1
|
Honeycutt SE, N'Guetta PEY, O'Brien LL. Innervation in organogenesis. Curr Top Dev Biol 2022; 148:195-235. [PMID: 35461566 PMCID: PMC10636594 DOI: 10.1016/bs.ctdb.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Proper innervation of peripheral organs helps to maintain physiological homeostasis and elicit responses to external stimuli. Disruptions to normal function can result in pathophysiological consequences. The establishment of connections and communication between the central nervous system and the peripheral organs is accomplished through the peripheral nervous system. Neuronal connections with target tissues arise from ganglia partitioned throughout the body. Organ innervation is initiated during development with stimuli being conducted through several types of neurons including sympathetic, parasympathetic, and sensory. While the physiological modulation of mature organs by these nerves is largely understood, their role in mammalian development is only beginning to be uncovered. Interactions with cells in target tissues can affect the development and eventual function of several organs, highlighting their significance. This chapter will cover the origin of peripheral neurons, factors mediating organ innervation, and the composition and function of organ-specific nerves during development. This emerging field aims to identify the functional contribution of innervation to development which will inform future investigations of normal and abnormal mammalian organogenesis, as well as contribute to regenerative and organ replacement efforts where nerve-derived signals may have significant implications for the advancement of such studies.
Collapse
Affiliation(s)
- Samuel E Honeycutt
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Pierre-Emmanuel Y N'Guetta
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lori L O'Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
2
|
Ritter KE, Buehler DP, Asher SB, Deal KK, Zhao S, Guo Y, Southard-Smith EM. 5-HT3 Signaling Alters Development of Sacral Neural Crest Derivatives That Innervate the Lower Urinary Tract. Int J Mol Sci 2021; 22:ijms22136838. [PMID: 34202161 PMCID: PMC8269166 DOI: 10.3390/ijms22136838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 12/25/2022] Open
Abstract
The autonomic nervous system derives from the neural crest (NC) and supplies motor innervation to the smooth muscle of visceral organs, including the lower urinary tract (LUT). During fetal development, sacral NC cells colonize the urogenital sinus to form pelvic ganglia (PG) flanking the bladder neck. The coordinated activity of PG neurons is required for normal urination; however, little is known about the development of PG neuronal diversity. To discover candidate genes involved in PG neurogenesis, the transcriptome profiling of sacral NC and developing PG was performed, and we identified the enrichment of the type 3 serotonin receptor (5-HT3, encoded by Htr3a and Htr3b). We determined that Htr3a is one of the first serotonin receptor genes that is up-regulated in sacral NC progenitors and is maintained in differentiating PG neurons. In vitro cultures showed that the disruption of 5-HT3 signaling alters the differentiation outcomes of sacral NC cells, while the stimulation of 5-HT3 in explanted fetal pelvic ganglia severely diminished neurite arbor outgrowth. Overall, this study provides a valuable resource for the analysis of signaling pathways in PG development, identifies 5-HT3 as a novel regulator of NC lineage diversification and neuronal maturation in the peripheral nervous system, and indicates that the perturbation of 5-HT3 signaling in gestation has the potential to alter bladder function later in life.
Collapse
Affiliation(s)
- K. Elaine Ritter
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (K.E.R.); (D.P.B.); (S.B.A.); (K.K.D.)
| | - Dennis P. Buehler
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (K.E.R.); (D.P.B.); (S.B.A.); (K.K.D.)
| | - Stephanie B. Asher
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (K.E.R.); (D.P.B.); (S.B.A.); (K.K.D.)
| | - Karen K. Deal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (K.E.R.); (D.P.B.); (S.B.A.); (K.K.D.)
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.Z.); (Y.G.)
| | - Yan Guo
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.Z.); (Y.G.)
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (K.E.R.); (D.P.B.); (S.B.A.); (K.K.D.)
- Correspondence:
| |
Collapse
|
3
|
Deal KK, Chandrashekar AS, Beaman MM, Branch MC, Buehler DP, Conway SJ, Southard-Smith EM. Altered sacral neural crest development in Pax3 spina bifida mutants underlies deficits of bladder innervation and function. Dev Biol 2021; 476:173-188. [PMID: 33839113 DOI: 10.1016/j.ydbio.2021.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 11/30/2022]
Abstract
Mouse models of Spina bifida (SB) have been instrumental for identifying genes, developmental processes, and environmental factors that influence neurulation and neural tube closure. Beyond the prominent neural tube defects, other aspects of the nervous system can be affected in SB with significant changes in essential bodily functions such as urination. SB patients frequently experience bladder dysfunction and SB fetuses exhibit reduced density of bladder nerves and smooth muscle although the developmental origins of these deficits have not been determined. The Pax3 Splotch-delayed (Pax3Sp-d) mouse model of SB is one of a very few mouse SB models that survives to late stages of gestation. Through analysis of Pax3Sp-d mutants we sought to define how altered bladder innervation in SB might arise by tracing sacral neural crest (NC) development, pelvic ganglia neuronal differentiation, and assessing bladder nerve fiber density. In Pax3Sp-d/Sp-d fetal mice we observed delayed migration of Sox10+ NC-derived progenitors (NCPs), deficient pelvic ganglia neurogenesis, and reduced density of bladder wall innervation. We further combined NC-specific deletion of Pax3 with the constitutive Pax3Sp-d allele in an effort to generate viable Pax3 mutants to examine later stages of bladder innervation and postnatal bladder function. Neural crest specific deletion of a Pax3 flox allele, using a Sox10-cre driver, in combination with a constitutive Pax3Sp-d mutation produced postnatal viable offspring that exhibited altered bladder function as well as reduced bladder wall innervation and altered connectivity between accessory ganglia at the bladder neck. Combined, the results show that Pax3 plays critical roles within sacral NC that are essential for initiation of neurogenesis and differentiation of autonomic neurons within pelvic ganglia.
Collapse
Affiliation(s)
- Karen K Deal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | - Meagan C Branch
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dennis P Buehler
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
4
|
Smith-Anttila CJA, Morrison V, Keast JR. Spatiotemporal mapping of sensory and motor innervation of the embryonic and postnatal mouse urinary bladder. Dev Biol 2021; 476:18-32. [PMID: 33744254 DOI: 10.1016/j.ydbio.2021.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/23/2022]
Abstract
The primary function of the urinary bladder is to store urine (continence) until a suitable time for voiding (micturition). These distinct processes are determined by the coordinated activation of sensory and motor components of the nervous system, which matures to enable voluntary control at the time of weaning. Our aim was to define the development and maturation of the nerve-organ interface of the mouse urinary bladder by mapping the organ and tissue distribution of major classes of autonomic (motor) and sensory axons. Innervation of the bladder was evident from E13 and progressed dorsoventrally. Increasing defasciculation of axon bundles to single axons within the muscle occurred through the prenatal period, and in several classes of axons underwent further maturation until P7. Urothelial innervation occurred more slowly than muscle innervation and showed a clear regional difference, from E18 the bladder neck having the highest density of urothelial nerves. These features of innervation were similar in males and females but varied in timing and tissue density between different axon classes. We also analysed the pelvic ganglion, the major source of motor axons that innervate the lower urinary tract and other pelvic organs. Cholinergic, nitrergic (subset of cholinergic) and noradrenergic neuronal cell bodies were present prior to visualization of these axon classes within the bladder. Examination of cholinergic structures within the pelvic ganglion indicated that connections from spinal preganglionic neurons to pelvic ganglion neurons were already present by E12, a time at which these autonomic ganglion neurons had not yet innervated the bladder. These putative preganglionic inputs increased in density prior to birth as axon terminal fields continued to expand within the bladder tissues. Our studies also revealed in numerous pelvic ganglion neurons an unexpected transient expression of calcitonin gene-related peptide, a peptide commonly used to visualise the peptidergic class of visceral sensory axons. Together, our outcomes enhance our understanding of neural regulatory elements in the lower urinary tract during development and provide a foundation for studies of plasticity and regenerative capacity in the adult system.
Collapse
Affiliation(s)
| | - Victoria Morrison
- Department of Anatomy and Neuroscience, University of Melbourne, Vic, 3010, Australia
| | - Janet R Keast
- Department of Anatomy and Neuroscience, University of Melbourne, Vic, 3010, Australia.
| |
Collapse
|
5
|
Franke-Radowiecka A. Paracervical ganglion in the female pig during prenatal development: Morphology and immunohistochemical characteristics. Histol Histopathol 2020; 35:1363-1377. [PMID: 33269806 DOI: 10.14670/hh-18-287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study investigated the development of the paracervical ganglion in 5-, 7- and 10-week-old porcine foetuses using double labelling immunofluorescence method. In 5-week-old foetuses single PGP-positive perikarya were visible only along the mesonephric ducts. They contained DβH or VAChT, and nerve fibres usually were PGP/VAChT-positive. The perikarya were mainly oval. In 7-week-old foetuses, a compact group of PGP-positive neurons (3144±213) was visible on both sides and externally to the uterovaginal canal mesenchyme of paramesonephric ducts. Nerve cell bodies contained only DβH (36.40±1.63%) or VAChT (17.31±1.13%). In the 10-week-old foetuses, the compact group of PGP-positive neurons divided into several large and many small clusters of nerve cells and also became more expanded along the whole uterovaginal canal mesenchyme reaching the initial part of the uterine canal of the paramesonephric duct. The number of neurons located in these neuronal structures increased to 4121±259. Immunohistochemistry revealed that PGP-positive nerve cell bodies contained DβH (40.26±0,73%) and VAChT (30.73±1.34%) and were also immunoreactive for NPY (33.24±1,27%), SOM (23.6±0,44%) or VIP (22.9±1,13%). Other substances studied (GAL, NOS, CGRP, SP) were not determined at this stage of the development. In this study, for the first time, the morphology of PCG formation in the porcine foetus has been described in three stages of development. Dynamic changes in the number of neurons and their sizes were also noted, as well as the changes in immunochistochemical coding of maturing neurons.
Collapse
Affiliation(s)
- Amelia Franke-Radowiecka
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland.
| |
Collapse
|
6
|
The diversity of neuronal phenotypes in rodent and human autonomic ganglia. Cell Tissue Res 2020; 382:201-231. [PMID: 32930881 PMCID: PMC7584561 DOI: 10.1007/s00441-020-03279-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/10/2020] [Indexed: 12/29/2022]
Abstract
Selective sympathetic and parasympathetic pathways that act on target organs represent the terminal actors in the neurobiology of homeostasis and often become compromised during a range of neurodegenerative and traumatic disorders. Here, we delineate several neurotransmitter and neuromodulator phenotypes found in diverse parasympathetic and sympathetic ganglia in humans and rodent species. The comparative approach reveals evolutionarily conserved and non-conserved phenotypic marker constellations. A developmental analysis examining the acquisition of selected neurotransmitter properties has provided a detailed, but still incomplete, understanding of the origins of a set of noradrenergic and cholinergic sympathetic neuron populations, found in the cervical and trunk region. A corresponding analysis examining cholinergic and nitrergic parasympathetic neurons in the head, and a range of pelvic neuron populations, with noradrenergic, cholinergic, nitrergic, and mixed transmitter phenotypes, remains open. Of particular interest are the molecular mechanisms and nuclear processes that are responsible for the correlated expression of the various genes required to achieve the noradrenergic phenotype, the segregation of cholinergic locus gene expression, and the regulation of genes that are necessary to generate a nitrergic phenotype. Unraveling the neuron population-specific expression of adhesion molecules, which are involved in axonal outgrowth, pathway selection, and synaptic organization, will advance the study of target-selective autonomic pathway generation.
Collapse
|
7
|
Roberts NA, Hilton EN, Lopes FM, Singh S, Randles MJ, Gardiner NJ, Chopra K, Coletta R, Bajwa Z, Hall RJ, Yue WW, Schaefer F, Weber S, Henriksson R, Stuart HM, Hedman H, Newman WG, Woolf AS. Lrig2 and Hpse2, mutated in urofacial syndrome, pattern nerves in the urinary bladder. Kidney Int 2019; 95:1138-1152. [PMID: 30885509 PMCID: PMC6481288 DOI: 10.1016/j.kint.2018.11.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 12/29/2022]
Abstract
Mutations in leucine-rich-repeats and immunoglobulin-like-domains 2 (LRIG2) or in heparanase 2 (HPSE2) cause urofacial syndrome, a devastating autosomal recessive disease of functional bladder outlet obstruction. It has been speculated that urofacial syndrome has a neural basis, but it is unknown whether defects in urinary bladder innervation are present. We hypothesized that urofacial syndrome features a peripheral neuropathy of the bladder. Mice with homozygous targeted Lrig2 mutations had urinary defects resembling those found in urofacial syndrome. There was no anatomical blockage of the outflow tract, consistent with a functional bladder outlet obstruction. Transcriptome analysis revealed differential expression of 12 known transcripts in addition to Lrig2, including 8 with established roles in neurobiology. Mice with homozygous mutations in either Lrig2 or Hpse2 had increased nerve density within the body of the urinary bladder and decreased nerve density around the urinary outflow tract. In a sample of 155 children with chronic kidney disease and urinary symptoms, we discovered novel homozygous missense LRIG2 variants that were predicted to be pathogenic in 2 individuals with non-syndromic bladder outlet obstruction. These observations provide evidence that a peripheral neuropathy is central to the pathobiology of functional bladder outlet obstruction in urofacial syndrome, and emphasize the importance of LRIG2 and heparanase 2 for nerve patterning in the urinary tract.
Collapse
Affiliation(s)
- Neil A Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK.
| | - Emma N Hilton
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Subir Singh
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Michael J Randles
- School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Natalie J Gardiner
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Karl Chopra
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Riccardo Coletta
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Zunera Bajwa
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Robert J Hall
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK
| | - Franz Schaefer
- Division of Pediatric Nephrology, Centre for Pediatric and Adolescent Medicine, University Hospital of Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| | - Stefanie Weber
- Pediatric Nephrology, University-Children's Hospital Marburg, Philipps-University Marburg, Germany
| | - Roger Henriksson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden; Regional Cancer Center Stockholm/Gotland, Stockholm, Sweden
| | - Helen M Stuart
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Håkan Hedman
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - William G Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
8
|
Negi S, Bolt CC, Zhang H, Stubbs L. An extended regulatory landscape drives Tbx18 activity in a variety of prostate-associated cell lineages. Dev Biol 2019; 446:180-192. [PMID: 30594504 DOI: 10.1016/j.ydbio.2018.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/13/2018] [Accepted: 11/29/2018] [Indexed: 11/17/2022]
Abstract
The evolutionarily conserved transcription factor, Tbx18, is expressed in a dynamic pattern throughout embryonic and early postnatal life and plays crucial roles in the development of multiple organ systems. Previous studies have indicated that this dynamic function is controlled by an expansive regulatory structure, extending far upstream and downstream of the gene. With the goal of identifying elements that interact with the Tbx18 promoter in developing prostate, we coupled chromatin conformation capture (4C) and ATAC-seq from embryonic day 18.5 (E18.5) mouse urogenital sinus (UGS), where Tbx18 is highly expressed. The data revealed dozens of active chromatin elements distributed throughout a 1.5 million base pair topologically associating domain (TAD). To identify cell types contributing to this chromatin signal, we used lineage tracing methods with a Tbx18 Cre "knock-in" allele; these data show clearly that Tbx18-expressing precursors differentiate into wide array of cell types in multiple tissue compartments, most of which have not been previously reported. We also used a 209 kb Cre-expressing Tbx18 transgene, to partition enhancers for specific precursor types into two rough spatial domains. Within this central 209 kb compartment, we identified ECR1, previously described to regulate Tbx18 expression in ureter, as an active regulator of UGS expression. Together these data define the diverse fates of Tbx18+ precursors in prostate-associated tissues for the first time, and identify a highly active TAD controlling the gene's essential function in this tissue.
Collapse
Affiliation(s)
- Soumya Negi
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, United States.
| | | | - Huimin Zhang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, United States.
| | - Lisa Stubbs
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, United States.
| |
Collapse
|
9
|
Wiese CB, Deal KK, Ireland SJ, Cantrell VA, Southard-Smith EM. Migration pathways of sacral neural crest during development of lower urogenital tract innervation. Dev Biol 2017; 429:356-369. [PMID: 28449850 PMCID: PMC5572097 DOI: 10.1016/j.ydbio.2017.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 11/18/2022]
Abstract
The migration and fate of cranial and vagal neural crest-derived progenitor cells (NCPCs) have been extensively studied; however, much less is known about sacral NCPCs particularly in regard to their distribution in the urogenital system. To construct a spatiotemporal map of NCPC migration pathways into the developing lower urinary tract, we utilized the Sox10-H2BVenus transgene to visualize NCPCs expressing Sox10. Our aim was to define the relationship of Sox10-expressing NCPCs relative to bladder innervation, smooth muscle differentiation, and vascularization through fetal development into adulthood. Sacral NCPC migration is a highly regimented, specifically timed process, with several potential regulatory mileposts. Neuronal differentiation occurs concomitantly with sacral NCPC migration, and neuronal cell bodies are present even before the pelvic ganglia coalesce. Sacral NCPCs reside within the pelvic ganglia anlagen through 13.5 days post coitum (dpc), after which they begin streaming into the bladder body in progressive waves. Smooth muscle differentiation and vascularization of the bladder initiate prior to innervation and appear to be independent processes. In adult bladder, the majority of Sox10+ cells express the glial marker S100β, consistent with Sox10 being a glial marker in other tissues. However, rare Sox10+ NCPCs are seen in close proximity to blood vessels and not all are S100β+, suggesting either glial heterogeneity or a potential nonglial role for Sox10+ cells along vasculature. Taken together, the developmental atlas of Sox10+ NCPC migration and distribution profile of these cells in adult bladder provided here will serve as a roadmap for future investigation in mouse models of lower urinary tract dysfunction.
Collapse
Affiliation(s)
- Carrie B Wiese
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States
| | - Karen K Deal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States
| | - Sara J Ireland
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States
| | - V Ashley Cantrell
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0275, United States.
| |
Collapse
|
10
|
Keast JR, Smith-Anttila CJA, Osborne PB. Developing a functional urinary bladder: a neuronal context. Front Cell Dev Biol 2015; 3:53. [PMID: 26389118 PMCID: PMC4555086 DOI: 10.3389/fcell.2015.00053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/14/2015] [Indexed: 01/23/2023] Open
Abstract
The development of organs occurs in parallel with the formation of their nerve supply. The innervation of pelvic organs (lower urinary tract, hindgut, and sexual organs) is complex and we know remarkably little about the mechanisms that form these neural pathways. The goal of this short review is to use the urinary bladder as an example to stimulate interest in this question. The bladder requires a healthy mature nervous system to store urine and release it at behaviorally appropriate times. Understanding the mechanisms underlying the construction of these neural circuits is not only relevant to defining the basis of developmental problems but may also suggest strategies to restore connectivity and function following injury or disease in adults. The bladder nerve supply comprises multiple classes of sensory, and parasympathetic or sympathetic autonomic effector (motor) neurons. First, we define the developmental endpoint by describing this circuitry in adult rodents. Next we discuss the innervation of the developing bladder, identifying challenges posed by this area of research. Last we provide examples of genetically modified mice with bladder dysfunction and suggest potential neural contributors to this state.
Collapse
Affiliation(s)
- Janet R Keast
- Department of Anatomy and Neuroscience, University of Melbourne Melbourne, VIC, Australia
| | | | - Peregrine B Osborne
- Department of Anatomy and Neuroscience, University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
11
|
Georgas KM, Armstrong J, Keast JR, Larkins CE, McHugh KM, Southard-Smith EM, Cohn MJ, Batourina E, Dan H, Schneider K, Buehler DP, Wiese CB, Brennan J, Davies JA, Harding SD, Baldock RA, Little MH, Vezina CM, Mendelsohn C. An illustrated anatomical ontology of the developing mouse lower urogenital tract. Development 2015; 142:1893-908. [PMID: 25968320 DOI: 10.1242/dev.117903] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 04/01/2015] [Indexed: 01/10/2023]
Abstract
Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation.
Collapse
Affiliation(s)
- Kylie M Georgas
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jane Armstrong
- Center for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Janet R Keast
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christine E Larkins
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Kirk M McHugh
- Centre for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital and Division of Anatomy, The Ohio State University, Columbus, OH 43205/10, USA
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Martin J Cohn
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA Howard Hughes Medical Institute, University of Florida, Gainesville, FL 32610, USA
| | | | - Hanbin Dan
- Columbia University, Department of Urology, New York, NY 10032, USA
| | - Kerry Schneider
- Columbia University, Department of Urology, New York, NY 10032, USA
| | - Dennis P Buehler
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Carrie B Wiese
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jane Brennan
- Center for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Jamie A Davies
- Center for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Simon D Harding
- MRC Human Genetics Unit, MRC IGMM, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Richard A Baldock
- MRC Human Genetics Unit, MRC IGMM, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Chad M Vezina
- University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI 53706, USA
| | - Cathy Mendelsohn
- Columbia University, Department of Urology, New York, NY 10032, USA
| |
Collapse
|
12
|
Ureter growth and differentiation. Semin Cell Dev Biol 2014; 36:21-30. [DOI: 10.1016/j.semcdb.2014.07.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 12/25/2022]
|
13
|
Stuart HM, Roberts NA, Hilton EN, McKenzie EA, Daly SB, Hadfield KD, Rahal JS, Gardiner NJ, Tanley SW, Lewis MA, Sites E, Angle B, Alves C, Lourenço T, Rodrigues M, Calado A, Amado M, Guerreiro N, Serras I, Beetz C, Varga RE, Silay MS, Darlow JM, Dobson MG, Barton DE, Hunziker M, Puri P, Feather SA, Goodship JA, Goodship THJ, Lambert HJ, Cordell HJ, Saggar A, Kinali M, Lorenz C, Moeller K, Schaefer F, Bayazit AK, Weber S, Newman WG, Woolf AS. Urinary tract effects of HPSE2 mutations. J Am Soc Nephrol 2014; 26:797-804. [PMID: 25145936 DOI: 10.1681/asn.2013090961] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Urofacial syndrome (UFS) is an autosomal recessive congenital disease featuring grimacing and incomplete bladder emptying. Mutations of HPSE2, encoding heparanase 2, a heparanase 1 inhibitor, occur in UFS, but knowledge about the HPSE2 mutation spectrum is limited. Here, seven UFS kindreds with HPSE2 mutations are presented, including one with deleted asparagine 254, suggesting a role for this amino acid, which is conserved in vertebrate orthologs. HPSE2 mutations were absent in 23 non-neurogenic neurogenic bladder probands and, of 439 families with nonsyndromic vesicoureteric reflux, only one carried a putative pathogenic HPSE2 variant. Homozygous Hpse2 mutant mouse bladders contained urine more often than did wild-type organs, phenocopying human UFS. Pelvic ganglia neural cell bodies contained heparanase 1, heparanase 2, and leucine-rich repeats and immunoglobulin-like domains-2 (LRIG2), which is mutated in certain UFS families. In conclusion, heparanase 2 is an autonomic neural protein implicated in bladder emptying, but HPSE2 variants are uncommon in urinary diseases resembling UFS.
Collapse
Affiliation(s)
- Helen M Stuart
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | - Neil A Roberts
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | - Emma N Hilton
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | | | - Sarah B Daly
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | - Kristen D Hadfield
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | - Jeffery S Rahal
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | | | - Simon W Tanley
- Faculty of Engineering and Physical Sciences, University of Manchester, Manchester, United Kingdom
| | - Malcolm A Lewis
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | - Emily Sites
- Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois
| | - Brad Angle
- Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois
| | - Cláudia Alves
- Genetica Med. e Diagnostico Pre-Natal, Prof. Sergio Castedo, S.A., Porto, Portugal
| | - Teresa Lourenço
- Department of Medical Genetics, Hospital de Dona Estefânia, Lisboa, Portugal
| | - Márcia Rodrigues
- Department of Medical Genetics, Hospital de Dona Estefânia, Lisboa, Portugal
| | - Angelina Calado
- Department of Pediatrics, Centro Hospitalar do Barlavento Algarvio, Portimão, Portugal
| | - Marta Amado
- Department of Pediatrics, Centro Hospitalar do Barlavento Algarvio, Portimão, Portugal
| | - Nancy Guerreiro
- Department of Pediatrics, Centro Hospitalar do Barlavento Algarvio, Portimão, Portugal
| | - Inês Serras
- Department of Pediatrics, Centro Hospitalar do Barlavento Algarvio, Portimão, Portugal
| | | | - Rita-Eva Varga
- Faculty of Life Sciences and Faculty of Life Sciences and
| | - Mesrur Selcuk Silay
- Department of Urology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - John M Darlow
- National Centre for Medical Genetics and National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - Mark G Dobson
- National Centre for Medical Genetics and National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - David E Barton
- National Centre for Medical Genetics and School of Medicine and Medical Sciences and
| | - Manuela Hunziker
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland; School of Medicine and Medical Sciences and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | | | - Judith A Goodship
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Timothy H J Goodship
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Heather J Lambert
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Anand Saggar
- Department of Clinical Genetics, St George's, University of London, London, United Kingdom
| | - Maria Kinali
- Department of Paediatric Neurology, Chelsea and Westminster Hospital and Imperial College London, and Bupa Cromwell Hospital, London, United Kingdom
| | | | - Christian Lorenz
- Department of Pediatric Surgery and Urology, Klinikum Bremen-Mitte, Bremen, Germany
| | - Kristina Moeller
- Department of Pediatrics, Klinikum Links der Weser, Bremen, Germany
| | - Franz Schaefer
- Division of Paediatric Nephrology, Centre for Paediatric and Adolescent Medicine, University Hospital of Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| | - Aysun K Bayazit
- Pediatric Nephrology, Cukurova University School of Medicine, Adana, Turkey; and
| | - Stefanie Weber
- Pediatrics II, University Children's Hospital Essen, Essen, Germany
| | - William G Newman
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | - Adrian S Woolf
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom;
| |
Collapse
|
14
|
Woolf AS, Stuart HM, Roberts NA, McKenzie EA, Hilton EN, Newman WG. Urofacial syndrome: a genetic and congenital disease of aberrant urinary bladder innervation. Pediatr Nephrol 2014; 29:513-8. [PMID: 23832138 DOI: 10.1007/s00467-013-2552-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/14/2013] [Accepted: 06/14/2013] [Indexed: 12/26/2022]
Abstract
The urofacial, or Ochoa, syndrome is characterised by congenital urinary bladder dysfunction together with an abnormal grimace upon smiling, laughing and crying. It can present as fetal megacystis. Postnatal features include urinary incontinence and incomplete bladder emptying due to simultaneous detrusor muscle and bladder outlet contractions. Vesicoureteric reflux is often present, and the condition can be complicated by urosepsis and end-stage renal disease. The syndrome has long been postulated to have neural basis, and it can be familial when it is inherited in an autosomal recessive manner. Most individuals with urofacial syndrome genetically studied to date carry biallelic, postulated functionally null mutations of HPSE2 or, less commonly, of LRIG2. Little is known about the biology of the respective encoded proteins, heparanase 2 and leucine-rich repeats and immunoglobulin-like domains 2. Nevertheless, the observations that heparanase 2 can bind heparan sulphate proteolgycans and inhibit heparanase 1 enzymatic activity and that LRIG2 can modulate receptor tyrosine kinase growth factor signalling each point to biological roles relevant to tissue differentiation. Moreover, both heparanase 2 and LRIG2 proteins are detected in autonomic nerves growing into fetal bladders. The collective evidence is consistent with the hypothesis that urofacial syndrome genes code for proteins which work in a common pathway to facilitate neural growth into, and/or function within, the bladder. This molecular pathway may also have relevance to our understanding of the pathogenesis of other lower tract diseases, including Hinman-Allen syndrome, or non-neurogenic neurogenic bladder, and of the subset of individuals who have primary vesicoureteric reflux accompanied by bladder dysfunction.
Collapse
Affiliation(s)
- Adrian S Woolf
- Institute of Human Development, Faculty of Medical and Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK,
| | | | | | | | | | | |
Collapse
|
15
|
Genetics of human congenital urinary bladder disease. Pediatr Nephrol 2014; 29:353-60. [PMID: 23584850 DOI: 10.1007/s00467-013-2472-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 01/23/2023]
Abstract
Lower urinary tract and/or kidney malformations are collectively the most common cause of end-stage renal disease in children, and they are also likely to account for a major subset of young adults requiring renal replacement therapy. Advances have been made regarding the discovery of the genetic causes of human kidney malformations. Indeed, testing for mutations of key nephrogenesis genes is now feasible for patients seen in nephrology clinics. Unfortunately, less is known about defined genetic bases of human lower urinary tract anomalies. The focus of this review is the genetic bases of congenital structural and functional disorders of the urinary bladder. Three are highlighted. First, prune belly syndrome, where mutations of CHRM3, encoding an acetylcholine receptor, HNF1B, encoding a transcription factor, and ACTA2, encoding a cytoskeletal protein, have been reported. Second, the urofacial syndrome, where mutations of LRIG2 and HPSE2, encoding proteins localised in nerves invading the fetal bladder, have been defined. Finally, we review emerging evidence that bladder exstrophy may have genetic bases, including variants in the TP63 promoter. These genetic discoveries provide a new perspective on a group of otherwise poorly understood diseases.
Collapse
|
16
|
Wiese CB, Fleming N, Buehler DP, Southard-Smith EM. A Uchl1-Histone2BmCherry:GFP-gpi BAC transgene for imaging neuronal progenitors. Genesis 2013; 51:852-61. [PMID: 24123561 DOI: 10.1002/dvg.22716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/30/2013] [Accepted: 09/20/2013] [Indexed: 11/09/2022]
Abstract
Uchl1 encodes the protein gene product 9.5 antigen (PGP9.5) that is a widely used to identify migrating neural progenitors in the PNS, mature neurons of the central and peripheral nervous systems, as well as neuroendocrine cells. To facilitate analysis of developing peripheral neurons, we linked regulatory regions of Uchl1 carried within a 160kb bacterial artificial chromosome (BAC) to the dual fluorescent reporter H2BmCherry:GFP-gpi. The Uchl1-H2BmCherry:GFP-gpi transgene exhibits robust expression and allows clear discrimination of individual cells and cellular processes in cranial ganglia, sympathetic chain, the enteric nervous system (ENS), and autonomic ganglia of the urogenital system. The transgene also labels subsets of cells in endocrine tissues where earlier in situ hybridization (ISH) studies have previously identified expression of this deubiquinating enzyme. The Uchl1-H2BmCherry:GFP-gpi transgene will be a powerful tool for static and live imaging, as well as isolation of viable neural progenitors to investigate processes of autonomic neurogenesis.
Collapse
Affiliation(s)
- Carrie B Wiese
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, 529 Light Hall, 2215 Garland Avenue, Nashville, Tennessee
| | | | | | | |
Collapse
|