereby deepening our understanding of the intricate interplay between brain function and human behavior.
Collapse
Affiliation(s)
- Shuo Qi
- School of Sport and Health, Shandong Sport University, Jinan, China
| | - Jinglun Yu
- College of Sports and Health Sciences, Xi’an Physical Education University, Xi’an, China
| | - Li Li
- Physical Education and Arts College, Shandong Sport University, Jinan, China
| | - Chen Dong
- College of Sports Management, Shandong Sport University, Jinan, China
| | - Zhe Ji
- College of Physical Education, Anhui Normal University, Wuhu, China
| | - Lei Cao
- National Football Academy, Shandong Sport University, Jinan, China
| | - Zhen Wei
- The Second Clinical Medical School, Xuzhou Medical University, Xuzhou, China
| | - Zhiqiang Liang
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Zhu Z, Tang D, Qin L, Qian Z, Zhuang J, Liu Y. Syncing the brain's networks: dynamic functional connectivity shifts from temporal interference. Front Hum Neurosci 2024; 18:1453638. [PMID: 39534013 PMCID: PMC11554487 DOI: 10.3389/fnhum.2024.1453638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Background Temporal interference (TI) stimulation, an innovative non-invasive brain stimulation approach, has the potential to activate neurons in deep brain regions. However, the dynamic mechanisms underlying its neuromodulatory effects are not fully understood. This study aims to investigate the effects of TI stimulation on dynamic functional connectivity (dFC) in the motor cortex. Methods 40 healthy adults underwent both TI and tDCS in a double-blind, randomized crossover design, with sessions separated by at least 48 h. The total stimulation intensity of TI is 4 mA, with each channel's intensity set at 2 mA and a 20 Hz frequency difference (2 kHz and 2.02 kHz). The tDCS stimulation intensity is 2 mA. Resting-state functional magnetic resonance imaging (rs-fMRI) data were collected before, during, and after stimulation. dFC was calculated using the left primary motor cortex (M1) as the region of interest (ROI) and analyzed using a sliding time-window method. A two-way repeated measures ANOVA (group × time) was conducted to evaluate the effects of TI and tDCS on changes in dFC. Results For CV of dFC, significant main effects of stimulation type (P = 0.004) and time (P < 0.001) were observed. TI showed lower CV of dFC than tDCS in the left postcentral gyrus (P < 0.001). TI-T2 displayed lower CV of dFC than TI-T1 in the left precentral gyrus (P < 0.001). For mean dFC, a significant main effect of time was found (P < 0.001). TI-T2 showed higher mean dFC than tDCS-T2 in the left postcentral gyrus (P = 0.018). Within-group comparisons revealed significant differences between time points in both TI and tDCS groups, primarily in the left precentral and postcentral gyri (all P < 0.001). Results were consistent across different window sizes. Conclusion 20 Hz TI stimulation altered dFC in the primary motor cortex, leading to a significant decreasing variability and increasing mean connectivity strength in dFC. This outcome indicates that the 20 Hz TI frequency interacted with the motor cortex's natural resonance.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- School of Kinesiology, Shenzhen University, Shenzhen, China
| | - Dongsheng Tang
- School of Kinesiology, Shenzhen University, Shenzhen, China
| | - Lang Qin
- School of Kinesiology, Shenzhen University, Shenzhen, China
| | - Zhenyu Qian
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jie Zhuang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yu Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
4
|
Zhang S, Cui X, Yu S, Li X. Is transcranial alternating current stimulation effective for improving working memory? A three-level meta-analysis. Psychon Bull Rev 2024:10.3758/s13423-024-02595-0. [PMID: 39438426 DOI: 10.3758/s13423-024-02595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Working memory, an essential component of cognitive function, can be improved through specific methods. This meta-analysis evaluates the effectiveness of transcranial alternating current stimulation (tACS), an emerging technique for enhancing working memory, and explores its efficacy, influencing factors, and underlying mechanisms. A PRISMA systematic search was conducted. Hedges's g was used to quantify effect sizes. We constructed a three-level meta-analytic model to account for all effect sizes and performed subgroup analyses to assess moderating factors. Recognizing the distinct neural underpinnings of various working memory processes, we separately assessed the effects on n-back tasks and traditional working memory tasks. A total of 39 studies with 405 effect sizes were included (170 from n-back tasks and 235 from other tasks). The overall analysis indicated a net benefit of g = 0.060 of tACS on working memory. Separate analyses showed that tACS had a small positive effect on n-back tasks (g = 0.102), but almost no effect on traditional working memory tasks (g = 0.045). Further analyses revealed mainly: A moderately positive effect of theta tACS (without anti-phase stimulation) on n-back tasks (g = 0.207); and a small effect of offline stimulation on working memory maintenance (g = 0.127). Overall, tACS has minimal impact on working memory improvement, but it shows potential under certain conditions. Specifically, both online and offline theta tACS can improve n-back task performance, while only offline stimulation enhances working memory maintenance. More research is needed to understand the mechanisms behind these effects to make tACS an effective method.
Collapse
Affiliation(s)
- Siyuan Zhang
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Cui
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Yu
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuebing Li
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Caldas-Martinez S, Goswami C, Forssell M, Cao J, Barth AL, Grover P. Cell-specific effects of temporal interference stimulation on cortical function. Commun Biol 2024; 7:1076. [PMID: 39223260 PMCID: PMC11369164 DOI: 10.1038/s42003-024-06728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Temporal interference (TI) stimulation is a popular non-invasive neurostimulation technique that utilizes the following salient neural behavior: pure sinusoid (generated in off-target brain regions) appears to cause no stimulation, whereas modulated sinusoid (generated in target brain regions) does. To understand its effects and mechanisms, we examine responses of different cell types, excitatory pyramidal (Pyr) and inhibitory parvalbumin-expressing (PV) neurons, to pure and modulated sinusoids, in intact network as well as in isolation. In intact network, we present data showing that PV neurons are much less likely than Pyr neurons to exhibit TI stimulation. Remarkably, in isolation, our data shows that almost all Pyr neurons stop exhibiting TI stimulation. We conclude that TI stimulation is largely a network phenomenon. Indeed, PV neurons actively inhibit Pyr neurons in the off-target regions due to pure sinusoids (in off-target regions) generating much higher PV firing rates than modulated sinusoids in the target regions. Additionally, we use computational studies to support and extend our experimental observations.
Collapse
Affiliation(s)
| | - Chaitanya Goswami
- Electrical & Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mats Forssell
- Electrical & Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jiaming Cao
- School of Computer Science, University of Birmingham, Birmingham, UK
| | - Alison L Barth
- Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Pulkit Grover
- Electrical & Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Wu CW, Lin BS, Zhang Z, Hsieh TH, Liou JC, Lo WL, Li YT, Chiu SC, Peng CW. Pilot study of using transcranial temporal interfering theta-burst stimulation for modulating motor excitability in rat. J Neuroeng Rehabil 2024; 21:147. [PMID: 39215318 PMCID: PMC11365202 DOI: 10.1186/s12984-024-01451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Transcranial temporal interference stimulation (tTIS) is a promising brain stimulation method that can target deep brain regions by delivering an interfering current from surface electrodes. Most instances of tTIS stimulate the brain with a single-frequency sinusoidal waveform generated by wave interference. Theta burst stimulation is an effective stimulation scheme that can modulate neuroplasticity by generating long-term potentiation- or depression-like effects. To broaden tTIS application, we developed a theta burst protocol using tTIS technique to modulate neuroplasticity in rats. Two cannula electrodes were unilaterally implanted into the intact skull over the primary motor cortex. Electrical field of temporal interference envelopes generated by tTIS through cannula electrodes were recorded from primary motor cortex. Theta burst schemes were characterized, and motor activation induced by the stimulation was also evaluated simultaneously by observing electromyographic signals from the corresponding brachioradialis muscle. After validating the stimulation scheme, we further tested the modulatory effects of theta burst stimulation delivered by tTIS and by conventional transcranial electrical stimulation on primary motor cortex excitability. Changes in the amplitude of motor evoked potentials, elicited when the primary motor cortex was activated by electrical pulses, were measured before and after theta burst stimulation by both techniques. Significant potentiation and suppression were found at 15 to 30 min after the intermittent and continuous theta burst stimulation delivered using tTIS, respectively. However, comparing to theta burst stimulations delivered using conventional form of transcranial electrical stimulation, using tTIS expressed no significant difference in modulating motor evoked potential amplitudes. Sham treatment from both methods had no effect on changing the motor evoked potential amplitude. The present study demonstrated the feasibility of using tTIS to achieve a theta burst stimulation scheme for motor cortical neuromodulation. These findings also indicated the future potential of using tTIS to carry out theta burst stimulation protocols in deep-brain networks for modulating neuroplasticity.
Collapse
Affiliation(s)
- Chun-Wei Wu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Bor-Shing Lin
- Department of Computer Science and Information Engineering, National Taipei University, New Taipei City 237303, Taiwan
| | - Zhao Zhang
- School of Mechanical and Electrical Engineering, Wuyi University, Wuyishan City, Fujian Province, China
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Jian-Chiun Liou
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Wei-Lun Lo
- Department of Surgery, Division of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ting Li
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Shao-Chu Chiu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan.
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
7
|
Demchenko I, Rampersad S, Datta A, Horn A, Churchill NW, Kennedy SH, Krishnan S, Rueda A, Schweizer TA, Griffiths JD, Boyden ES, Santarnecchi E, Bhat V. Target engagement of the subgenual anterior cingulate cortex with transcranial temporal interference stimulation in major depressive disorder: a protocol for a randomized sham-controlled trial. Front Neurosci 2024; 18:1390250. [PMID: 39268031 PMCID: PMC11390435 DOI: 10.3389/fnins.2024.1390250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Background Transcranial temporal interference stimulation (tTIS) is a new, emerging neurostimulation technology that utilizes two or more electric fields at specific frequencies to modulate the oscillations of neurons at a desired spatial location in the brain. The physics of tTIS offers the advantage of modulating deep brain structures in a non-invasive fashion and with minimal stimulation of the overlying cortex outside of a selected target. As such, tTIS can be effectively employed in the context of therapeutics for the psychiatric disease of disrupted brain connectivity, such as major depressive disorder (MDD). The subgenual anterior cingulate cortex (sgACC), a key brain center that regulates human emotions and influences negative emotional states, is a plausible target for tTIS in MDD based on reports of its successful neuromodulation with invasive deep brain stimulation. Methods This pilot, single-site, double-blind, randomized, sham-controlled interventional clinical trial will be conducted at St. Michael's Hospital - Unity Health Toronto in Toronto, ON, Canada. The primary objective is to demonstrate target engagement of the sgACC with 130 Hz tTIS using resting-state magnetic resonance imaging (MRI) techniques. The secondary objective is to estimate the therapeutic potential of tTIS for MDD by evaluating the change in clinical characteristics of participants and electrophysiological outcomes and providing feasibility and tolerability estimates for a large-scale efficacy trial. Thirty participants (18-65 years) with unipolar, non-psychotic MDD will be recruited and randomized to receive 10 sessions of 130 Hz tTIS or sham stimulation (n = 15 per arm). The trial includes a pre- vs. post-treatment 3T MRI scan of the brain, clinical evaluation, and electroencephalography (EEG) acquisition at rest and during the auditory mismatch negativity (MMN) paradigm. Discussion This study is one of the first-ever clinical trials among patients with psychiatric disorders examining the therapeutic potential of repetitive tTIS and its neurobiological mechanisms. Data obtained from this trial will be used to optimize the tTIS approach and design a large-scale efficacy trial. Research in this area has the potential to provide a novel treatment option for individuals with MDD and circuitry-related disorders and may contribute to the process of obtaining regulatory approval for therapeutic applications of tTIS. Clinical Trial Registration ClinicalTrials.gov, identifier NCT05295888.
Collapse
Affiliation(s)
- Ilya Demchenko
- Interventional Psychiatry Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Sumientra Rampersad
- Department of Physics, University of Massachusetts Boston, Boston, MA, United States
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
| | - Abhishek Datta
- Research and Development, Soterix Medical, Inc., Woodbridge, NJ, United States
- Department of Biomedical Engineering, City College of New York, New York, NY, United States
| | - Andreas Horn
- Department of Neurology, Center for Brain Circuit Therapeutics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery & Center for NeuroTechnology and NeuroRecovery (CNTR), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Berlin, Germany
| | - Nathan W Churchill
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Sidney H Kennedy
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, Toronto, ON, Canada
| | - Sridhar Krishnan
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON, Canada
| | - Alice Rueda
- Interventional Psychiatry Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Tom A Schweizer
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - John D Griffiths
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, Toronto, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Edward S Boyden
- Department of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, McGovern Institute for Brain Research and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, Toronto, ON, Canada
| |
Collapse
|
8
|
Ahtiainen A, Leydolph L, Tanskanen JMA, Hunold A, Haueisen J, Hyttinen JAK. Electric field temporal interference stimulation of neurons in vitro. LAB ON A CHIP 2024; 24:3945-3957. [PMID: 38994783 DOI: 10.1039/d4lc00224e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Electrical stimulation (ES) techniques, such as deep brain and transcranial electrical stimulation, have shown promise in alleviating the symptoms of depression and other neurological disorders in vivo. A new noninvasive ES method called temporal interference stimulation (TIS), possesses great potential as it can be used to steer the stimulation and possibly selectively modulate different brain regions. To study TIS in a controlled environment, we successfully established an in vitro 'TIS on a chip' setup using rat cortical neurons on microelectrode arrays (MEAs) in combination with a current stimulator. We validated the developed TIS system and demonstrated the spatial steerability of the stimulation by direct electric field measurements in the chip setup. We stimulated cultures of rat cortical neurons at 28 days in vitro (DIV) by two-channel stimulation delivering 1) TIS at 653 Hz and 643 Hz, resulting in a 10 Hz frequency envelope, 2) low-frequency stimulation (LFS) at 10 Hz and 3) high-frequency stimulation (HFS) at 653 Hz. Unstimulated cultures were used as control/sham. We observed the differences in the electric field strengths during TIS, HFS, and LFS. Moreover, HFS and LFS had the smallest effects on neuronal activity. Instead, TIS elicited neuronal electrophysiological responses, especially 24 hours after stimulation. Our 'TIS on a chip' approach eludicates the applicability of TIS as a method to modulate neuronal electrophysiological activity. The TIS on a chip approach provides spatially steerable stimuli while mitigating the effects of high stimulus fields near the stimulation electrodes. Thus, the approach opens new avenues for stimulation on a chip applications, allowing the study of neuronal responses to gain insights into the potential clinical applications of TIS in treating various brain disorders.
Collapse
Affiliation(s)
- Annika Ahtiainen
- Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland.
| | - Lilly Leydolph
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Jarno M A Tanskanen
- Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland.
| | - Alexander Hunold
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany
- neuroConn GmbH, 98693, Ilmenau, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany
- Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Jari A K Hyttinen
- Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland.
| |
Collapse
|
9
|
Liu R, Zhu G, Wu Z, Gan Y, Zhang J, Liu J, Wang L. Temporal interference stimulation targets deep primate brain. Neuroimage 2024; 291:120581. [PMID: 38508293 DOI: 10.1016/j.neuroimage.2024.120581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/10/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024] Open
Abstract
Temporal interference (TI) stimulation, a novel non-invasive stimulation strategy, has recently been shown to modulate neural activity in deep brain regions of living mice. Yet, it is uncertain if this method is applicable to larger brains and whether the electric field produced under traditional safety currents can penetrate deep regions as observed in mice. Despite recent model-based simulation studies offering positive evidence at both macro- and micro-scale levels, the absence of electrophysiological data from actual brains hinders comprehensive understanding and potential application of TI. This study aims to directly measure the spatiotemporal properties of the interfered electric field in the rhesus monkey brain and to validate the effects of TI on the human brain. Two monkeys were involved in the measurement, with implantation of several stereo-electroencephalography (SEEG) depth electrodes. TI stimulation was applied to anesthetized monkeys using two pairs of surface electrodes at differing stimulation parameters. Model-based simulations were also conducted and subsequently compared with actual recordings. Additionally, TI stimulation was administered to patients with motor disorders to validate its effects on motor symptoms. Through the integration of computational electric field simulation with empirical measurements, it was determined that the temporally interfering electric fields in the deep central regions are capable of attaining a magnitude sufficient to induce a subthreshold modulation effect on neural signals. Additionally, an improvement in movement disorders was observed as a result of TI stimulation. This study is the first to systematically measure the TI electric field in living non-human primates, offering empirical evidence that TI holds promise as a more focal and precise method for modulating neural activities in deep regions of a large brain. This advancement paves the way for future applications of TI in treating neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ruobing Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zhengping Wu
- School of Innovations, Sanjiang University, Nanjing, PR China
| | - Yifei Gan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Jiali Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
10
|
Zheng S, Fu T, Yan J, Zhu C, Li L, Qian Z, Lü J, Liu Y. Repetitive temporal interference stimulation improves jump performance but not the postural stability in young healthy males: a randomized controlled trial. J Neuroeng Rehabil 2024; 21:38. [PMID: 38509563 PMCID: PMC10953232 DOI: 10.1186/s12984-024-01336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Temporal interference (TI) stimulation, an innovative non-invasive brain stimulation technique, has the potential to activate neurons in deep brain regions. The objective of this study was to evaluate the effects of repetitive TI stimulation targeting the lower limb motor control area (i.e., the M1 leg area) on lower limb motor function in healthy individuals, which could provide evidence for further translational application of non-invasive deep brain stimulation. METHODS In this randomized, double-blinded, parallel-controlled trial, 46 healthy male adults were randomly divided into the TI or sham group. The TI group received 2 mA (peak-to-peak) TI stimulation targeting the M1 leg area with a 20 Hz frequency difference (2 kHz and 2.02 kHz). Stimulation parameters of the sham group were consistent with those of the TI group but the current input lasted only 1 min (30 s ramp-up and ramp-down). Both groups received stimulation twice daily for five consecutive days. The vertical jump test (countermovement jump [CMJ], squat jump [SJ], and continuous jump [CJ]) and Y-balance test were performed before and after the total intervention session. Two-way repeated measures ANOVA (group × time) was performed to evaluate the effects of TI stimulation on lower limb motor function. RESULTS Forty participants completed all scheduled study visits. Two-way repeated measures ANOVA showed significant group × time interaction effects for CMJ height (F = 8.858, p = 0.005) and SJ height (F = 6.523, p = 0.015). The interaction effect of the average CJ height of the first 15 s was marginally significant (F = 3.550, p = 0.067). However, there was no significant interaction effect on the Y balance (p > 0.05). Further within-group comparisons showed a significant post-intervention increase in the height of the CMJ (p = 0.004), SJ (p = 0.010) and the average CJ height of the first 15 s (p = 0.004) in the TI group. CONCLUSION Repetitive TI stimulation targeting the lower limb motor control area effectively increased vertical jump height in healthy adult males but had no significant effect on dynamic postural stability.
Collapse
Affiliation(s)
- Suwang Zheng
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Tianli Fu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Jinlong Yan
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Chunyue Zhu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Lu Li
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Jiaojiao Lü
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China.
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China.
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
11
|
Qi S, Liu X, Yu J, Liang Z, Liu Y, Wang X. Temporally interfering electric fields brain stimulation in primary motor cortex of mice promotes motor skill through enhancing neuroplasticity. Brain Stimul 2024; 17:245-257. [PMID: 38428583 DOI: 10.1016/j.brs.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
Temporal interference (TI) electric field brain stimulation is a novel neuromodulation technique that enables the non-invasive modulation of deep brain regions, but few advances about TI stimulation effectiveness and mechanisms have been reported. Conventional transcranial alternating current stimulation (tACS) can enhance motor skills, whether TI stimulation has an effect on motor skills in mice has not been elucidated. In the present study, TI stimulation was proved to stimulating noninvasively primary motor cortex (M1) of mice, and that TI stimulation with an envelope wave frequency of 20 Hz (Δ f = 20 Hz) once a day for 20 min for 7 consecutive days significantly improved the motor skills of mice. The mechanism of action may be related to regulating of neurotransmitter metabolism, increasing the expression of synapse-related proteins, promoting neurotransmitter release, increasing dendritic spine density, enhancing the number of synaptic vesicles and the thickness of postsynaptic dense material, and ultimately enhance neuronal excitability and plasticity. It is the first report about TI stimulation promoting motor skills of mice and describing its mechanisms.
Collapse
Affiliation(s)
- Shuo Qi
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China; School of Exercise and Health, Shanghai University of Sport, Shanghai, China; School of Sport and Health, Shandong Sport University, Jinan, China
| | - Xiaodong Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China; School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jinglun Yu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China; School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Zhiqiang Liang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China; School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China; School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Xiaohui Wang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China; School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
12
|
Jiao F, Zhuang J, Nitsche MA, Lin Z, Ma Y, Liu Y. Application of transcranial alternating current stimulation to improve eSports-related cognitive performance. Front Neurosci 2024; 18:1308370. [PMID: 38476869 PMCID: PMC10927847 DOI: 10.3389/fnins.2024.1308370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Electronic Sports (eSports) is a popular and still emerging sport. Multiplayer Online Battle Arena (MOBA) and First/Third Person Shooting Games (FPS/TPS) require excellent visual attention abilities. Visual attention involves specific frontal and parietal areas, and is associated with alpha coherence. Transcranial alternating current stimulation (tACS) is a principally suitable tool to improve cognitive functions by modulation of regional oscillatory cortical networks that alters regional and larger network connectivity. Methods In this single-blinded crossover study, 27 healthy college students were recruited and exposed to 10 Hz tACS of the right frontoparietal network. Subjects conducted a Visual Spatial Attention Distraction task in three phases: T0 (pre-stimulation), T1 (during stimulation), T2 (after-stimulation), and an eSports performance task which contained three games ("Exact Aiming," "Flick Aiming," "Press Reaction") before and after stimulation. Results The results showed performance improvements in the "Exact Aiming" task and hint for a prevention of reaction time performance decline in the "Press Reaction" task in the real, as compared to the sham stimulation group. We also found a significant decrease of reaction time in the visual spatial attention distraction task at T1 compared to T0 in the real, but not sham intervention group. However, accuracy and inverse efficiency scores (IES) did not differ between intervention groups in this task. Discussion These results suggest that 10 Hz tACS over the right frontal and parietal cortex might improve eSports-related skill performance in specific tasks, and also improve visual attention in healthy students during stimulation. This tACS protocol is a potential tool to modulate neurocognitive performance involving tracking targets, and might be a foundation for the development of a new concept to enhance eSports performance. This will require however proof in real life scenarios, as well optimization.
Collapse
Affiliation(s)
- Fujia Jiao
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Jie Zhuang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Michael A. Nitsche
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld University, Bielefeld, Germany
- German Center for Mental Health (DZPG), Bochum, Germany
| | - Zhenggen Lin
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Yuanbo Ma
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
13
|
Zhu Z, Yin L. A mini-review: recent advancements in temporal interference stimulation in modulating brain function and behavior. Front Hum Neurosci 2023; 17:1266753. [PMID: 37780965 PMCID: PMC10539552 DOI: 10.3389/fnhum.2023.1266753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Numerous studies have assessed the effect of Temporal Interference (TI) on human performance. However, a comprehensive literature review has not yet been conducted. Therefore, this review aimed to search PubMed and Web of Science databases for TI-related literature and analyze the findings. We analyzed studies involving preclinical, human, and computer simulations, and then discussed the mechanism and safety of TI. Finally, we identified the gaps and outlined potential future directions. We believe that TI is a promising technology for the treatment of neurological movement disorders, due to its superior focality, steerability, and tolerability compared to traditional electrical stimulation. However, human experiments have yielded fewer and inconsistent results, thus animal and simulation experiments are still required to perfect stimulation protocols for human trials.
Collapse
Affiliation(s)
| | - Lijun Yin
- School of Sport, Shenzhen University, Shenzhen, China
| |
Collapse
|