Ye C, Zhang Y, Ran C, Ma T. Recent Progress in Brain Network Models for Medical Applications: A Review.
HEALTH DATA SCIENCE 2024;
4:0157. [PMID:
38979037 PMCID:
PMC11227951 DOI:
10.34133/hds.0157]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/28/2024] [Indexed: 07/10/2024]
Abstract
Importance: Pathological perturbations of the brain often spread via connectome to fundamentally alter functional consequences. By integrating multimodal neuroimaging data with mathematical neural mass modeling, brain network models (BNMs) enable to quantitatively characterize aberrant network dynamics underlying multiple neurological and psychiatric disorders. We delved into the advancements of BNM-based medical applications, discussed the prevalent challenges within this field, and provided possible solutions and future directions. Highlights: This paper reviewed the theoretical foundations and current medical applications of computational BNMs. Composed of neural mass models, the BNM framework allows to investigate large-scale brain dynamics behind brain diseases by linking the simulated functional signals to the empirical neurophysiological data, and has shown promise in exploring neuropathological mechanisms, elucidating therapeutic effects, and predicting disease outcome. Despite that several limitations existed, one promising trend of this research field is to precisely guide clinical neuromodulation treatment based on individual BNM simulation. Conclusion: BNM carries the potential to help understand the mechanism underlying how neuropathology affects brain network dynamics, further contributing to decision-making in clinical diagnosis and treatment. Several constraints must be addressed and surmounted to pave the way for its utilization in the clinic.
Collapse