1
|
Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotechnol Lett 2020; 42:1073-1101. [DOI: 10.1007/s10529-020-02886-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 04/05/2020] [Indexed: 12/13/2022]
|
2
|
Sergeeva SP, Savin AA, Litvitsky PF, Lyundup AV, Kiseleva EV, Gorbacheva LR, Breslavich ID, Kucenko KI, Balyasin MV. [Apoptosis as a systemic adaptive mechanism in ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:38-45. [PMID: 30830115 DOI: 10.17116/jnevro201811812238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This paper presents a literature review considering the role and mechanism of apoptosis in the pathogenesis of ischemic stroke (IS). The authors introduce a new concept: the functional request of the patient as a set of external (the nature and intensity of rehabilitation measures, characteristics of everyday life, diet, etc.) and internal (genetic factors, internal picture of the disease, availability of rental and other psychological facilities and etc.) attributes. This concept allows a new angle in understanding the pathogenesis of IS and creates fundamental and clinical potential for more successful approaches to therapy and rehabilitation after IS.
Collapse
Affiliation(s)
- S P Sergeeva
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - A A Savin
- Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - P F Litvitsky
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - A V Lyundup
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - E V Kiseleva
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | | | - I D Breslavich
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - K I Kucenko
- Bureau of Forensic Medicine of Moscow Healthcare Department, Moscow, Russia
| | - M V Balyasin
- Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
3
|
Pignatelli A, Belluzzi O. Dopaminergic Neurones in the Main Olfactory Bulb: An Overview from an Electrophysiological Perspective. Front Neuroanat 2017; 11:7. [PMID: 28261065 PMCID: PMC5306133 DOI: 10.3389/fnana.2017.00007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/02/2017] [Indexed: 02/03/2023] Open
Abstract
The olfactory bulb (OB), the first center processing olfactory information, is characterized by a vigorous life-long activity-dependent plasticity responsible for a variety of odor-evoked behavioral responses. It hosts the more numerous group of dopaminergic (DA) neurones in the central nervous system, cells strategically positioned at the entry of the bulbar circuitry, directly in contact with the olfactory nerve terminals, which play a key role in odor processing and in the adaptation of the bulbar network to external conditions. Here, we focus mainly on the electrophysiological properties of DA interneurones, reviewing findings concerning their excitability profiles in adulthood and in different phases of adult neurogenesis. We also discuss dynamic changes of the DA interneurones related to environmental stimuli and their possible functional implications.
Collapse
Affiliation(s)
- Angela Pignatelli
- Life Sciences and Biotechnology, University of Ferrara Ferrara, Italy
| | - Ottorino Belluzzi
- Life Sciences and Biotechnology, University of Ferrara Ferrara, Italy
| |
Collapse
|
4
|
Taylor SR, Smith CM, Keeley KL, McGuone D, Dodge CP, Duhaime AC, Costine BA. Neuroblast Distribution after Cortical Impact Is Influenced by White Matter Injury in the Immature Gyrencephalic Brain. Front Neurosci 2016; 10:387. [PMID: 27601978 PMCID: PMC4994423 DOI: 10.3389/fnins.2016.00387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/08/2016] [Indexed: 11/13/2022] Open
Abstract
Cortical contusions are a common type of traumatic brain injury (TBI) in children. Current knowledge of neuroblast response to cortical injury arises primarily from studies utilizing aspiration or cryoinjury in rodents. In infants and children, cortical impact affects both gray and white matter and any neurogenic response may be complicated by the large expanse of white matter between the subventricular zone (SVZ) and the cortex, and the large number of neuroblasts in transit along the major white matter tracts to populate brain regions. Previously, we described an age-dependent increase of neuroblasts in the SVZ in response to cortical impact in the immature gyrencephalic brain. Here, we investigate if neuroblasts target the injury, if white matter injury influences repair efforts, and if postnatal population of brain regions are disrupted. Piglets received a cortical impact to the rostral gyrus cortex or sham surgery at postnatal day (PND) 7, BrdU 2 days prior to (PND 5 and 6) or after injury (PND 7 and 8), and brains were collected at PND 14. Injury did not alter the number of neuroblasts in the white matter between the SVZ and the rostral gyrus. In the gray matter of the injury site, neuroblast density was increased in cavitated lesions, and the number of BrdU(+) neuroblasts was increased, but comprised less than 1% of all neuroblasts. In the white matter of the injury site, neuroblasts with differentiating morphology were densely arranged along the cavity edge. In a ventral migratory stream, neuroblast density was greater in subjects with a cavitated lesion, indicating that TBI may alter postnatal development of regions supplied by that stream. Cortical impact in the immature gyrencephalic brain produced complicated and variable lesions, increased neuroblast density in cavitated gray matter, resulted in potentially differentiating neuroblasts in the white matter, and may alter the postnatal population of brain regions utilizing a population of neuroblasts that were born prior to PND 5. This platform may be useful to continue to study potential complications of white matter injury and alterations of postnatal population of brain regions, which may contribute to the chronic effects of TBI in children.
Collapse
Affiliation(s)
- Sabrina R Taylor
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Charlestown, MA, USA
| | - Colin M Smith
- Brain Trauma Lab, Department of Neurosurgery, Massachusetts General Hospital Boston, MA, USA
| | - Kristen L Keeley
- Brain Trauma Lab, Department of Neurosurgery, Massachusetts General Hospital Boston, MA, USA
| | | | - Carter P Dodge
- Department of Anesthesiology, Dartmouth Medical School, Children's Hospital at Dartmouth Lebanon, PA, USA
| | - Ann-Christine Duhaime
- Brain Trauma Lab, Department of Neurosurgery, Massachusetts General HospitalBoston, MA, USA; Department of Neurosurgery, Harvard Medical SchoolBoston, MA, USA
| | - Beth A Costine
- Brain Trauma Lab, Department of Neurosurgery, Massachusetts General HospitalBoston, MA, USA; Department of Neurosurgery, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
5
|
Lattanzi W, Parolisi R, Barba M, Bonfanti L. Osteogenic and Neurogenic Stem Cells in Their Own Place: Unraveling Differences and Similarities Between Niches. Front Cell Neurosci 2015; 9:455. [PMID: 26635534 PMCID: PMC4656862 DOI: 10.3389/fncel.2015.00455] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/06/2015] [Indexed: 02/06/2023] Open
Abstract
Although therapeutic use of stem cells (SCs) is already available in some tissues (cornea, blood, and skin), in most organs we are far from reaching the translational goal of regenerative medicine. In the nervous system, due to intrinsic features which make it refractory to regeneration/repair, it is very hard to obtain functionally integrated regenerative outcomes, even starting from its own SCs (the neural stem cells; NSCs). Besides NSCs, mesenchymal stem cells (MSCs) have also been proposed for therapeutic purposes in neurological diseases. Yet, direct (regenerative) and indirect (bystander) effects are often confused, as are MSCs and bone marrow-derived (stromal, osteogenic) stem cells (BMSCs), whose plasticity is actually overestimated (i.e., trans-differentiation along non-mesodermal lineages, including neural fates). In order to better understand failure in the "regenerative" use of SCs for neurological disorders, it could be helpful to understand how NSCs and BMSCs have adapted to their respective organ niches. In this perspective, here the adult osteogenic and neurogenic niches are considered and compared within their in vivo environment.
Collapse
Affiliation(s)
- Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore , Rome , Italy ; Latium Musculoskeletal Tissue Bank , Rome , Italy
| | - Roberta Parolisi
- Neuroscience Institute Cavalieri Ottolenghi (NICO) , Orbassano , Italy ; Department of Veterinary Sciences, University of Turin , Turin , Italy
| | - Marta Barba
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO) , Orbassano , Italy ; Department of Veterinary Sciences, University of Turin , Turin , Italy
| |
Collapse
|
6
|
Peretto P, Bonfanti L. Adult neurogenesis 20 years later: physiological function vs. brain repair. Front Neurosci 2015; 9:71. [PMID: 25798084 PMCID: PMC4351634 DOI: 10.3389/fnins.2015.00071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/18/2015] [Indexed: 12/18/2022] Open
Affiliation(s)
- Paolo Peretto
- Neuroscience Institute Cavalieri Ottolenghi Orbassano, Italy ; Life Sciences and Systems Biology, University of Turin Torino, Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi Orbassano, Italy ; Department of Veterinary Sciences, University of Turin Torino, Italy
| |
Collapse
|
7
|
Casarosa S, Bozzi Y, Conti L. Neural stem cells: ready for therapeutic applications? MOLECULAR AND CELLULAR THERAPIES 2014; 2:31. [PMID: 26056597 PMCID: PMC4452059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/05/2014] [Indexed: 11/21/2023]
Abstract
Neural stem cells (NSCs) offer a unique and powerful tool for basic research and regenerative medicine. However, the challenges that scientists face in the comprehension of the biology and physiological function of these cells are still many. Deciphering NSCs fundamental biological aspects represents indeed a crucial step to control NSCs fate and functional integration following transplantation, and is essential for a safe and appropriate use of NSCs in injury/disease conditions. In this review, we focus on the biological properties of NSCs and discuss how these cells may be exploited to provide effective therapies for neurological disorders. We also review and discuss ongoing NSC-based clinical trials for these diseases.
Collapse
Affiliation(s)
- Simona Casarosa
- Center for Integrative Biology, Università degli Studi di Trento, Via Sommarive 9, Povo-Trento, 38123 Italy
| | - Yuri Bozzi
- Center for Integrative Biology, Università degli Studi di Trento, Via Sommarive 9, Povo-Trento, 38123 Italy
| | - Luciano Conti
- Center for Integrative Biology, Università degli Studi di Trento, Via Sommarive 9, Povo-Trento, 38123 Italy
| |
Collapse
|
8
|
Casarosa S, Bozzi Y, Conti L. Neural stem cells: ready for therapeutic applications? MOLECULAR AND CELLULAR THERAPIES 2014; 2:31. [PMID: 26056597 PMCID: PMC4452059 DOI: 10.1186/2052-8426-2-31] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/05/2014] [Indexed: 12/14/2022]
Abstract
Neural stem cells (NSCs) offer a unique and powerful tool for basic research and regenerative medicine. However, the challenges that scientists face in the comprehension of the biology and physiological function of these cells are still many. Deciphering NSCs fundamental biological aspects represents indeed a crucial step to control NSCs fate and functional integration following transplantation, and is essential for a safe and appropriate use of NSCs in injury/disease conditions. In this review, we focus on the biological properties of NSCs and discuss how these cells may be exploited to provide effective therapies for neurological disorders. We also review and discuss ongoing NSC-based clinical trials for these diseases.
Collapse
Affiliation(s)
- Simona Casarosa
- Center for Integrative Biology, Università degli Studi di Trento, Via Sommarive 9, Povo-Trento, 38123 Italy
| | - Yuri Bozzi
- Center for Integrative Biology, Università degli Studi di Trento, Via Sommarive 9, Povo-Trento, 38123 Italy
| | - Luciano Conti
- Center for Integrative Biology, Università degli Studi di Trento, Via Sommarive 9, Povo-Trento, 38123 Italy
| |
Collapse
|
9
|
Molcanyi M, Mehrjardi NZ, Schäfer U, Haj-Yasein NN, Brockmann M, Penner M, Riess P, Reinshagen C, Rieger B, Hannes T, Hescheler J, Bosche B. Impurity of stem cell graft by murine embryonic fibroblasts - implications for cell-based therapy of the central nervous system. Front Cell Neurosci 2014; 8:257. [PMID: 25249934 PMCID: PMC4155790 DOI: 10.3389/fncel.2014.00257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/12/2014] [Indexed: 11/13/2022] Open
Abstract
Stem cells have been demonstrated to possess a therapeutic potential in experimental models of various central nervous system disorders, including stroke. The types of implanted cells appear to play a crucial role. Previously, groups of the stem cell network NRW implemented a feeder-based cell line within the scope of their projects, examining the implantation of stem cells after ischemic stroke and traumatic brain injury. Retrospective evaluation indicated the presence of spindle-shaped cells in several grafts implanted in injured animals, which indicated potential contamination by co-cultured feeder cells (murine embryonic fibroblasts - MEFs). Because feeder-based cell lines have been previously exposed to a justified criticism with regard to contamination by animal glycans, we aimed to evaluate the effects of stem cell/MEF co-transplantation. MEFs accounted for 5.3 ± 2.8% of all cells in the primary FACS-evaluated co-culture. Depending on the culture conditions and subsequent purification procedure, the MEF-fraction ranged from 0.9 to 9.9% of the cell suspensions in vitro. MEF survival and related formation of extracellular substances in vivo were observed after implantation into the uninjured rat brain. Impurity of the stem cell graft by MEFs interferes with translational strategies, which represents a threat to the potential recipient and may affect the graft microenvironment. The implications of these findings are critically discussed.
Collapse
Affiliation(s)
- Marek Molcanyi
- Institute of Neurophysiology, Medical Faculty, University of Cologne , Cologne , Germany ; Clinic of Neurosurgery, Medical Faculty, University of Cologne , Cologne , Germany
| | - Narges Zare Mehrjardi
- Institute of Neurophysiology, Medical Faculty, University of Cologne , Cologne , Germany
| | - Ute Schäfer
- Research Unit for Experimental Neurotraumatology, Medical University of Graz , Graz , Austria
| | - Nadia Nabil Haj-Yasein
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo , Oslo , Norway
| | - Michael Brockmann
- Department of Pathology, Kliniken der Stadt Köln, Cologne-Merheim Hospital, University of Witten/Herdecke , Cologne , Germany
| | - Marina Penner
- Clinic of Neurosurgery, Medical Faculty, University of Cologne , Cologne , Germany
| | - Peter Riess
- Department of Traumatology and Orthopedics, HELIOS Klinik Bad Berleburg , Bad Berleburg , Germany
| | - Clemens Reinshagen
- Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA ; Department of Radiology, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - Bernhard Rieger
- Clinic of Neurosurgery, Medical Faculty, University of Cologne , Cologne , Germany
| | - Tobias Hannes
- Institute of Neurophysiology, Medical Faculty, University of Cologne , Cologne , Germany ; Department of Pediatric Cardiology, Heart Center Cologne, Medical Faculty, University Hospital of Cologne , Cologne , Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, Medical Faculty, University of Cologne , Cologne , Germany
| | - Bert Bosche
- Division of Neurosurgery, St Michael's Hospital, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Department of Surgery, University of Toronto , Toronto, ON , Canada ; Department of Neurology, University Hospital of Essen, University of Duisburg-Essen , Essen , Germany
| |
Collapse
|
10
|
Peretto P, Bonfanti L. Major unsolved points in adult neurogenesis: doors open on a translational future? Front Neurosci 2014; 8:154. [PMID: 24966812 PMCID: PMC4052043 DOI: 10.3389/fnins.2014.00154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/25/2014] [Indexed: 02/03/2023] Open
Abstract
In spite of many data gathered during the last two decades on adult neurogenesis (AN) it is evident that such knowledge is not sufficient for granting translational outcomes in brain repair, especially if the ultimate goal is to promote cell replacement. Alternative strategies aimed at fostering AN physiological functions (restorative approaches) are still undefined. By asking the question whether AN research field has to be considered as a dead end in the context of brain repair, here we review some unresolved issues: multifaceted evolutionary constraints in mammals, stem/progenitor cell type/availability and tissue permissivity, impact on other brain functions, interplay with other forms of plasticity, and relevance in humans. We suggest that full understanding of AN biology is an essential step for its possible exploitation in brain repair, and that further fundamental, multidisciplinary research is required to reach translational outcomes. Scientist's attitude and their communication skills are also important. To avoid overestimation of AN reparative potential in a translational perspective, more distant goals of cell replacement should be kept clearly distinct from restorative approaches involving AN functional plasticity.
Collapse
Affiliation(s)
- Paolo Peretto
- Neuroscience Institute Cavalieri Ottolenghi Orbassano, Italy ; Department of Life Sciences and System Biology, University of Turin Torino, Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi Orbassano, Italy ; Department of Veterinary Sciences, University of Turin Torino, Italy
| |
Collapse
|