1
|
Pernici CD, Rowe RK, Doughty PT, Madadi M, Lifshitz J, Murray TA. Longitudinal optical imaging technique to visualize progressive axonal damage after brain injury in mice reveals responses to different minocycline treatments. Sci Rep 2020; 10:7815. [PMID: 32385407 PMCID: PMC7210987 DOI: 10.1038/s41598-020-64783-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
A high-resolution, three-dimensional, optical imaging technique for the murine brain was developed to identify the effects of different therapeutic windows for preclinical brain research. This technique tracks the same cells over several weeks. We conducted a pilot study of a promising drug to treat diffuse axonal injury (DAI) caused by traumatic brain injury, using two different therapeutic windows, as a means to demonstrate the utility of this novel longitudinal imaging technique. DAI causes immediate, sporadic axon damage followed by progressive secondary axon damage. We administered minocycline for three days commencing one hour after injury in one treatment group and beginning 72 hours after injury in another group to demonstrate the method’s ability to show how and when the therapeutic drug exerts protective and/or healing effects. Fewer varicosities developed in acutely treated mice while more varicosities resolved in mice with delayed treatment. For both treatments, the drug arrested development of new axonal damage by 30 days. In addition to evaluation of therapeutics for traumatic brain injury, this hybrid microlens imaging method should be useful to study other types of brain injury and neurodegeneration and cellular responses to treatment.
Collapse
Affiliation(s)
- Chelsea D Pernici
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.,Phoenix Veterans Affairs Health Care System, Phoenix, AZ, USA
| | - P Timothy Doughty
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA
| | - Mahboubeh Madadi
- Department of Marketing and Business Analytics, Lucas College of Business, San Jose State University, San Jose, CA, USA
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.,Phoenix Veterans Affairs Health Care System, Phoenix, AZ, USA
| | - Teresa A Murray
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA.
| |
Collapse
|
2
|
Pernici CD, Kemp BS, Murray TA. Time course images of cellular injury and recovery in murine brain with high-resolution GRIN lens system. Sci Rep 2019; 9:7946. [PMID: 31138885 PMCID: PMC6538613 DOI: 10.1038/s41598-019-44174-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
Abstract
Time course, in vivo imaging of brain cells is crucial to fully understand the progression of secondary cellular damage and recovery in murine models of injury. We have combined high-resolution gradient index lens technology with a model of diffuse axonal injury in rodents to enable repeated visualization of fine features of individual cells in three-dimensional space over several weeks. For example, we recorded changes in morphology in the same axons in the external capsule numerous times over 30 to 60 days, before and after induced traumatic brain injury. We observed the expansion of secondary injury and limited recovery of individual axons in this subcortical white matter tract over time. In another application, changes in microglial activation state were visualized in the penumbra region of mice before and after ischemia induced by middle carotid artery occlusion. The ability to collect a series of high-resolution images of cellular features of the same cells pre- and post-injury enables a unique opportunity to study the progression of damage, spontaneous healing, and effects of therapeutics in mouse models of neurodegenerative disease and brain injury.
Collapse
Affiliation(s)
- Chelsea D Pernici
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Benjamin S Kemp
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Teresa A Murray
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, Louisiana, USA.
| |
Collapse
|
3
|
De Niz M, Nacer A, Frischknecht F. Intravital microscopy: Imaging host-parasite interactions in the brain. Cell Microbiol 2019; 21:e13024. [PMID: 30830993 DOI: 10.1111/cmi.13024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/14/2019] [Accepted: 02/24/2019] [Indexed: 12/31/2022]
Abstract
Intravital fluorescence microscopy (IVM) is a powerful technique for imaging multiple organs, including the brain of living mice and rats. It enables the direct visualisation of cells in situ providing a real-life view of biological processes that in vitro systems cannot. In addition, to the technological advances in microscopy over the last decade, there have been supporting innovations in data storage and analytical packages that enable the visualisation and analysis of large data sets. Here, we review the advantages and limitations of techniques predominantly used for brain IVM, including thinned skull windows, open skull cortical windows, and a miniaturised optical system based on microendoscopic probes that can be inserted into deep tissues. Further, we explore the relevance of these techniques for the field of parasitology. Several protozoan infections are associated with neurological symptoms including Plasmodium spp., Toxoplasma spp., and Trypanosoma spp. IVM has led to crucial findings on these parasite species, which are discussed in detail in this review.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasglow, UK
| | - Adéla Nacer
- Division of Bacteriology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, EN63QG, Potters Bar, UK
| | - Friedrich Frischknecht
- Parasitology-Centre for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| |
Collapse
|