1
|
Su F, Dolmatov IY, Cui W, Yang H, Sun L. Molecular dynamics and spatial response of proliferation and apoptosis in wound healing and early intestinal regeneration of sea cucumber Apostichopusjaponicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105297. [PMID: 39638271 DOI: 10.1016/j.dci.2024.105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The sea cucumber, Apostichopus japonicus, exhibits significant regenerative capabilities. To ensure survival and reduce metabolic costs under adverse conditions, A. japonicus can expel intestine, respiratory trees and other internal organs. It takes only 14 days to regenerate a fully connected, lumen-containing intestine. Despite numerous reports characterizing the cellular events in intestinal regeneration, limited investigation has been conducted on the molecular events that occur during wound healing and the initial stages of regeneration after evisceration. Here, we identified differentially expressed genes (DEGs) during wound healing (6 h post-evisceration, Aj6hpe) and early intestinal regeneration (Aj1dpe, Aj3dpe, Aj7dpe). Cell proliferation and apoptosis were detected by EdU and TUNEL assays, respectively. Results demonstrated that calcium ion and neuroactive ligand-receptor interaction were involved in the transmission of injury signals from evisceration to Aj1dpe. The main events occurring in the wound healing and early regeneration process were autophagy, apoptosis, dedifferentiation, migration and shutdown of feeding. Cell proliferation was primarily observed during the lumen formation stage. Maximal number of apoptotic cells were found during wound healing stage (6 hpe - 1 dpe). Consequently, the immune response is mainly mobilized by neural regulation after evisceration. Our findings bridge the gap between evisceration and regeneration, illuminating the molecular events that mediate damage response and initiate regeneration. This study significantly advances our understanding of the mechanisms underlying intestinal regeneration.
Collapse
Affiliation(s)
- Fang Su
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Igor Yu Dolmatov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Wei Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Zheng Y, Cong X, Liu H, Storey KB, Chen M. Neuronal cell populations in circumoral nerve ring of sea cucumber Apostichopus japonicus: Ultrastructure and transcriptional profile. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101263. [PMID: 38850626 DOI: 10.1016/j.cbd.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The echinoderm nervous system has been studied as a model for understanding the evolution of the chordate nervous system. Neuronal cells are essential groups that release a 'cocktail' of messenger molecules providing a spectrum of biological actions in the nervous system. Among echinoderms, most evidence on neuronal cell types has been obtained from starfish and sea urchin. In sea cucumbers, most research has focused on the location of neuronal cells, whereas their transcriptional features have rarely been investigated. Here, we observed the ultrastructure of neuronal cells in the sea cucumber, Apostichopus japonicus. The transcriptional profile of neuronal cells from the circumoral nerve ring (CNR) was investigated using single-cell RNA sequencing (scRNA-seq), and a total of six neuronal cell types were identified. 26 neuropeptide precursor genes (NPPs) and 28 G-protein-coupled receptors (GPCR) were expressed in the six neuronal cell types, comprising five NPP/NP-GPCR pairs. Unsupervised pseudotime analysis of neuronal cells showed their different differentiation status. We also located the neuronal cells in the CNR by immunofluorescence (IF) and identified the potential hub genes of key cell populations. This broad resource serves as a valuable support in the development of cell-specific markers for accurate cell-type identification in sea cucumbers. It also contributes to facilitating comparison across species, providing a deeper understanding of the evolutionary processes of neuronal cells.
Collapse
Affiliation(s)
- Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China. https://twitter.com/Yingqiu_Zheng
| | - Xiao Cong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Huachen Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
3
|
Vargas Y, Castro Tron AE, Rodríguez Rodríguez A, Uribe RM, Joseph-Bravo P, Charli JL. Thyrotropin-Releasing Hormone and Food Intake in Mammals: An Update. Metabolites 2024; 14:302. [PMID: 38921437 PMCID: PMC11205479 DOI: 10.3390/metabo14060302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Thyrotropin-releasing hormone (TRH; pGlu-His-Pro-NH2) is an intercellular signal produced mainly by neurons. Among the multiple pharmacological effects of TRH, that on food intake is not well understood. We review studies demonstrating that peripheral injection of TRH generally produces a transient anorexic effect, discuss the pathways that might initiate this effect, and explain its short half-life. In addition, central administration of TRH can produce anorexic or orexigenic effects, depending on the site of injection, that are likely due to interaction with TRH receptor 1. Anorexic effects are most notable when TRH is injected into the hypothalamus and the nucleus accumbens, while the orexigenic effect has only been detected by injection into the brain stem. Functional evidence points to TRH neurons that are prime candidate vectors for TRH action on food intake. These include the caudal raphe nuclei projecting to the dorsal motor nucleus of the vagus, and possibly TRH neurons from the tuberal lateral hypothalamus projecting to the tuberomammillary nuclei. For other TRH neurons, the anatomical or physiological context and impact of TRH in each synaptic domain are still poorly understood. The manipulation of TRH expression in well-defined neuron types will facilitate the discovery of its role in food intake control in each anatomical scene.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Cuernavaca 62210, Mexico; (Y.V.); (A.E.C.T.); (A.R.R.); (R.M.U.); (P.J.-B.)
| |
Collapse
|
4
|
Pagowski V. A description of the bat star nervous system throughout larval ontogeny. Evol Dev 2024; 26:e12468. [PMID: 38108150 DOI: 10.1111/ede.12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Larvae represent a distinct life history stage in which animal morphology and behavior contrast strongly to adult organisms. This life history stage is a ubiquitous aspect of animal life cycles, particularly in the marine environment. In many species, the structure and function of the nervous system differ significantly between metamorphosed juveniles and larvae. However, the distribution and diversity of neural cell types in larval nervous systems remains incompletely known. Here, the expression of neurotransmitter and neuropeptide synthesis and transport genes in the bat star Patiria miniata is examined throughout larval development. This characterization of nervous system structure reveals three main neural regions with distinct but overlapping territories. These regions include a densely innervated anterior region, an enteric neural plexus, and neurons associated with the ciliary band. In the ciliary band, cholinergic cells are pervasive while dopaminergic, noradrenergic, and GABAergic cells show regional differences in their localization patterns. Furthermore, the distribution of some neural subtypes changes throughout larval development, suggesting that changes in nervous system structure align with shifting ecological priorities during different larval stages, before the development of the adult nervous system. While past work has described aspects of P. miniata larval nervous system structure, largely focusing on early developmental timepoints, this work provides a comprehensive description of neural cell type localization throughout the extensive larval period.
Collapse
Affiliation(s)
- Veronica Pagowski
- Hopkins Marine Station of Stanford University, Pacific Grove, California, USA
| |
Collapse
|
5
|
Cai W, Egertová M, Zampronio CG, Jones AM, Elphick MR. Molecular Identification and Cellular Localization of a Corticotropin-Releasing Hormone-Type Neuropeptide in an Echinoderm. Neuroendocrinology 2023; 113:231-250. [PMID: 33965952 DOI: 10.1159/000517087] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/30/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Corticotropin-releasing hormone (CRH) mediates physiological responses to stressors in mammals by triggering pituitary secretion of adrenocorticotropic hormone, which stimulates adrenal release of cortisol. CRH belongs to a family of related neuropeptides that include sauvagine, urotensin-I, and urocortins in vertebrates and the diuretic hormone DH44 in insects, indicating that the evolutionary origin of this neuropeptide family can be traced to the common ancestor of the Bilateria. However, little is known about CRH-type neuropeptides in deuterostome invertebrates. METHODS Here, we used mass spectrometry, mRNA in situ hybridization, and immunohistochemistry to investigate the structure and expression of a CRH-type neuropeptide (ArCRH) in the starfish Asterias rubens (phylum Echinodermata). RESULTS ArCRH is a 40-residue peptide with N-terminal pyroglutamylation and C-terminal amidation, and it has a widespread pattern of expression in A. rubens. In the central nervous system comprising the circumoral nerve ring and 5 radial nerve cords, ArCRH-expressing cells and fibres were revealed in both the ectoneural region and the hyponeural region, which contains the cell bodies of motoneurons. Accordingly, ArCRH immunoreactivity was detected in innervation of the ampulla and podium of locomotory organs (tube feet), and ArCRH is the first neuropeptide to be identified as a marker for nerve fibres located in the muscle layer of these organs. ArCRH immunoreactivity was also revealed in protractile organs that mediate gas exchange (papulae), the apical muscle, and the digestive system. CONCLUSIONS Our findings provide the first insights into CRH-type neuropeptide expression and function in the unique context of the pentaradially symmetrical body plan of an echinoderm.
Collapse
Affiliation(s)
- Weigang Cai
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Michaela Egertová
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, UK
| | - Alexandra M Jones
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, UK
| | - Maurice R Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Aleotti A, Wilkie IC, Yañez-Guerra LA, Gattoni G, Rahman TA, Wademan RF, Ahmad Z, Ivanova DA, Semmens DC, Delroisse J, Cai W, Odekunle E, Egertová M, Ferrario C, Sugni M, Bonasoro F, Elphick MR. Discovery and functional characterization of neuropeptides in crinoid echinoderms. Front Neurosci 2022; 16:1006594. [PMID: 36583101 PMCID: PMC9793003 DOI: 10.3389/fnins.2022.1006594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
Neuropeptides are one of the largest and most diverse families of signaling molecules in animals and, accordingly, they regulate many physiological processes and behaviors. Genome and transcriptome sequencing has enabled the identification of genes encoding neuropeptide precursor proteins in species from a growing variety of taxa, including bilaterian and non-bilaterian animals. Of particular interest are deuterostome invertebrates such as the phylum Echinodermata, which occupies a phylogenetic position that has facilitated reconstruction of the evolution of neuropeptide signaling systems in Bilateria. However, our knowledge of neuropeptide signaling in echinoderms is largely based on bioinformatic and experimental analysis of eleutherozoans-Asterozoa (starfish and brittle stars) and Echinozoa (sea urchins and sea cucumbers). Little is known about neuropeptide signaling in crinoids (feather stars and sea lilies), which are a sister clade to the Eleutherozoa. Therefore, we have analyzed transcriptome/genome sequence data from three feather star species, Anneissia japonica, Antedon mediterranea, and Florometra serratissima, to produce the first comprehensive identification of neuropeptide precursors in crinoids. These include representatives of bilaterian neuropeptide precursor families and several predicted crinoid neuropeptide precursors. Using A. mediterranea as an experimental model, we have investigated the expression of selected neuropeptides in larvae (doliolaria), post-metamorphic pentacrinoids and adults, providing new insights into the cellular architecture of crinoid nervous systems. Thus, using mRNA in situ hybridization F-type SALMFamide precursor transcripts were revealed in a previously undescribed population of peptidergic cells located dorso-laterally in doliolaria. Furthermore, using immunohistochemistry a calcitonin-type neuropeptide was revealed in the aboral nerve center, circumoral nerve ring and oral tube feet in pentacrinoids and in the ectoneural and entoneural compartments of the nervous system in adults. Moreover, functional analysis of a vasopressin/oxytocin-type neuropeptide (crinotocin), which is expressed in the brachial nerve of the arms in A. mediterranea, revealed that this peptide causes a dose-dependent change in the mechanical behavior of arm preparations in vitro-the first reported biological action of a neuropeptide in a crinoid. In conclusion, our findings provide new perspectives on neuropeptide signaling in echinoderms and the foundations for further exploration of neuropeptide expression/function in crinoids as a sister clade to eleutherozoan echinoderms.
Collapse
Affiliation(s)
- Alessandra Aleotti
- Department of Environmental Science and Policy, University of Milan, Milan, Italy,School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Iain C. Wilkie
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Luis A. Yañez-Guerra
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Giacomo Gattoni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy,School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Tahshin A. Rahman
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Richard F. Wademan
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Zakaryya Ahmad
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Deyana A. Ivanova
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Dean C. Semmens
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Jérôme Delroisse
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Weigang Cai
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Esther Odekunle
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Michaela Egertová
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Francesco Bonasoro
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Maurice R. Elphick
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom,*Correspondence: Maurice R. Elphick,
| |
Collapse
|
7
|
Zheng Y, Cong X, Liu H, Wang Y, Storey KB, Chen M. Nervous System Development and Neuropeptides Characterization in Embryo and Larva: Insights from a Non-Chordate Deuterostome, the Sea Cucumber Apostichopus japonicus. BIOLOGY 2022; 11:1538. [PMID: 36290441 PMCID: PMC9598280 DOI: 10.3390/biology11101538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
Here, we described the complex nervous system at five early developmental stages (blastula, gastrula, auricularia, doliolaria and pentactula) of a holothurian species with highly economic value, Apostichopus japonicus. The results revealed that the nervous system of embryos and larvae is mainly distributed in the anterior apical region, ciliary bands or rings, and the feeding and attachment organs, and that serotonergic immunoreactivity was not observed until the embryo developed into the late gastrula; these are evolutionarily conserved features of echinoderm, hemichordate and protostome larvae. Furthermore, based on available transcriptome data, we reported the neuropeptide precursors profile at different embryonic and larval developmental stages. This analysis showed that 40 neuropeptide precursors present in adult sea cucumbers were also identified at different developmental stages of embryos and larvae, and only four neuropeptide precursors (SWYG precursor 2, GYWKDLDNYVKAHKT precursor, Neuropeptide precursor 14-like precursor, GLRFAmprecursor-like precursor) predicted in adults were absent in embryos and larvae. Combining the quantitative expression of ten specific neuropeptide precursor genes (NPs) by qRT-PCR, we revealed the potential important roles of neuropeptides in embryo development, feeding and attachment in A. japonicus larvae. In conclusion, this work provides novel perspectives on the diverse physiological functions of neuropeptides and contributes to understanding the evolution of neuropeptidergic systems in echinoderm embryos and larvae.
Collapse
Affiliation(s)
- Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xiao Cong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Huachen Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Kenneth B. Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
8
|
Escudero Castelán N, Semmens DC, Guerra LAY, Zandawala M, Dos Reis M, Slade SE, Scrivens JH, Zampronio CG, Jones AM, Mirabeau O, Elphick MR. Receptor deorphanization in an echinoderm reveals kisspeptin evolution and relationship with SALMFamide neuropeptides. BMC Biol 2022; 20:187. [PMID: 36002813 PMCID: PMC9400282 DOI: 10.1186/s12915-022-01387-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kisspeptins are neuropeptides that regulate reproductive maturation in mammals via G-protein-coupled receptor-mediated stimulation of gonadotropin-releasing hormone secretion from the hypothalamus. Phylogenetic analysis of kisspeptin-type receptors indicates that this neuropeptide signaling system originated in a common ancestor of the Bilateria, but little is known about kisspeptin signaling in invertebrates. RESULTS Contrasting with the occurrence of a single kisspeptin receptor in mammalian species, here, we report the discovery of an expanded family of eleven kisspeptin-type receptors in a deuterostome invertebrate - the starfish Asterias rubens (phylum Echinodermata). Furthermore, neuropeptides derived from four precursor proteins were identified as ligands for six of these receptors. One or more kisspeptin-like neuropeptides derived from two precursor proteins (ArKPP1, ArKPP2) act as ligands for four A. rubens kisspeptin-type receptors (ArKPR1,3,8,9). Furthermore, a family of neuropeptides that act as muscle relaxants in echinoderms (SALMFamides) are ligands for two A. rubens kisspeptin-type receptors (ArKPR6,7). The SALMFamide neuropeptide S1 (or ArS1.4) and a 'cocktail' of the seven neuropeptides derived from the S1 precursor protein (ArS1.1-ArS1.7) act as ligands for ArKPR7. The SALMFamide neuropeptide S2 (or ArS2.3) and a 'cocktail' of the eight neuropeptides derived from the S2 precursor protein (ArS2.1-ArS2.8) act as ligands for ArKPR6. CONCLUSIONS Our findings reveal a remarkable diversity of neuropeptides that act as ligands for kisspeptin-type receptors in starfish and provide important new insights into the evolution of kisspeptin signaling. Furthermore, the discovery of the hitherto unknown relationship of kisspeptins with SALMFamides, neuropeptides that were discovered in starfish prior to the identification of kisspeptins in mammals, presents a radical change in perspective for research on kisspeptin signaling.
Collapse
Affiliation(s)
- Nayeli Escudero Castelán
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
| | - Dean C Semmens
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
- Present address: Institute of Medical and Biomedical Education, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Luis Alfonso Yañez Guerra
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
- Present Address: Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Meet Zandawala
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
- Present Address: Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Mario Dos Reis
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
| | - Susan E Slade
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Present address: Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, UK
| | - James H Scrivens
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Present address: School of Science, Engineering & Design, Stephenson Street, Teesside University, Middlesbrough, TS1 3BX, TS1 3BA, Tees Valley, UK
| | | | - Alexandra M Jones
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Olivier Mirabeau
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015, Paris, France
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK.
| |
Collapse
|
9
|
Carter HF, Thompson JR, Elphick MR, Oliveri P. The Development and Neuronal Complexity of Bipinnaria Larvae of the Sea Star Asterias rubens. Integr Comp Biol 2021; 61:337-351. [PMID: 34048552 PMCID: PMC8427176 DOI: 10.1093/icb/icab103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Free-swimming planktonic larvae are a key stage in the development of many marine phyla, and studies of these organisms have contributed to our understanding of major genetic and evolutionary processes. Although transitory, these larvae often attain a remarkable degree of tissue complexity, with well-defined musculature and nervous systems. Among the best studied are larvae belonging to the phylum Echinodermata, but with work largely focused on the pluteus larvae of sea urchins (class Echinoidea). The greatest diversity of larval strategies among echinoderms is found in the class Asteroidea (sea stars), organisms that are rapidly emerging as experimental systems for genetic and developmental studies. However, the bipinnaria larvae of sea stars have only been studied in detail in a small number of species and although they have been relatively well described neuro-anatomically, they are poorly understood neurochemically. Here, we have analyzed embryonic development and bipinnaria larval anatomy in the common North Atlantic sea star Asterias rubens, using a variety of staining methods in combination with confocal microscopy. Importantly, the chemical complexity of the nervous system of bipinnaria larvae was revealed through use of a diverse set of antibodies, with identification of at least three centers of differing neurochemical signature within the previously described nervous system: the anterior apical organ, oral region, and ciliary bands. Furthermore, the anatomy of the musculature and sites of cell division in bipinnaria larvae was analyzed. Comparisons of developmental progression and molecular anatomy across the Echinodermata provided a basis for hypotheses on the shared evolutionary and developmental processes that have shaped this group of animals. We conclude that bipinnaria larvae appear to be remarkably conserved across ∼200 million years of evolutionary time and may represent a strong evolutionary and/or developmental constraint on species utilizing this larval strategy.
Collapse
Affiliation(s)
- Hugh F Carter
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK
| | - Jeffrey R Thompson
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- UCL Centre for Life’s Origins and Evolution (CLOE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- UCL Centre for Life’s Origins and Evolution (CLOE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
10
|
Coelomocyte replenishment in adult Asterias rubens: the possible ways. Cell Tissue Res 2020; 383:1043-1060. [PMID: 33237478 DOI: 10.1007/s00441-020-03337-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022]
Abstract
The origin of cells involved in regeneration in echinoderms remains an open question. Replenishment of circulatory coelomocytes-cells of the coelomic cavity in starfish-is an example of physiological regeneration. The coelomic epithelium is considered to be the main source of coelomocytes, but many details of this process remain unclear. This study examined the role of coelomocytes outside circulation, named marginal coelomocytes and small undifferentiated cells of the coelomic epithelium in coelomocyte replenishment in Asterias rubens. A qualitative and quantitative comparison of circulatory and marginal coelomocytes, as well as changes of circulatory coelomocyte concentrations in response to injury at different physiological statuses, was analysed. The presence of cells morphologically similar to coelomocytes in the context of coelomic epithelium was evaluated by electron microscopy. The irregular distribution of small cells on the surface and within the coelomic epithelium was demonstrated and the origin of small undifferentiated cells and large agranulocytes from the coelomic epithelium was suggested. Two events have been proposed to mediate the replenishment of coelomocytes in the coelom: migration of mature coelomocytes of the marginal cell pool and migration of small undifferentiated cells of the coelomic epithelium. The proteomic analysis of circulatory coelomocytes, coelomic epithelial cells and a subpopulation of coelomic epithelial cells, enriched in small undifferentiated cells, revealed proteins that were common and specific for each cell pool. Among these molecules were regulatory proteins, potential participants of regenerative processes.
Collapse
|
11
|
Odekunle EA, Elphick MR. Comparative and Evolutionary Physiology of Vasopressin/ Oxytocin-Type Neuropeptide Signaling in Invertebrates. Front Endocrinol (Lausanne) 2020; 11:225. [PMID: 32362874 PMCID: PMC7181382 DOI: 10.3389/fendo.2020.00225] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
The identification of structurally related hypothalamic hormones that regulate blood pressure and diuresis (vasopressin, VP; CYFQNCPRG-NH2) or lactation and uterine contraction (oxytocin, OT; CYIQNCPLG-NH2) was a major advance in neuroendocrinology, recognized in the award of the Nobel Prize for Chemistry in 1955. Furthermore, the discovery of central actions of VP and OT as regulators of reproductive and social behavior in humans and other mammals has broadened interest in these neuropeptides beyond physiology into psychology. VP/OT-type neuropeptides and their G-protein coupled receptors originated in a common ancestor of the Bilateria (Urbilateria), with invertebrates typically having a single VP/OT-type neuropeptide and cognate receptor. Gene/genome duplications followed by gene loss gave rise to variety in the number of VP/OT-type neuropeptides and receptors in different vertebrate lineages. Recent advances in comparative transcriptomics/genomics have enabled discovery of VP/OT-type neuropeptides in an ever-growing diversity of invertebrate taxa, providing new opportunities to gain insights into the evolution of VP/OT-type neuropeptide function in the Bilateria. Here we review the comparative physiology of VP/OT-type neuropeptides in invertebrates, with roles in regulation of reproduction, feeding, and water/salt homeostasis emerging as common themes. For example, we highlight recent reports of roles in regulation of oocyte maturation in the sea-squirt Ciona intestinalis, extraoral feeding behavior in the starfish Asterias rubens and energy status and dessication resistance in ants. Thus, VP/OT-type neuropeptides are pleiotropic regulators of physiological processes, with evolutionarily conserved roles that can be traced back to Urbilateria. To gain a deeper understanding of the evolution of VP/OT-type neuropeptide function it may be necessary to not only determine the actions of the peptides but also to characterize the transcriptomic/proteomic/metabolomic profiles of cells expressing VP/OT-type precursors and/or VP/OT-type receptors within the framework of anatomically and functionally identified neuronal networks. Furthermore, investigation of VP/OT-type neuropeptide function in a wider range of invertebrate species is now needed if we are to determine how and when this ancient signaling system was recruited to regulate diverse physiological and behavioral processes in different branches of animal phylogeny and in contrasting environmental contexts.
Collapse
Affiliation(s)
| | - Maurice R. Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
12
|
Yañez-Guerra LA, Elphick MR. Evolution and Comparative Physiology of Luqin-Type Neuropeptide Signaling. Front Neurosci 2020; 14:130. [PMID: 32132900 PMCID: PMC7041311 DOI: 10.3389/fnins.2020.00130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/31/2020] [Indexed: 02/01/2023] Open
Abstract
Luqin is a neuropeptide that was discovered and named on account of its expression in left upper quadrant cells of the abdominal ganglion in the mollusc Aplysia californica. Subsequently, luqin-type peptides were identified as cardio-excitatory neuropeptides in other molluscs and a cognate receptor was discovered in the pond snail Lymnaea stagnalis. Phylogenetic analyses have revealed that orthologs of molluscan luqin-type neuropeptides occur in other phyla; these include neuropeptides in ecdysozoans (arthropods, nematodes) that have a C-terminal RYamide motif (RYamides) and neuropeptides in ambulacrarians (echinoderms, hemichordates) that have a C-terminal RWamide motif (RWamides). Furthermore, precursors of luqin-type neuropeptides typically have a conserved C-terminal motif containing two cysteine residues, although the functional significance of this is unknown. Consistent with the orthology of the neuropeptides and their precursors, phylogenetic and pharmacological studies have revealed that orthologous G-protein coupled receptors (GPCRs) mediate effects of luqin-type neuropeptides in spiralians, ecdysozoans, and ambulacrarians. Luqin-type signaling originated in a common ancestor of the Bilateria as a paralog of tachykinin-type signaling but, unlike tachykinin-type signaling, luqin-type signaling was lost in chordates. This may largely explain why luqin-type signaling has received less attention than many other neuropeptide signaling systems. However, insights into the physiological actions of luqin-type neuropeptides (RYamides) in ecdysozoans have been reported recently, with roles in regulation of feeding and diuresis revealed in insects and roles in regulation of feeding, egg laying, locomotion, and lifespan revealed in the nematode Caenorhabditis elegans. Furthermore, characterization of a luqin-type neuropeptide in the starfish Asterias rubens (phylum Echinodermata) has provided the first insights into the physiological roles of luqin-type signaling in a deuterostome. In conclusion, although luqin was discovered in Aplysia over 30 years ago, there is still much to be learnt about luqin-type neuropeptide signaling. This will be facilitated in the post-genomic era by the emerging opportunities for experimental studies on a variety of invertebrate taxa.
Collapse
Affiliation(s)
- Luis Alfonso Yañez-Guerra
- School of Biological and Chemical Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
13
|
Odekunle EA, Semmens DC, Martynyuk N, Tinoco AB, Garewal AK, Patel RR, Blowes LM, Zandawala M, Delroisse J, Slade SE, Scrivens JH, Egertová M, Elphick MR. Ancient role of vasopressin/oxytocin-type neuropeptides as regulators of feeding revealed in an echinoderm. BMC Biol 2019; 17:60. [PMID: 31362737 PMCID: PMC6668147 DOI: 10.1186/s12915-019-0680-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Vasopressin/oxytocin (VP/OT)-type neuropeptides are well known for their roles as regulators of diuresis, reproductive physiology and social behaviour. However, our knowledge of their functions is largely based on findings from studies on vertebrates and selected protostomian invertebrates. Little is known about the roles of VP/OT-type neuropeptides in deuterostomian invertebrates, which are more closely related to vertebrates than protostomes. RESULTS Here, we have identified and functionally characterised a VP/OT-type signalling system comprising the neuropeptide asterotocin and its cognate G-protein coupled receptor in the starfish (sea star) Asterias rubens, a deuterostomian invertebrate belonging to the phylum Echinodermata. Analysis of the distribution of asterotocin and the asterotocin receptor in A. rubens using mRNA in situ hybridisation and immunohistochemistry revealed expression in the central nervous system (radial nerve cords and circumoral nerve ring), the digestive system (including the cardiac stomach) and the body wall and associated appendages. Informed by the anatomy of asterotocin signalling, in vitro pharmacological experiments revealed that asterotocin acts as a muscle relaxant in starfish, contrasting with the myotropic actions of VP/OT-type neuropeptides in vertebrates. Furthermore, in vivo injection of asterotocin had a striking effect on starfish behaviour-triggering fictive feeding where eversion of the cardiac stomach and changes in body posture resemble the unusual extra-oral feeding behaviour of starfish. CONCLUSIONS We provide a comprehensive characterisation of VP/OT-type signalling in an echinoderm, including a detailed anatomical analysis of the expression of both the VP/OT-type neuropeptide asterotocin and its cognate receptor. Our discovery that asterotocin triggers fictive feeding in starfish provides important new evidence of an evolutionarily ancient role of VP/OT-type neuropeptides as regulators of feeding in animals.
Collapse
Affiliation(s)
- Esther A. Odekunle
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Dean C. Semmens
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Nataly Martynyuk
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
- Department of Clinical Neurosciences, MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ UK
| | - Ana B. Tinoco
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Abdullah K. Garewal
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Radhika R. Patel
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Liisa M. Blowes
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Meet Zandawala
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
- Department of Neuroscience, Brown University, Providence, USA
| | - Jérôme Delroisse
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
- Research Institute for Biosciences, Biology of Marine Organisms and Biomimetics, University of Mons (UMONS), 7000 Mons, Belgium
| | - Susan E. Slade
- Waters/Warwick Centre for BioMedical Mass Spectrometry and Proteomics, School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX UK
| | - James H. Scrivens
- Waters/Warwick Centre for BioMedical Mass Spectrometry and Proteomics, School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
- School of Science, Engineering & Design, Teesside University, Stephenson Street, Tees Valley, TS1 3BA UK
| | - Michaela Egertová
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Maurice R. Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| |
Collapse
|
14
|
Chen M, Talarovicova A, Zheng Y, Storey KB, Elphick MR. Neuropeptide precursors and neuropeptides in the sea cucumber Apostichopus japonicus: a genomic, transcriptomic and proteomic analysis. Sci Rep 2019; 9:8829. [PMID: 31222106 PMCID: PMC6586643 DOI: 10.1038/s41598-019-45271-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
The sea cucumber Apostichopus japonicus is a foodstuff with very high economic value in China, Japan and other countries in south-east Asia. It is at the heart of a multibillion-dollar industry and to meet demand for this product, aquaculture methods and facilities have been established. However, there are challenges associated with optimization of reproduction, feeding and growth in non-natural environments. Therefore, we need to learn more about the biology of A. japonicus, including processes such as aestivation, evisceration, regeneration and albinism. One of the major classes of molecules that regulate physiology and behaviour in animals are neuropeptides, and a few bioactive peptides have already been identified in A. japonicus. To facilitate more comprehensive investigations of neuropeptide function in A. japonicus, here we have analysed genomic and transcriptomic sequence data and proteomic data to identify neuropeptide precursors and neuropeptides in this species. We identified 44 transcripts encoding neuropeptide precursors or putative neuropeptide precursors, and in some instances neuropeptides derived from these precursors were confirmed by mass spectrometry. Furthermore, analysis of genomic sequence data enabled identification of the location of neuropeptide precursor genes on genomic scaffolds and linkage groups (chromosomes) and determination of gene structure. Many of the precursors identified contain homologs of neuropeptides that have been identified in other bilaterian animals. Precursors of neuropeptides that have thus far only been identified in echinoderms were identified, including L- and F-type SALMFamides, AN peptides and others. Precursors of several peptides that act as modulators of neuromuscular activity in A. japonicus were also identified. The discovery of a large repertoire of neuropeptide precursors and neuropeptides provides a basis for experimental studies that investigate the physiological roles of neuropeptide signaling systems in A. japonicus. Looking ahead, some of these neuropeptides may have effects that could be harnessed to enable improvements in the aquaculture of this economically important species.
Collapse
Affiliation(s)
- Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR, China.
| | - Alzbeta Talarovicova
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR, China
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Maurice R Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
15
|
Wood NJ, Mattiello T, Rowe ML, Ward L, Perillo M, Arnone MI, Elphick MR, Oliveri P. Neuropeptidergic Systems in Pluteus Larvae of the Sea Urchin Strongylocentrotus purpuratus: Neurochemical Complexity in a "Simple" Nervous System. Front Endocrinol (Lausanne) 2018; 9:628. [PMID: 30410468 PMCID: PMC6209648 DOI: 10.3389/fendo.2018.00628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022] Open
Abstract
The nervous system of the free-living planktonic larvae of sea urchins is relatively "simple," but sufficiently complex to enable sensing of the environment and control of swimming and feeding behaviors. At the pluteus stage of development, the nervous system comprises a central ganglion of serotonergic neurons located in the apical organ and sensory and motor neurons associated with the ciliary band and the gut. Neuropeptides are key mediators of neuronal signaling in nervous systems but currently little is known about neuropeptidergic systems in sea urchin larvae. Analysis of the genome sequence of the sea urchin Strongylocentrotus purpuratus has enabled the identification of 38 genes encoding neuropeptide precursors (NP) in this species. Here we characterize for the first time the expression of nine of these NP genes in S. purpuratus larvae, providing a basis for a functional understanding of the neurochemical organization of the larval nervous system. In order to accomplish this we used single and double in situ hybridization, coupled with immunohistochemistry, to investigate NP gene expression in comparison with known markers (e.g., the neurotransmitter serotonin). Several sub-populations of cells that express one or more NP genes were identified, which are located in the apica organ, at the base of the arms, around the mouth, in the ciliary band and in the mid- and fore-gut. Furthermore, high levels of cell proliferation were observed in neurogenic territories, consistent with an increase in the number of neuropeptidergic cells at late larval stages. This study has revealed that the sea urchin larval nervous system is far more complex at a neurochemical level than was previously known. Our NP gene expression map provides the basis for future work, aimed at understanding the role of diverse neuropeptides in control of various aspects of embryonic and larval behavior.
Collapse
Affiliation(s)
- Natalie J. Wood
- Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Teresa Mattiello
- Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Matthew L. Rowe
- Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Lizzy Ward
- Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | | | | - Maurice R. Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Paola Oliveri
- Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
16
|
Cai W, Kim CH, Go HJ, Egertová M, Zampronio CG, Jones AM, Park NG, Elphick MR. Biochemical, Anatomical, and Pharmacological Characterization of Calcitonin-Type Neuropeptides in Starfish: Discovery of an Ancient Role as Muscle Relaxants. Front Neurosci 2018; 12:382. [PMID: 29937709 PMCID: PMC6002491 DOI: 10.3389/fnins.2018.00382] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/18/2018] [Indexed: 11/16/2022] Open
Abstract
Calcitonin (CT) is a peptide hormone released by the thyroid gland that regulates blood Ca2+ levels in mammals. The CT gene is alternatively spliced, with one transcript encoding CT and another transcript encoding the CT-like neuropeptide calcitonin-gene related peptide (α-CGRP), which is a powerful vasodilator. Other CT-related peptides in vertebrates include adrenomedullin, amylin, and intermedin, which also act as smooth muscle relaxants. The evolutionary origin of CT-type peptides has been traced to the bilaterian common ancestor of protostomes and deuterostomes and a CT-like peptide (DH31) has been identified as a diuretic hormone in some insect species. However, little is known about the physiological roles of CT-type peptides in other invertebrates. Here we characterized a CT-type neuropeptide in a deuterostomian invertebrate—the starfish Asterias rubens (Phylum Echinodermata). A CT-type precursor cDNA (ArCTP) was sequenced and the predicted structure of the peptide (ArCT) derived from ArCTP was confirmed using mass spectrometry. The distribution of ArCTP mRNA and the ArCT peptide was investigated using in situ hybridization and immunohistochemistry, respectively, revealing stained cells/processes in the nervous system, digestive system, and muscular organs, including the apical muscle and tube feet. Investigation of the effects of synthetic ArCT on in vitro preparations of the apical muscle and tube feet revealed that it acts as a relaxant, causing dose-dependent reversal of acetylcholine-induced contraction. Furthermore, a muscle relaxant present in whole-animal extracts of another starfish species, Patiria pectinifera, was identified as an ortholog of ArCT and named PpCT. Consistent with the expression pattern of ArCTP in A. rubens, RT-qPCR revealed that in P. pectinifera the PpCT precursor transcript is more abundant in the radial nerve cords than in other tissues/organs analyzed. In conclusion, our findings indicate that the physiological action of CT-related peptides as muscle relaxants in vertebrates may reflect an evolutionarily ancient role of CT-type neuropeptides that can be traced back to the common ancestor of deuterostomes.
Collapse
Affiliation(s)
- Weigang Cai
- School of Biological & Chemical Sciences Queen Mary University of London, London, United Kingdom
| | - Chan-Hee Kim
- Department of Biotechnology, College of Fisheries Sciences Pukyong National University, Busan, South Korea
| | - Hye-Jin Go
- Department of Biotechnology, College of Fisheries Sciences Pukyong National University, Busan, South Korea
| | - Michaela Egertová
- School of Biological & Chemical Sciences Queen Mary University of London, London, United Kingdom
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics Research Technology Platform University of Warwick, Coventry, United Kingdom
| | - Alexandra M Jones
- School of Life Sciences and Proteomics Research Technology Platform University of Warwick, Coventry, United Kingdom
| | - Nam Gyu Park
- Department of Biotechnology, College of Fisheries Sciences Pukyong National University, Busan, South Korea
| | - Maurice R Elphick
- School of Biological & Chemical Sciences Queen Mary University of London, London, United Kingdom
| |
Collapse
|
17
|
Zandawala M, Moghul I, Yañez Guerra LA, Delroisse J, Abylkassimova N, Hugall AF, O'Hara TD, Elphick MR. Discovery of novel representatives of bilaterian neuropeptide families and reconstruction of neuropeptide precursor evolution in ophiuroid echinoderms. Open Biol 2018; 7:rsob.170129. [PMID: 28878039 PMCID: PMC5627052 DOI: 10.1098/rsob.170129] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/27/2017] [Indexed: 11/12/2022] Open
Abstract
Neuropeptides are a diverse class of intercellular signalling molecules that mediate neuronal regulation of many physiological and behavioural processes. Recent advances in genome/transcriptome sequencing are enabling identification of neuropeptide precursor proteins in species from a growing variety of animal taxa, providing new insights into the evolution of neuropeptide signalling. Here, detailed analysis of transcriptome sequence data from three brittle star species, Ophionotus victoriae, Amphiura filiformis and Ophiopsila aranea, has enabled the first comprehensive identification of neuropeptide precursors in the class Ophiuroidea of the phylum Echinodermata. Representatives of over 30 bilaterian neuropeptide precursor families were identified, some of which occur as paralogues. Furthermore, homologues of endothelin/CCHamide, eclosion hormone, neuropeptide-F/Y and nucleobinin/nesfatin were discovered here in a deuterostome/echinoderm for the first time. The majority of ophiuroid neuropeptide precursors contain a single copy of a neuropeptide, but several precursors comprise multiple copies of identical or non-identical, but structurally related, neuropeptides. Here, we performed an unprecedented investigation of the evolution of neuropeptide copy number over a period of approximately 270 Myr by analysing sequence data from over 50 ophiuroid species, with reference to a robust phylogeny. Our analysis indicates that the composition of neuropeptide ‘cocktails’ is functionally important, but with plasticity over long evolutionary time scales.
Collapse
Affiliation(s)
- Meet Zandawala
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Ismail Moghul
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Luis Alfonso Yañez Guerra
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Jérôme Delroisse
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Nikara Abylkassimova
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Andrew F Hugall
- Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
| | - Timothy D O'Hara
- Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
18
|
Sekiguchi T. The Calcitonin/Calcitonin Gene-Related Peptide Family in Invertebrate Deuterostomes. Front Endocrinol (Lausanne) 2018; 9:695. [PMID: 30555412 PMCID: PMC6283891 DOI: 10.3389/fendo.2018.00695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Calcitonin (CT)/CT gene-related peptide (CGRP) family peptides (CT/CGRP family peptides) including CT, CGRP, adrenomedullin, amylin, and CT receptor-stimulating peptide have been identified from various vertebrates and perform a variety of important physiological functions. These peptides bind to two types of receptors including CT receptor (CTR) and CTR-like receptor (CLR). Receptor recognition of CT/CGRP family peptides is determined by the heterodimer between CTR/CLR and receptor activity-modifying protein (RAMP). Comparative studies of the CT/CGRP family have been exclusively performed in vertebrates from teleost fishes to mammals and strongly manifest that the CGRP family system containing peptides, their receptors, and RAMPs was derived from a common ancestor. In addition, CT/CGRP family peptides and their receptors are also identified and inferred from various invertebrate species. However, the evolutionary process of the CT/CGRP family from invertebrates to vertebrates remains enigmatic. In this review, I principally summarize the CT/CGRP family peptides and their receptors in invertebrate deuterostomes, highlighting the study of invertebrate chordates including ascidians and amphioxi. The CT/CGRP family peptide that shows similar molecular structure and function with that of vertebrate CT has been identified from ascidian, Ciona intestinalis. Amphioxus, Branchiostoma floridae also possessed three CT/CGRP family peptides, one CTR/CLR receptor, and three RAMP-like proteins. The molecular function of the receptor complex formed by amphioxus CTR/CLR and a RAMP-like protein was clarified. Moreover, CT/CGRP family peptides have been identified in the superphylum Ambulacraria, which is close to Chordata. Finally, this review provides potential hypotheses of the evolution of CGRP family peptides and their receptors from invertebrates to vertebrates.
Collapse
|
19
|
Tinoco AB, Semmens DC, Patching EC, Gunner EF, Egertová M, Elphick MR. Characterization of NGFFYamide Signaling in Starfish Reveals Roles in Regulation of Feeding Behavior and Locomotory Systems. Front Endocrinol (Lausanne) 2018; 9:507. [PMID: 30283399 PMCID: PMC6156427 DOI: 10.3389/fendo.2018.00507] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Neuropeptides in deuterostomian invertebrates that have an Asn-Gly motif (NG peptides) have been identified as orthologs of vertebrate neuropeptide-S (NPS)-type peptides and protostomian crustacean cardioactive peptide (CCAP)-type neuropeptides. To obtain new insights into the physiological roles of NG peptides in deuterostomian invertebrates, here we have characterized the NG peptide signaling system in an echinoderm-the starfish Asterias rubens. The neuropeptide NGFFYamide was identified as the ligand for an A. rubens NPS/CCAP-type receptor, providing further confirmation that NG peptides are orthologs of NPS/CCAP-type neuropeptides. Using mRNA in situ hybridization, cells expressing the NGFFYamide precursor transcript were revealed in the radial nerve cords, circumoral nerve ring, coelomic epithelium, apical muscle, body wall, stomach, and tube feet of A. rubens, indicating that NGFFYamide may have a variety of physiological roles in starfish. One of the most remarkable aspects of starfish biology is their feeding behavior, where the stomach is everted out of the mouth over the soft tissue of prey. Previously, we reported that NGFFYamide triggers retraction of the everted stomach in A. rubens and here we show that in vivo injection of NGFFYamide causes a significant delay in the onset of feeding on prey. To investigate roles in regulating other aspects of starfish physiology, we examined the in vitro effects of NGFFYamide and found that it causes relaxation of acetylcholine-contracted apical muscle preparations and induction of tonic and phasic contraction of tube feet. Furthermore, analysis of the effects of in vivo injection of NGFFYamide on starfish locomotor activity revealed that it causes a significant reduction in mean velocity and distance traveled. Interestingly, experimental studies on mammals have revealed that NPS is an anxiolytic that suppresses appetite and induces hyperactivity in mammals. Our characterization of the actions of NGFFYamide in starfish indicates that NPS/NG peptide/CCAP-type signaling is an evolutionarily ancient regulator of feeding and locomotion.
Collapse
|
20
|
Williams EA, Verasztó C, Jasek S, Conzelmann M, Shahidi R, Bauknecht P, Mirabeau O, Jékely G. Synaptic and peptidergic connectome of a neurosecretory center in the annelid brain. eLife 2017; 6:26349. [PMID: 29199953 PMCID: PMC5747525 DOI: 10.7554/elife.26349] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 12/02/2017] [Indexed: 12/15/2022] Open
Abstract
Neurosecretory centers in animal brains use peptidergic signaling to influence physiology and behavior. Understanding neurosecretory center function requires mapping cell types, synapses, and peptidergic networks. Here we use transmission electron microscopy and gene expression mapping to analyze the synaptic and peptidergic connectome of an entire neurosecretory center. We reconstructed 78 neurosecretory neurons and mapped their synaptic connectivity in the brain of larval Platynereis dumerilii, a marine annelid. These neurons form an anterior neurosecretory center expressing many neuropeptides, including hypothalamic peptide orthologs and their receptors. Analysis of peptide-receptor pairs in spatially mapped single-cell transcriptome data revealed sparsely connected networks linking specific neuronal subsets. We experimentally analyzed one peptide-receptor pair and found that a neuropeptide can couple neurosecretory and synaptic brain signaling. Our study uncovered extensive networks of peptidergic signaling within a neurosecretory center and its connection to the synaptic brain.
Collapse
Affiliation(s)
| | - Csaba Verasztó
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sanja Jasek
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Réza Shahidi
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | | | - Olivier Mirabeau
- Genetics and Biology of Cancers Unit, Institut Curie, INSERM U830, Paris Sciences et Lettres Research University, Paris, France
| | - Gáspár Jékely
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Living Systems Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
21
|
Lin M, Egertová M, Zampronio CG, Jones AM, Elphick MR. Pedal peptide/orcokinin-type neuropeptide signaling in a deuterostome: The anatomy and pharmacology of starfish myorelaxant peptide in Asterias rubens. J Comp Neurol 2017; 525:3890-3917. [PMID: 28880392 PMCID: PMC5656890 DOI: 10.1002/cne.24309] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/15/2017] [Accepted: 08/23/2017] [Indexed: 12/11/2022]
Abstract
Pedal peptide (PP) and orcokinin (OK) are related neuropeptides that were discovered in protostomian invertebrates (mollusks, arthropods). However, analysis of genome/transcriptome sequence data has revealed that PP/OK‐type neuropeptides also occur in a deuterostomian phylum—the echinoderms. Furthermore, a PP/OK‐type neuropeptide (starfish myorelaxant peptide, SMP) was recently identified as a muscle relaxant in the starfish Patiria pectinifera. Here mass spectrometry was used to identify five neuropeptides (ArPPLN1a‐e) derived from the SMP precursor (PP‐like neuropeptide precursor 1; ArPPLNP1) in the starfish Asterias rubens. Analysis of the expression of ArPPLNP1 and neuropeptides derived from this precursor in A. rubens using mRNA in situ hybridization and immunohistochemistry revealed a widespread pattern of expression, with labeled cells and/or processes present in the radial nerve cords, circumoral nerve ring, digestive system (e.g., cardiac stomach) and body wall‐associated muscles (e.g., apical muscle) and appendages (e.g., tube feet and papulae). Furthermore, our data provide the first evidence that neuropeptides are present in the lateral motor nerves and in nerve processes innervating interossicular muscles. In vitro pharmacological tests with SMP (ArPPLN1b) revealed that it causes dose‐dependent relaxation of apical muscle, tube foot and cardiac stomach preparations from A. rubens. Collectively, these anatomical and pharmacological data indicate that neuropeptides derived from ArPPLNP1 act as inhibitory neuromuscular transmitters in starfish, which contrasts with the myoexcitatory actions of PP/OK‐type neuropeptides in protostomian invertebrates. Thus, the divergence of deuterostomes and protostomes may have been accompanied by an inhibitory–excitatory transition in the roles of PP/OK‐type neuropeptides as regulators of muscle activity.
Collapse
Affiliation(s)
- Ming Lin
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London, UK
| | - Michaela Egertová
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London, UK
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, UK
| | - Alexandra M Jones
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, UK
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London, UK
| |
Collapse
|
22
|
Tian S, Egertová M, Elphick MR. Functional Characterization of Paralogous Gonadotropin-Releasing Hormone-Type and Corazonin-Type Neuropeptides in an Echinoderm. Front Endocrinol (Lausanne) 2017; 8:259. [PMID: 29033898 PMCID: PMC5626854 DOI: 10.3389/fendo.2017.00259] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
Homologs of the vertebrate neuropeptide gonadotropin-releasing hormone (GnRH) have been identified in invertebrates, including the insect neuropeptide corazonin (CRZ). Recently, we reported the discovery of GnRH-type and CRZ-type signaling systems in an echinoderm, the starfish Asterias rubens, demonstrating that the evolutionary origin of paralogous GnRH-type and CRZ-type neuropeptides can be traced back to the common ancestor of protostomes and deuterostomes. Here, we have investigated the physiological roles of the GnRH-type (ArGnRH) and the CRZ-type (ArCRZ) neuropeptides in A. rubens, using mRNA in situ hybridization, immunohistochemistry and in vitro pharmacology. ArGnRH precursor (ArGnRHP)-expressing cells and ArGnRH-immunoreactive cells and/or processes are present in the radial nerve cords, circumoral nerve ring, digestive system (e.g., cardiac stomach and pyloric stomach), body wall-associated muscle (apical muscle), and appendages (tube feet, terminal tentacle). The general distribution of ArCRZ precursor (ArCRZP)-expressing cells is similar to that of ArGnRHP, but with specific local differences. For example, cells expressing ArGnRHP are present in both the ectoneural and hyponeural regions of the radial nerve cords and circumoral nerve ring, whereas cells expressing ArCRZP were only observed in the ectoneural region. In vitro pharmacological experiments revealed that both ArGnRH and ArCRZ cause contraction of cardiac stomach, apical muscle, and tube foot preparations. However, ArGnRH was more potent/effective than ArCRZ as a contractant of the cardiac stomach, whereas ArCRZ was more potent/effective than ArGnRH as a contractant of the apical muscle. These findings demonstrate that both ArGnRH and ArCRZ are myoexcitatory neuropeptides in starfish, but differences in their expression patterns and pharmacological activities are indicative of distinct physiological roles. This is the first study to investigate the physiological roles of both GnRH-type and CRZ-type neuropeptides in a deuterostome, providing new insights into the evolution and comparative physiology of these paralogous neuropeptide signaling systems in the Bilateria.
Collapse
Affiliation(s)
- Shi Tian
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Michaela Egertová
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Maurice R. Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- *Correspondence: Maurice R. Elphick,
| |
Collapse
|