1
|
Gastelum S, Michael AF, Bolger TA. Saccharomyces cerevisiae as a research tool for RNA-mediated human disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1814. [PMID: 37671427 DOI: 10.1002/wrna.1814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023]
Abstract
The budding yeast, Saccharomyces cerevisiae, has been used for decades as a powerful genetic tool to study a broad spectrum of biological topics. With its ease of use, economic utility, well-studied genome, and a highly conserved proteome across eukaryotes, it has become one of the most used model organisms. Due to these advantages, it has been used to study an array of complex human diseases. From broad, complex pathological conditions such as aging and neurodegenerative disease to newer uses such as SARS-CoV-2, yeast continues to offer new insights into how cellular processes are affected by disease and how affected pathways might be targeted in therapeutic settings. At the same time, the roles of RNA and RNA-based processes have become increasingly prominent in the pathology of many of these same human diseases, and yeast has been utilized to investigate these mechanisms, from aberrant RNA-binding proteins in amyotrophic lateral sclerosis to translation regulation in cancer. Here we review some of the important insights that yeast models have yielded into the molecular pathology of complex, RNA-based human diseases. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Stephanie Gastelum
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Allison F Michael
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Timothy A Bolger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Kumar S, Abbas MM, Govindappa ST, Muthane UB, Behari M, Pandey S, Juyal RC, Thelma BK. Compound heterozygous variants in Wiskott-Aldrich syndrome like (WASL) gene segregating in a family with early onset Parkinson's disease. Parkinsonism Relat Disord 2021; 84:61-67. [PMID: 33571872 DOI: 10.1016/j.parkreldis.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Knowledge of genetic determinants in Parkinson's disease is still limited. Familial forms of the disease continue to provide a rich resource to capture the genetic spectrum in disease pathogenesis, and this approach is exploited in this study. METHODS Informative members from a three-generation family of Indian ethnicity manifesting a likely autosomal recessive mode of inheritance of Parkinson's disease were used for whole exome sequencing. Variant data analysis and in vitro functional characterisation of variant(s) segregating with the phenotype were carried out in HEK-293 and SH-SY5Y cells using gene constructs of interest. RESULTS Two compound heterozygous variants, a rare missense (c.1139C > T:p.P380L) and a novel splice variant (c.1456 + 2 delTAGA, intron10) in Wiskott-Aldrich syndrome like gene (WASL, 7q31), both predicted to be deleterious were shared among the proband and two affected siblings. WASL, a gene not previously linked to a human Mendelian disorder is known to regulate actin polymerisation via Arp2/3 complex. Based on exon trapping assay using pSPL3 vector in HEK-293 cells, the splice variant showed skipping of exon10. Characterisation of the missense variant in SH-SY5Y cells demonstrated: i) significant alterations in neurite length and number; ii) decreased reactive oxygen species tolerance in mutation carrying cells on Tetrabutylphosphonium hydroxide induction and iii) increase in alpha-synuclein protein. Screening for WASL variants in two independent PD cohorts identified four individuals with heterozygous but none with biallelic variants. CONCLUSION WASL, with demonstrated functional relevance in neurons may be yet another strong candidate gene for autosomal recessive PD encouraging assessment of its contribution across populations.
Collapse
Affiliation(s)
- Sumeet Kumar
- Department of Genetics, University of Delhi South Campus, New Delhi, 110021, India
| | - Masoom M Abbas
- Parkinson's and Aging Research Foundation, Bangalore, India
| | | | - Uday B Muthane
- Parkinson's and Aging Research Foundation, Bangalore, India
| | - Madhuri Behari
- All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay Pandey
- Department of Neurology, Govind Ballabh Pant Postgraduate Institute of Medical Education and Research, New Delhi, India
| | | | - B K Thelma
- Department of Genetics, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
3
|
Vanan S, Zeng X, Chia SY, Varnäs K, Jiang M, Zhang K, Saw WT, Padmanabhan P, Yu WP, Zhou ZD, Halldin C, Gulyás B, Tan EK, Zeng L. Altered striatal dopamine levels in Parkinson's disease VPS35 D620N mutant transgenic aged mice. Mol Brain 2020; 13:164. [PMID: 33261640 PMCID: PMC7706192 DOI: 10.1186/s13041-020-00704-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Vacuolar protein sorting 35 (VPS35) is a major component of the retromer complex that mediates the retrograde transport of cargo proteins from endosomes to the trans-Golgi network. Mutations such as D620N in the VPS35 gene have been identified in patients with autosomal dominant Parkinson's disease (PD). However, it remains poorly understood whether and how VPS35 deficiency or mutation contributes to PD pathogenesis; specifically, the studies that have examined VPS35 thus far have differed in results and methodologies. We generated a VPS35 D620N mouse model using a Rosa26-based transgene expression platform to allow expression in a spatial manner, so as to better address these discrepancies. Here, aged (20-months-old) mice were first subjected to behavioral tests. Subsequently, DAB staining analysis of substantia nigra (SN) dopaminergic neurons with the marker for tyrosine hydroxylase (TH) was performed. Next, HPLC was used to determine dopamine levels, along with levels of its two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the striatum. Western blotting was also performed to study the levels of key proteins associated with PD. Lastly, autoradiography (ARG) evaluation of [3H]FE-PE2I binding to the striatal dopamine transporter DAT was carried out. We found that VPS35 D620N Tg mice displayed a significantly higher dopamine level than NTg counterparts. All results were then compared with that of current VPS35 studies to shed light on the disease pathogenesis. Our model allows future studies to explicitly control spatial expression of the transgene which would generate a more reliable PD phenotype.
Collapse
Affiliation(s)
- Sarivin Vanan
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Xiaoxia Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Sook Yoong Chia
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Katarina Varnäs
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet PET Centre, Karolinska Institutet, Karolinska University Hospital Solna, R5:02, 171 76, Stockholm, Sweden
| | - Mei Jiang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Ke Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Wuan Ting Saw
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Wei-Ping Yu
- Animal Gene Editing Laboratory, Biological Resource Centre, A*STAR, Singapore, 138673, Singapore.,Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zhi-Dong Zhou
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.,Signature Research Program in Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Christer Halldin
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet PET Centre, Karolinska Institutet, Karolinska University Hospital Solna, R5:02, 171 76, Stockholm, Sweden.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Balázs Gulyás
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet PET Centre, Karolinska Institutet, Karolinska University Hospital Solna, R5:02, 171 76, Stockholm, Sweden.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Eng-King Tan
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore. .,Department of Neurology, National Neuroscience Institute, SGH Campus, Singapore, 169856, Singapore.
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore. .,Center for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
4
|
Lin TK, Lin KJ, Lin KL, Liou CW, Chen SD, Chuang YC, Wang PW, Chuang JH, Wang TJ. When Friendship Turns Sour: Effective Communication Between Mitochondria and Intracellular Organelles in Parkinson's Disease. Front Cell Dev Biol 2020; 8:607392. [PMID: 33330511 PMCID: PMC7733999 DOI: 10.3389/fcell.2020.607392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease with pathological hallmarks including progressive neuronal loss from the substantia nigra pars compacta and α-synuclein intraneuronal inclusions, known as Lewy bodies. Although the etiology of PD remains elusive, mitochondrial damage has been established to take center stage in the pathogenesis of PD. Mitochondria are critical to cellular energy production, metabolism, homeostasis, and stress responses; the association with PD emphasizes the importance of maintenance of mitochondrial network integrity. To accomplish the pleiotropic functions, mitochondria are dynamic not only within their own network but also in orchestrated coordination with other organelles in the cellular community. Through physical contact sites, signal transduction, and vesicle transport, mitochondria and intracellular organelles achieve the goals of calcium homeostasis, redox homeostasis, protein homeostasis, autophagy, and apoptosis. Herein, we review the finely tuned interactions between mitochondria and surrounding intracellular organelles, with focus on the nucleus, endoplasmic reticulum, Golgi apparatus, peroxisomes, and lysosomes. Participants that may contribute to the pathogenic mechanisms of PD will be highlighted in this review.
Collapse
Affiliation(s)
- Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Jung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Lieh Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shang-Der Chen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Chung Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Metabolism, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tzu-Jou Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Pediatric, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Haizel SA, Bhardwaj U, Gonzalez RL, Mitra S, Goss DJ. 5'-UTR recruitment of the translation initiation factor eIF4GI or DAP5 drives cap-independent translation of a subset of human mRNAs. J Biol Chem 2020; 295:11693-11706. [PMID: 32571876 DOI: 10.1074/jbc.ra120.013678] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/16/2020] [Indexed: 01/04/2023] Open
Abstract
During unfavorable conditions (e.g. tumor hypoxia or viral infection), canonical, cap-dependent mRNA translation is suppressed in human cells. Nonetheless, a subset of physiologically important mRNAs (e.g. hypoxia-inducible factor 1α [HIF-1α], fibroblast growth factor 9 [FGF-9], and p53) is still translated by an unknown, cap-independent mechanism. Additionally, expression levels of eukaryotic translation initiation factor 4GI (eIF4GI) and of its homolog, death-associated protein 5 (DAP5), are elevated. By examining the 5' UTRs of HIF-1α, FGF-9, and p53 mRNAs and using fluorescence anisotropy binding studies, luciferase reporter-based in vitro translation assays, and mutational analyses, we demonstrate here that eIF4GI and DAP5 specifically bind to the 5' UTRs of these cap-independently translated mRNAs. Surprisingly, we found that the eIF4E-binding domain of eIF4GI increases not only the binding affinity but also the selectivity among these mRNAs. We further demonstrate that the affinities of eIF4GI and DAP5 binding to these 5' UTRs correlate with the efficiency with which these factors drive cap-independent translation of these mRNAs. Integrating the results of our binding and translation assays, we conclude that eIF4GI or DAP5 is critical for recruitment of a specific subset of mRNAs to the ribosome, providing mechanistic insight into their cap-independent translation.
Collapse
Affiliation(s)
- Solomon A Haizel
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA.,Department of Chemistry, Hunter College, New York, New York, USA
| | - Usha Bhardwaj
- Department of Chemistry, Hunter College, New York, New York, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Somdeb Mitra
- Department of Chemistry, New York University, New York, New York, USA
| | - Dixie J Goss
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA .,Department of Chemistry, Hunter College, New York, New York, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York, USA
| |
Collapse
|
6
|
The Overcrowded Crossroads: Mitochondria, Alpha-Synuclein, and the Endo-Lysosomal System Interaction in Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20215312. [PMID: 31731450 PMCID: PMC6862467 DOI: 10.3390/ijms20215312] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide, mainly affecting the elderly. The disease progresses gradually, with core motor presentations and a multitude of non-motor manifestations. There are two neuropathological hallmarks of PD, the dopaminergic neuronal loss and the alpha-synuclein-containing Lewy body inclusions in the substantia nigra. While the exact pathomechanisms of PD remain unclear, genetic investigations have revealed evidence of the involvement of mitochondrial function, alpha-synuclein (α-syn) aggregation, and the endo-lysosomal system, in disease pathogenesis. Due to the high energy demand of dopaminergic neurons, mitochondria are of special importance acting as the cellular powerhouse. Mitochondrial dynamic fusion and fission, and autophagy quality control keep the mitochondrial network in a healthy state. Should defects of the organelle occur, a variety of reactions would ensue at the cellular level, including disrupted mitochondrial respiratory network and perturbed calcium homeostasis, possibly resulting in cellular death. Meanwhile, α-syn is a presynaptic protein that helps regulate synaptic vesicle transportation and endocytosis. Its misfolding into oligomeric sheets and fibrillation is toxic to the mitochondria and neurons. Increased cellular oxidative stress leads to α-syn accumulation, causing mitochondrial dysfunction. The proteasome and endo-lysosomal systems function to regulate damage and unwanted waste management within the cell while facilitating the quality control of mitochondria and α-syn. This review will analyze the biological functions and interactions between mitochondria, α-syn, and the endo-lysosomal system in the pathogenesis of PD.
Collapse
|