1
|
Andonie RR, Wimmer W, Schraivogel S, Mantokoudis G, Caversaccio M, Weder S. Electrocochleography in Cochlear Implant Recipients: Correlating Maximum Response With Residual Hearing. Ear Hear 2025; 46:16-23. [PMID: 39010266 PMCID: PMC11637568 DOI: 10.1097/aud.0000000000001546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/02/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVES Electrocochleography (ECochG) is increasingly recognized as a biomarker for assessing inner ear function in cochlear implant patients. This study aimed to objectively determine intraoperative cochlear microphonic (CM) amplitude patterns and correlate them with residual hearing in cochlear implant recipients, addressing the limitations in current ECochG analysis that often depends on subjective visual assessment and overlook the intracochlear measurement location. DESIGN In this prospective study, we investigated intraoperative pure-tone ECochG following complete electrode insertion in 31 patients. We used our previously published objective analysis method to determine the maximum CM amplitude and the associated electrode position for each electrode array. Using computed tomography, we identified electrode placement and determined the corresponding tonotopic frequency using Greenwood's function. Based on this, we calculated the tonotopic shift, that is, the difference between the stimulation frequency and the estimated frequency of the electrode with the maximum CM amplitude. We evaluated the association between CM amplitude, tonotopic shift, and preoperative hearing thresholds using linear regression analysis. RESULTS CM amplitudes showed high variance, with values ranging from -1.479 to 4.495 dBµV. We found a statistically significant negative correlation ( ) between maximum CM amplitudes and preoperative hearing thresholds. In addition, a significant association ( ) between the tonotopic shift and preoperative hearing thresholds was observed. Tonotopic shifts of the maximum CM amplitudes occurred predominantly toward the basal direction. CONCLUSIONS The combination of objective signal analysis and the consideration of intracochlear measurement locations enhances the understanding of cochlear health and overcomes the obstacles of current ECochG analysis. We could show the link between intraoperative CM amplitudes, their spatial distributions, and preoperative hearing thresholds. Consequently, our findings enable automated analysis and bear the potential to enhance specificity of ECochG, reinforcing its role as an objective biomarker for cochlear health.
Collapse
Affiliation(s)
- Raphael R. Andonie
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wilhelm Wimmer
- Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Otorhinolaryngology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan Schraivogel
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Georgios Mantokoudis
- Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marco Caversaccio
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stefan Weder
- Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Panario J, Bester C, O'Leary S. Predicting Postoperative Speech Perception and Audiometric Thresholds Using Intracochlear Electrocochleography in Cochlear Implant Recipients. Ear Hear 2024; 45:1173-1190. [PMID: 38816899 DOI: 10.1097/aud.0000000000001506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
OBJECTIVES Electrocochleography (ECochG) appears to offer the most accurate prediction of post-cochlear implant hearing outcomes. This may be related to its capacity to interrogate the health of underlying cochlear tissue. The four major components of ECochG (cochlear microphonic [CM], summating potential [SP], compound action potential [CAP], and auditory nerve neurophonic [ANN]) are generated by different cochlear tissue components. Analyzing characteristics of these components can reveal the state of hair and neural cell in a cochlea. There is limited evidence on the characteristics of intracochlear (IC) ECochG recordings measured across the array postinsertion but compared with extracochlear recordings has better signal to noise ratio and spatial specificity. The present study aimed to examine the relationship between ECochG components recorded from an IC approach and postoperative speech perception or audiometric thresholds. DESIGN In 113 human subjects, responses to 500 Hz tone bursts were recorded at 11 IC electrodes across a 22-electrode cochlear implant array immediately following insertion. Responses to condensation and rarefaction stimuli were then subtracted from one another to emphasize the CM and added to one another to emphasize the SP, ANN, and CAP. Maximum amplitudes and extracochlear electrode locations were recorded for each of these ECochG components. These were added stepwise to a multi-factor generalized additive model to develop a best-fit model predictive model for pure-tone audiometric thresholds (PTA) and speech perception scores (speech recognition threshold [SRT] and consonant-vowel-consonant phoneme [CVC-P]) at 3- and 12-month postoperative timepoints. This best-fit model was tested against a generalized additive model using clinical factors alone (preoperative score, age, and gender) as a null model proxy. RESULTS ECochG-factor models were superior to clinical factor models in predicting postoperative PTA, CVC-P, and SRT outcomes at both timepoints. Clinical factor models explained a moderate amount of PTA variance ( r2 = 45.9% at 3-month, 31.8% at 12-month, both p < 0.001) and smaller variances of CVC-P and SRT ( r2 range = 6 to 13.7%, p = 0.008 to 0.113). Age was not a significant predictive factor. ECochG models explained more variance at the 12-month timepoint ( r2 for PTA = 52.9%, CVC-P = 39.6%, SRT = 36.4%) compared with the 3-month one timepoint ( r2 for PTA = 49.4%, CVC-P = 26.5%, SRT = 22.3%). The ECochG model was based on three factors: maximum SP deflection amplitude, and electrode position of CM and SP peaks. Adding neural (ANN and/or CAP) factors to the model did not improve variance explanation. Large negative SP deflection was associated with poorer outcomes and a large positive SP deflection with better postoperative outcomes. Mid-array peaks of SP and CM were both associated with poorer outcomes. CONCLUSIONS Postinsertion IC-ECochG recordings across the array can explain a moderate amount of postoperative speech perception and audiometric thresholds. Maximum SP deflection and its location across the array appear to have a significant predictive value which may reflect the underlying state of cochlear health.
Collapse
Affiliation(s)
- Jared Panario
- Department Otolaryngology, University of Melbourne, Melbourne, Victoria, Australia
| | - Christofer Bester
- Department Otolaryngology, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen O'Leary
- Department Otolaryngology, University of Melbourne, Melbourne, Victoria, Australia
- Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Geys M, Sijgers L, Dobrev I, Dalbert A, Röösli C, Pfiffner F, Huber A. ZH-ECochG Bode Plot: A Novel Approach to Visualize Electrocochleographic Data in Cochlear Implant Users. J Clin Med 2024; 13:3470. [PMID: 38929998 PMCID: PMC11205027 DOI: 10.3390/jcm13123470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Various representations exist in the literature to visualize electrocochleography (ECochG) recordings along the basilar membrane (BM). This lack of generalization complicates comparisons within and between cochlear implant (CI) users, as well as between publications. This study synthesized the visual representations available in the literature via a systematic review and provides a novel approach to visualize ECochG data in CI users. Methods: A systematic review was conducted within PubMed and EMBASE to evaluate studies investigating ECochG and CI. Figures that visualized ECochG responses were selected and analyzed. A novel visualization of individual ECochG data, the ZH-ECochG Bode plot (ZH = Zurich), was devised, and the recordings from three CI recipients were used to demonstrate and assess the new framework. Results: Within the database search, 74 articles with a total of 115 figures met the inclusion criteria. Analysis revealed various types of representations using different axes; their advantages were incorporated into the novel visualization framework. The ZH-ECochG Bode plot visualizes the amplitude and phase of the ECochG recordings along the different tonotopic regions and angular insertion depths of the recording sites. The graph includes the pre- and postoperative audiograms to enable a comparison of ECochG responses with the audiometric profile, and allows different measurements to be shown in the same graph. Conclusions: The ZH-ECochG Bode plot provides a generalized visual representation of ECochG data, using well-defined axes. This will facilitate the investigation of the complex ECochG potentials generated along the BM and allows for better comparisons of ECochG recordings within and among CI users and publications. The scripts used to construct the ZH-ECochG Bode plot are provided by the authors.
Collapse
Affiliation(s)
- Marlies Geys
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
4
|
Kim JS. Clinical Applications of Intracochlear Electrocochleography in Cochlear Implant Users With Residual Acoustic Hearing. J Audiol Otol 2024; 28:100-106. [PMID: 38695055 PMCID: PMC11065546 DOI: 10.7874/jao.2024.00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
We herein review the use of electrocochleography (ECoG) to assess peripheral auditory system responsiveness in a growing population of cochlear implant (CI) users with preserved hearing in ears with implants. Twenty-eight recently published intracochlear ECoG articles were thoroughly reviewed to investigate the prognostic utility of intraoperative ECoG monitoring to assess hearing preservation, and the clinical applicability of postoperative ECoG for estimating audiometric thresholds and monitoring longitudinal changes in residual acoustic hearing in patients with EAS. Intraoperative ECoG studies have focused on monitoring the changes in the cochlear microphonics (CM) amplitudes during and after electrode insertion. Mixed results have been reported regarding the relationship between changes in CM amplitude in the operating room and changes in hearing thresholds after surgery. Postoperative ECoG studies have shown that CM and auditory nerve neurophonics thresholds correlate significantly with behavioral thresholds. ECoG thresholds sensitively detect changes as residual acoustic hearing decreases over time in some CI users. This indicates its potential clinical value for monitoring the post-implantation status of the peripheral auditory system. Intracochlear ECoG can provide real-time intraoperative feedback and monitor postoperative hearing preservation in a growing population of CI users.
Collapse
Affiliation(s)
- Jeong-Seo Kim
- Hearing Research Laboratory, Samsung Medical Center, Seoul, Korea
- Medical Research Institute, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
5
|
Panario J, Bester C, O'Leary SJ. Characteristics of the Summating Potential Measured Across a Cochlear Implant Array as an Indicator of Cochlear Function. Ear Hear 2023; 44:1088-1106. [PMID: 36935398 PMCID: PMC10426787 DOI: 10.1097/aud.0000000000001347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/13/2023] [Indexed: 03/21/2023]
Abstract
OBJECTIVES The underlying state of cochlear and neural tissue function is known to affect postoperative speech perception following cochlear implantation. The ability to assess these tissues in patients can be performed using intracochlear electrocochleography (IC ECochG). One component of ECochG is the summating potential (SP) that appears to be generated by multiple cochlear tissues. Its qualities may be able to detect the presence of functional inner hair cells, but evidence for this is limited in human cochleae. This study aimed to examine the IC SP characteristics in cochlear implantation recipients, its relationship to preoperative speech perception and audiometric thresholds, and to other IC ECochG components. DESIGN This is a retrospective analysis of 113 patients' IC ECochG recordings across the array in response to a 500 Hz tone burst stimulus. Responses to condensation and rarefaction stimuli were then subtracted from one another to emphasize the cochlear microphonic and added to one another to emphasize the SP, auditory nerve neurophonic, and compound action potential. Patients were grouped based on their maximum SP deflection being large and positive (+SP), large and negative (-SP), or minimal (0 SP) to further investigate these relationships. RESULTS Patients in the +SP group had better preoperative speech perception (mean consonant-vowel-consonant phoneme score 46%) compared to the -SP and 0 SP groups (consonant-vowel-consonant phoneme scores 34% and 36%, respectively, difference to +SP: p < 0.05). Audiometric thresholds were lowest for +SP (mean pure-tone average 50 dB HL), then -SP (65 dB HL), and highest for 0 SP patients (70 dB HL), but there was not a statistical significance between +SP and -SP groups ( p > 0.1). There were also distinct differences between SP groups in the qualities of their other ECochG components. These included the +SP patients having larger cochlear microphonic maximum amplitude, more apical SP peak electrode locations, and a more spatially specific SP magnitude growth pattern across the array. CONCLUSIONS Patients with large positive SP deflection in IC ECochG have preoperatively better speech perception and lower audiometric thresholds than those without. Patterns in other ECochG components suggest its positive deflection may be an indicator of cochlear function.
Collapse
Affiliation(s)
- Jared Panario
- Department Otolaryngology, University of Melbourne, Victoria, Australia
| | - Christofer Bester
- Department Otolaryngology, University of Melbourne, Victoria, Australia
| | - Stephen John O'Leary
- Department Otolaryngology, University of Melbourne, Victoria, Australia
- Royal Victorian Eye and Ear Hospital, Victoria, Australia
| |
Collapse
|
6
|
Schuerch K, Wimmer W, Rummel C, Caversaccio MD, Weder S. Objective evaluation of intracochlear electrocochleography: repeatability, thresholds, and tonotopic patterns. Front Neurol 2023; 14:1181539. [PMID: 37621854 PMCID: PMC10446839 DOI: 10.3389/fneur.2023.1181539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/26/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction Intracochlear electrocochleography (ECochG) is increasingly being used to measure residual inner ear function in cochlear implant (CI) recipients. ECochG signals reflect the state of the inner ear and can be measured during implantation and post-operatively. The aim of our study was to apply an objective deep learning (DL)-based algorithm to assess the reproducibility of longitudinally recorded ECochG signals, compare them with audiometric hearing thresholds, and identify signal patterns and tonotopic behavior. Methods We used a previously published objective DL-based algorithm to evaluate post-operative intracochlear ECochG signals collected from 21 ears. The same measurement protocol was repeated three times over 3 months. Additionally, we measured the pure-tone thresholds and subjective loudness estimates for correlation with the objectively detected ECochG signals. Recordings were made on at least four electrodes at three intensity levels. We extracted the electrode positions from computed tomography (CT) scans and used this information to evaluate the tonotopic characteristics of the ECochG responses. Results The objectively detected ECochG signals exhibited substantial repeatability over a 3-month period (bias-adjusted kappa, 0.68; accuracy 83.8%). Additionally, we observed a moderate-to-strong dependence of the ECochG thresholds on audiometric and subjective hearing levels. Using radiographically determined tonotopic measurement positions, we observed a tendency for tonotopic allocation with a large variance. Furthermore, maximum ECochG amplitudes exhibited a substantial basal shift. Regarding maximal amplitude patterns, most subjects exhibited a flat pattern with amplitudes evenly distributed over the electrode carrier. At higher stimulation frequencies, we observed a shift in the maximum amplitudes toward the basal turn of the cochlea. Conclusions We successfully implemented an objective DL-based algorithm for evaluating post-operative intracochlear ECochG recordings. We can only evaluate and compare ECochG recordings systematically and independently from experts with an objective analysis. Our results help to identify signal patterns and create a better understanding of the inner ear function with the electrode in place. In the next step, the algorithm can be applied to intra-operative measurements.
Collapse
Affiliation(s)
- Klaus Schuerch
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Wilhelm Wimmer
- Department of Otorhinolaryngology, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marco Domenico Caversaccio
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Stefan Weder
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Haggerty RA, Hutson KA, Riggs WJ, Brown KD, Pillsbury HC, Adunka OF, Buchman CA, Fitzpatrick DC. Assessment of cochlear synaptopathy by electrocochleography to low frequencies in a preclinical model and human subjects. Front Neurol 2023; 14:1104574. [PMID: 37483448 PMCID: PMC10361575 DOI: 10.3389/fneur.2023.1104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Cochlear synaptopathy is the loss of synapses between the inner hair cells and the auditory nerve despite survival of sensory hair cells. The findings of extensive cochlear synaptopathy in animals after moderate noise exposures challenged the long-held view that hair cells are the cochlear elements most sensitive to insults that lead to hearing loss. However, cochlear synaptopathy has been difficult to identify in humans. We applied novel algorithms to determine hair cell and neural contributions to electrocochleographic (ECochG) recordings from the round window of animal and human subjects. Gerbils with normal hearing provided training and test sets for a deep learning algorithm to detect the presence of neural responses to low frequency sounds, and an analytic model was used to quantify the proportion of neural and hair cell contributions to the ECochG response. The capacity to detect cochlear synaptopathy was validated in normal hearing and noise-exposed animals by using neurotoxins to reduce or eliminate the neural contributions. When the analytical methods were applied to human surgical subjects with access to the round window, the neural contribution resembled the partial cochlear synaptopathy present after neurotoxin application in animals. This result demonstrates the presence of viable hair cells not connected to auditory nerve fibers in human subjects with substantial hearing loss and indicates that efforts to regenerate nerve fibers may find a ready cochlear substrate for innervation and resumption of function.
Collapse
Affiliation(s)
- Raymond A. Haggerty
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kendall A. Hutson
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - William J. Riggs
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
| | - Kevin D. Brown
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Harold C. Pillsbury
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Oliver F. Adunka
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
| | - Craig A. Buchman
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, United States
| | - Douglas C. Fitzpatrick
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
8
|
Saoji AA, Graham MK, Adkins WJ, Koka K, Carlson ML, Neff BA, Driscoll CLW, Fitzpatrick DC. Multi-Frequency Electrocochleography and Electrode Scan to Identify Electrode Insertion Trauma during Cochlear Implantation. Brain Sci 2023; 13:brainsci13020330. [PMID: 36831873 PMCID: PMC9954676 DOI: 10.3390/brainsci13020330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Intraoperative electrocochleography (ECOG) is performed using a single low-frequency acoustic stimulus (e.g., 500 Hz) to monitor cochlear microphonics (CM) during cochlear implant (CI) electrode insertion. A decrease in CM amplitude is commonly associated with cochlear trauma and is used to guide electrode placement. However, advancement of the recording electrode beyond the sites of CM generation can also lead to a decrease in CM amplitude and is sometimes interpreted as cochlear trauma, resulting in unnecessary electrode manipulation and increased risk of cochlear trauma during CI electrode placement. In the present study, multi-frequency ECOG was used to monitor CM during CI electrode placement. The intraoperative CM tracings were compared with electrode scan measurements, where CM was measured for each of the intracochlear electrodes. Comparison between the peak CM amplitude measured during electrode placement and electrode scan measurements was used to differentiate between different mechanisms for decrease in CM amplitude during CI electrode insertion. Analysis of the data shows that both multi-frequency electrocochleography and electrode scan could potentially be used to differentiate between different mechanisms for decreasing CM amplitude and providing appropriate feedback to the surgeon during CI electrode placement.
Collapse
Affiliation(s)
- Aniket A. Saoji
- Department of Otolaryngology Head and Neck Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| | - Madison K. Graham
- Department of Otolaryngology Head and Neck Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Weston J. Adkins
- Department of Otolaryngology Head and Neck Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Kanthaiah Koka
- Department of Research and Technology, Advanced Bionics, Valencia, CA 91355, USA
| | - Matthew L. Carlson
- Department of Otolaryngology Head and Neck Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian A. Neff
- Department of Otolaryngology Head and Neck Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Colin L. W. Driscoll
- Department of Otolaryngology Head and Neck Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Douglas C. Fitzpatrick
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Jwair S, Ramekers D, Thomeer HGXM, Versnel H. Acute effects of cochleostomy and electrode-array insertion on compound action potentials in normal-hearing guinea pigs. Front Neurosci 2023; 17:978230. [PMID: 36845413 PMCID: PMC9945226 DOI: 10.3389/fnins.2023.978230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Electrocochleography (ECochG) is increasingly used in cochlear implant (CI) surgery, in order to monitor the effect of insertion of the electrode array aiming to preserve residual hearing. However, obtained results are often difficult to interpret. Here we aim to relate changes in ECochG responses to acute trauma induced by different stages of cochlear implantation by performing ECochG at multiple time points during the procedure in normal-hearing guinea pigs. Materials and methods Eleven normal-hearing guinea pigs received a gold-ball electrode that was fixed in the round-window niche. ECochG recordings were performed during the four steps of cochlear implantation using the gold-ball electrode: (1) Bullostomy to expose the round window, (2) hand-drilling of 0.5-0.6 mm cochleostomy in the basal turn near the round window, (3) insertion of a short flexible electrode array, and (4) withdrawal of electrode array. Acoustical stimuli were tones varying in frequency (0.25-16 kHz) and sound level. The ECochG signal was primarily analyzed in terms of threshold, amplitude, and latency of the compound action potential (CAP). Midmodiolar sections of the implanted cochleas were analyzed in terms of trauma to hair cells, modiolar wall, osseous spiral lamina (OSL) and lateral wall. Results Animals were assigned to cochlear trauma categories: minimal (n = 3), moderate (n = 5), or severe (n = 3). After cochleostomy and array insertion, CAP threshold shifts increased with trauma severity. At each stage a threshold shift at high frequencies (4-16 kHz) was accompanied with a threshold shift at low frequencies (0.25-2 kHz) that was 10-20 dB smaller. Withdrawal of the array led to a further worsening of responses, which probably indicates that insertion and removal trauma affected the responses rather than the mere presence of the array. In two instances, CAP threshold shifts were considerably larger than threshold shifts of cochlear microphonics, which could be explained by neural damage due to OSL fracture. A change in amplitudes at high sound levels was strongly correlated with threshold shifts, which is relevant for clinical ECochG performed at one sound level. Conclusion Basal trauma caused by cochleostomy and/or array insertion should be minimized in order to preserve the low-frequency residual hearing of CI recipients.
Collapse
Affiliation(s)
- Saad Jwair
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,UMC Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Dyan Ramekers
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,UMC Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Hans G. X. M. Thomeer
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,UMC Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,UMC Utrecht Brain Center, Utrecht University, Utrecht, Netherlands,*Correspondence: Huib Versnel,
| |
Collapse
|
10
|
Electrocochleographic Patterns Predicting Increased Impedances and Hearing Loss after Cochlear Implantation. Ear Hear 2022:00003446-990000000-00095. [PMID: 36550618 DOI: 10.1097/aud.0000000000001319] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Different patterns of electrocochleographic responses along the electrode array after insertion of the cochlear implant electrode array have been described. However, the implications of these patterns remain unclear. Therefore, the aim of the study was to correlate different peri- and postoperative electrocochleographic patterns with four-point impedance measurements and preservation of residual hearing. DESIGN Thirty-nine subjects with residual low-frequency hearing which were implanted with a slim-straight electrode array could prospectively be included. Intracochlear electrocochleographic recordings and four-point impedance measurements along the 22 electrodes of the array (EL, most apical EL22) were conducted immediately after complete insertion and 3 months after surgery. Hearing preservation was assessed after 3 months. RESULTS In perioperative electrocochleographic recordings, 22 subjects (56%) showed the largest amplitude around the tip of the electrode array (apical-peak, AP, EL20 or EL22), whereas 17 subjects (44%) exhibited a maximum amplitude in more basal regions (mid-peak, MP, EL18 or lower). At 3 months, in six subjects with an AP pattern perioperatively, the location of the largest electrocochleographic response had shifted basally (apical-to-mid-peak, AP-MP). Latency was analyzed along the electrode array when this could be discerned. This was the case in 68 peri- and postoperative recordings (87% of all recordings, n = 78). The latency increased with increasing insertion depth in AP recordings (n = 38, median of EL with maximum latency shift = EL21). In MP recordings (n = 30), the maximum latency shift was detectable more basally (median EL12, p < 0.001). Four-point impedance measurements were available at both time points in 90% (n = 35) of all subjects. At the 3-month time point, recordings revealed lower impedances in the AP group (n = 15, mean = 222 Ω, SD = 63) than in the MP (n = 14, mean = 295 Ω, SD= 7 6) and AP-MP groups (n = 6, mean = 234 Ω, SD = 129; AP versus MP p = 0.026, AP versus AP-MP p = 0.023, MP versus AP-MP p > 0.999). The amplitudes of perioperative AP recordings showed a correlation with preoperative hearing thresholds (r2=0.351, p = 0.004). No such correlation was detectable in MP recordings (r2 = 0.033, p = 0.484). Audiograms were available at both time points in 97% (n = 38) of all subjects. The mean postoperative hearing loss in the AP group was 13 dB (n = 16, SD = 9). A significantly larger hearing loss was detectable in the MP and AP-MP groups with 28 (n = 17, SD = 10) and 35 dB (n = 6, SD = 13), respectively (AP versus MP p = 0.002, AP versus AP-MP p = 0.002, MP versus AP-MP p = 0.926). CONCLUSION MP and AP-MP response patterns of the electrocochleographic responses along the electrode array after cochlear implantation are correlated with higher four-point impedances and poorer postoperative hearing compared to AP response patterns. The higher impedances suggest that MP and AP-MP patterns are associated with increased intracochlear fibrosis.
Collapse
|
11
|
Skarżyński PH, Lorens A, Walkowiak A, Polak M, Skarżyński H. Multi-Frequency Intraoperative Monitoring of Hearing Preservation during Cochlear Implantation. Life (Basel) 2022; 12:life12050636. [PMID: 35629304 PMCID: PMC9143534 DOI: 10.3390/life12050636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Current indications for cochlear implants (CIs) have expanded to include patients with appreciable low-frequency hearing. However, longitudinal results indicate that only one-third of these recipients retain full hearing preservation. In another words, the remaining two-thirds lose this facility either partially or fully. This points to the need to better understand the impact of cochlear implantation on cochlear integrity. Intracochlear electrocochleography (ECochG) involves the recording of electrical potentials generated in the inner ear in response to acoustic stimuli, and previous studies have shown that these potentials give an indication of residual inner ear function. Aim of the research: The aim is to monitor intracochlear ECochG during CI surgery and gain a better understanding of how the implant impacted inner ear function. A newly developed SPL Chirp was used for stimulation. (2) Methods: Intracochlear ECochG signals were measured in a subject with residual preoperative low-frequency hearing, while an electrode array was introduced into the cochlea and was continued until the round window was sealed. Afterwards, surgical events were reviewed with the surgeon; preoperative and postoperative radiological data and hearing thresholds were also evaluated. (3) Conclusions: Real-time intraoperative monitoring, with multifrequency evaluation and video recording, has the potential to allow surgeons and audiologists to continuously assess cochlear function. ECochG monitoring may be a useful tool during cochlear implantation to gain frequency-specific information on the status of the patient’s hearing, assisting surgeons to lower hearing trauma during the operation.
Collapse
Affiliation(s)
- Piotr Henryk Skarżyński
- World Hearing Center, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland; (A.L.); (A.W.); (H.S.)
- Institute of Sensory Organs, 05-830 Kajetany, Poland
- Center of Hearing and Speech Medincus, 05-830 Kajetany, Poland
- Heart Failure and Cardiac Rehabilitation Department, Second Faculty of Medicine, Medical University of Warsaw, 03-242 Warsaw, Poland
- Correspondence:
| | - Artur Lorens
- World Hearing Center, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland; (A.L.); (A.W.); (H.S.)
| | - Adam Walkowiak
- World Hearing Center, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland; (A.L.); (A.W.); (H.S.)
| | - Marek Polak
- R&D Med-El, Furstenweg 77A, 6020 Innsbruck, Austria;
| | - Henryk Skarżyński
- World Hearing Center, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland; (A.L.); (A.W.); (H.S.)
| |
Collapse
|
12
|
Robotics, automation, active electrode arrays, and new devices for cochlear implantation: A contemporary review. Hear Res 2022; 414:108425. [PMID: 34979455 DOI: 10.1016/j.heares.2021.108425] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 01/14/2023]
Abstract
In the last two decades, cochlear implant surgery has evolved into a minimally invasive, hearing preservation surgical technique. The devices used during surgery have benefited from technological advances that have allowed modification and possible improvement of the surgical technique. Robotics has recently gained popularity in otology as an effective tool to overcome the surgeon's limitations such as tremor, drift and accurate force control feedback in laboratory testing. Cochlear implantation benefits from robotic assistance in several steps during the surgical procedure: (i) during the approach to the middle ear by automated mastoidectomy and posterior tympanotomy or through a tunnel from the postauricular skin to the middle ear (i.e. direct cochlear access); (ii) a minimally invasive cochleostomy by a robot-assisted drilling tool; (iii) alignment of the correct insertion axis on the basal cochlear turn; (iv) insertion of the electrode array with a motorized insertion tool. In recent years, the development of bone-attached parallel robots and image-guided surgical robotic systems has allowed the first successful cochlear implantation procedures in patients via a single hole drilled tunnel. Several other robotic systems, new materials, sensing technologies applied to the electrodes, and smart devices have been developed, tested in experimental models and finally some have been used in patients with the aim of reducing trauma in cochleostomy, and permitting slow and more accurate insertion of the electrodes. Despite the promising results in laboratory tests in terms of minimal invasiveness, reduced trauma and better hearing preservation, so far, no clinical benefits on residual hearing preservation or better speech performance have been demonstrated. Before these devices can become the standard approach for cochlear implantation, several points still need to be addressed, primarily cost and duration of the procedure. One can hope that improvement in the cost/benefit ratio will expand the technology to every cochlear implantation procedure. Laboratory research and clinical studies on patients should continue with the aim of making intracochlear implant insertion an atraumatic and reversible gesture for total preservation of the inner ear structure and physiology.
Collapse
|
13
|
Implications of Phase Changes in Extracochlear Electrocochleographic Recordings During Cochlear Implantation. Otol Neurotol 2021; 43:e181-e190. [PMID: 34772884 DOI: 10.1097/mao.0000000000003414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the prevalence and implications of phase changes in extracochlear electrocochleography (ECochG) recordings during cochlear implantation. MATERIALS AND METHODS Extracochlear ECochG recordings were performed before and after insertion of the cochlear implant (CI) electrode by a recording electrode placed on the promontory. Acoustic stimuli were tone bursts at 250, 500, 750, and 1,000 Hz. The pure tone average (PTA) was determined before and approximately 4 weeks after surgery. RESULTS Extracochlear ECochG recordings in 69 ears of 68 subjects were included. At 250 Hz, the mean phase change was 43° (n = 50, standard deviation (SD) 44°), at 500 Hz 36° (n = 64, SD 36°), at 750 Hz 33° (n = 42, SD 39°), and at 1,000 Hz 22° (n = 54, SD 27°). Overall, in 48 out of 210 ECochG recordings a phase change of ≥45° (23%) was detectable. Ears with an amplitude drop >3 dB and a phase change ≥45° (n = 3) had a complete or near complete loss of residual cochlear function in all cases. A phase change of ≥90° in one recording was not associated with a larger amplitude change of the ECochG signal (1.9 dB vs. -0.9 dB, p = 0.1052, n = 69), but with a significantly larger postoperative hearing loss (17 dB vs. 26 dB, p = 0.0156, n = 69). CONCLUSIONS Phase changes occur regularly in extracochlear ECochG recordings during cochlear implantation. Phase changes of ≥90° with or without amplitude changes in the ECochG signal are associated with a larger postoperative hearing loss and could therefore represent an independent marker for cochlear trauma or changes of inner ear mechanics relevant for the postoperative hearing outcome.
Collapse
|
14
|
Sijgers L, Pfiffner F, Grosse J, Dillier N, Koka K, Röösli C, Huber A, Dalbert A. Simultaneous Intra- and Extracochlear Electrocochleography During Cochlear Implantation to Enhance Response Interpretation. Trends Hear 2021; 25:2331216521990594. [PMID: 33710919 PMCID: PMC7958165 DOI: 10.1177/2331216521990594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The use of electrocochleography (ECochG) for providing real-time feedback of
cochlear function during cochlear implantation is receiving increased attention
for preventing cochlear trauma and preserving residual hearing. Although various
studies investigated the relationship between intra-operative ECochG
measurements and surgical outcomes in recent years, the limited interpretability
of ECochG response changes leads to conflicting study results and prevents the
adoption of this method for clinical use. Specifically, the movement of the
recording electrode with respect to the different signal generators in
intracochlear recordings makes the interpretation of signal changes with respect
to cochlear trauma difficult. Here, we demonstrate that comparison of ECochG
signals recorded simultaneously from intracochlear locations and from a fixed
extracochlear location can potentially allow a differentiation between traumatic
and atraumatic signal changes in intracochlear recordings. We measured ECochG
responses to 500 Hz tone bursts with alternating starting phases during cochlear
implant insertions in six human cochlear implant recipients. Our results show
that an amplitude decrease with associated near 180° phase shift and harmonic
distortions in the intracochlear difference curve during the first half of
insertion was not accompanied by a decrease in the extracochlear difference
curve’s amplitude (n = 1), while late amplitude decreases in
intracochlear difference curves (near full insertion, n = 2)
did correspond to extracochlear amplitude decreases. These findings suggest a
role for phase shifts, harmonic distortions, and recording location in
interpreting intracochlear ECochG responses.
Collapse
Affiliation(s)
- Leanne Sijgers
- University of Zurich, Zurich, Switzerland.,Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Flurin Pfiffner
- University of Zurich, Zurich, Switzerland.,Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Julian Grosse
- University of Zurich, Zurich, Switzerland.,Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Norbert Dillier
- University of Zurich, Zurich, Switzerland.,Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Kanthaiah Koka
- Research and Technology, Advanced Bionics LLC, Santa Clarita, California, United States
| | - Christof Röösli
- University of Zurich, Zurich, Switzerland.,Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Alexander Huber
- University of Zurich, Zurich, Switzerland.,Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Adrian Dalbert
- University of Zurich, Zurich, Switzerland.,Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Real Time Monitoring During Cochlear Implantation: Increasing the Accuracy of Predicting Residual Hearing Outcomes. Otol Neurotol 2021; 42:e1030-e1036. [PMID: 33859138 DOI: 10.1097/mao.0000000000003177] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Real-time electrocochleography (rt-ECochG) is a method to detect intracochlear potential changes during cochlear implantation (CI). Steep amplitude drops of the cochlear microphonic (CM) signal (so called "ECochG events") have been correlated with worse residual hearing outcomes. However, the sensitivity and specificity of monitoring CM amplitude on its own are too low to use it as a biomarker. The aim of this article was to establish if additional signal components would help to better predict postoperative hearing outcomes. DESIGN AND SETTING Single-center, prospective cohort study at a tertiary referral hospital. PARTICIPANTS AND INTERVENTIONS Between 2017 and 2020, we included 73 adult patients receiving a lateral wall cochlear implant electrode. During electrode insertion, rt-ECochG measurements were performed. MAIN OUTCOMES We calculated a multiple regression analysis for patients with one ECochG event. The dependant variable was the relative acoustic hearing result 4 weeks after surgery. Independent variables were CM latency, a ratio of the auditory nerve neurophonic to the CM (the ANN/CM index) as well as CM signal recovery. RESULTS The change of the ANN/CM index linearly correlated with acoustic hearing outcomes 4 weeks after surgery. Adding this factor led to a statistically significant increase in the variance accounted for by the regression model. CONCLUSIONS When monitoring the implantation process with rt-ECochG, prediction of postoperative hearing thresholds is improved by addition of the ANN/CM index to a model that includes CM amplitude fluctuation.
Collapse
|
16
|
Abstract
OBJECTIVE Given the heterogeneity of papers about electrocochleography (ECochG) and cochlear implantation (CI) and the absence of a systematic review in the current literature, the aim of this work was to analyze the uses of ECochG in the different stages of CI. DATA SOURCES A search of PubMed from inception to December 8, 2019, with cross-references, was executed. Keywords were: "Cochlear Implant" OR "Cochlear Implantation" AND "Electrocochleography" OR "ECochG." The main eligibility criteria were English-language articles, investigating the use of ECochG in the different phases of CI. STUDY SELECTION Literature reviews, editorials, case reports, conference papers were excluded, as were papers in which ECochG was just sporadically executed. DATA EXTRACTION The quality of the included studies was assessed using "The Strengthening the Reporting of Observational Studies in Epidemiology" (STROBE) Statement. DATA SYNTHESIS A total of 95 articles were identified and 60 papers were included. The included articles covered a timeframe from 2003 to 2019. Of the 60 papers, 46 were human studies, 12 animal studies, and two involved more data sets. Eleven related to the diagnostic phase, 43 described intraoperative monitoring, and 10 were regarding follow-up testing. Hearing preservation was the most discussed topic with 25 included articles. CONCLUSIONS AND RELEVANCE ECochG measurements appeared to be useful in many aspects of CI, such as hearing preservation. Our review is the first that shows the evolution of the technique and how much has been achieved from the earliest experiments to the most recent signal process refinements and device implementation in CI.
Collapse
|
17
|
Establishing Reproducibility and Correlation of Cochlear Microphonic Amplitude to Implant Electrode Position Using Intraoperative Electrocochleography and Postoperative Cone Beam Computed Tomography. Ear Hear 2021; 42:1263-1275. [PMID: 33813521 PMCID: PMC8378545 DOI: 10.1097/aud.0000000000001010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Supplemental Digital Content is available in the text. Objectives: The primary objective of this study was to establish the reproducibility of cochlear microphonic (CM) recordings obtained from a cochlear implant (CI) electrode contact during and immediately after insertion. This was achieved by evaluating the insertion angle and calculating the position of the apical electrode contact during insertion, using postoperative cone beam computed tomography (CBCT). The secondary objective was to create individualized patient maps of electrode contacts located within acoustically sensitive regions by correlating the CM amplitude to the electrode position determined using CBCT. Methods: CMs were recorded from a CI electrode contact during and immediately after insertion in 12 patients (n = 14 ears). Intraoperative recordings were made for a 0.5 kHz tone burst stimulus and were recorded from the apical electrode contact. Postinsertion recordings were made from the odd-numbered electrode contacts (1–15) along the array, using a range of stimulus frequencies (from 0.125 to 2 kHz). The time point at which each electrode contact passed through the round window was noted throughout the insertion, and the CM amplitude at this point was correlated to postoperative CBCT. This correlation was then used to estimate the CM amplitude at particular points within the cochlea, which was in turn compared with the amplitudes recorded from each electrode postoperatively to assess the reproducibility of the recordings. Results: Significant correlation was shown between intraoperative insertion and postinsertion angles at two amplitude events (maximum amplitude: 29° mean absolute error, r = 0.77, p = 0.006; 10% of maximum amplitude: 52° mean absolute error, r = 0.85, p = 0.002). Conclusion: We have developed a novel method to demonstrate the reproducibility of the CM responses recorded from a CI electrode during insertion. By correlating the CM amplitude with the postoperative CBCT, we have also been able to create individualized maps of CM responses, categorizing the cochlea into acoustically responsive and unresponsive regions. If the electrode contacts within the acoustically sensitive regions are shown to be associated with improved loudness discrimination, it could have implications for optimal electrode mapping and placement.
Collapse
|
18
|
O'Leary SJ, Choi J, Brady K, Matthews S, Ozdowska KB, Payne M, McLean T, Rousset A, Lo J, Creber N, Tari S, Dowell R, Briggs R. Systemic methylprednisolone for hearing preservation during cochlear implant surgery: A double blinded placebo-controlled trial. Hear Res 2021; 404:108224. [PMID: 33774594 DOI: 10.1016/j.heares.2021.108224] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/13/2023]
Abstract
AIM To assess whether a single, peri-operative, high dose of methylprednisolone can improve the preservation of residual acoustic hearing following cochlear implantation (CI). METHODS This was a double blinded placebo-controlled trial, performed in a tertiary academic centre. The hypothesis was that methylprednisolone would improve the preservation of hearing, and lower electrode impedances. Adult patients (18-85 years) with hearing at 85 dB or better at 500 Hz in the ear to be implanted were randomly allocated to either treatment (methylprednisolone, 1g administered intravenously upon induction of anaesthesia) or control (normal saline infusion). As per standard clinical practice, all patients received a routine dose of dexamethasone (8 mg intravenously) on induction of anaesthesia. Implantation was undertaken with a slim and flexible lateral wall electrode via the round window. Surgical technique was routine, with adherence to soft surgical principles. The primary outcome was hearing preservation within 20 dB at 500 Hz, 12 months following cochlear implantation. Secondary outcomes included hearing preservation at 6 weeks and 3 months, monopolar electrode impedance, and Consonant-Vowel-Consonant (CVC) Phoneme scores at 3 and 12 months after surgery. RESULTS Forty-five patients were enrolled into the control group and 48 patients received the steroid. The number of patients achieving hearing preservation at 12 months did not differ significantly between those receiving methylprednisolone treatment and the controls. There were no differences in hearing preservation at any frequency at either 6 weeks or 3 months after implantation. Neither CVC phoneme scores nor electrode impedances differed between the groups. CONCLUSIONS This paper demonstrates that high-dose local steroid injection at surgery was not effective in preventing a loss of residual hearing, improving speech perception, or lowering electrode impedances. The findings were contrary to the experimental literature, and emerging clinical evidence that steroid elution from implant electrodes influences cochlear biology in humans. We found no evidence to support the widely-held practice of administering intravenous steroids in the perioperative period, in an attempt to preserve residual hearing.
Collapse
Affiliation(s)
- Stephen J O'Leary
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia; Cochlear Implant Clinic, Royal Victorian Eye and Ear Hospital, 32 Gisborne St, Melbourne East 3002, Australia.
| | - June Choi
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia; Department of Otorhinolaryngology - Head & Neck Surgery, Ansan Hospital, College of Medicine, Korea University, 123, Jeokgeum-ro (Street), Gojan-dong, Danwon-gu, Ansan-si, Gyeonggi-do 15355, Republic of Korea
| | - Karina Brady
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia
| | - Sheila Matthews
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia
| | - Katie Boncza Ozdowska
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia
| | - Matthew Payne
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia
| | - Tim McLean
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia
| | - Alex Rousset
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia
| | - Jonathon Lo
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia
| | - Nathan Creber
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia
| | - Sylvia Tari
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia
| | - Richard Dowell
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia; Department of Audiology and Speech Sciences, University of Melbourne, 550 Swanston St, Carlton 3053, Australia
| | - Robert Briggs
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia; Cochlear Implant Clinic, Royal Victorian Eye and Ear Hospital, 32 Gisborne St, Melbourne East 3002, Australia
| |
Collapse
|
19
|
O’Leary S, Briggs R, Gerard JM, Iseli C, Wei BP, Tari S, Rousset A, Bester C. Intraoperative Observational Real-time Electrocochleography as a Predictor of Hearing Loss After Cochlear Implantation: 3 and 12 Month Outcomes. Otol Neurotol 2020; 41:1222-1229. [PMID: 32925842 PMCID: PMC7497893 DOI: 10.1097/mao.0000000000002773] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE A decrease in intracochlear electrocochleographic (ECochG) amplitude during cochlear implantation has been associated with poorer postoperative hearing preservation in several short-term studies. Here, we relate the stability of ECochG during surgery to hearing preservation at 3- and 12-months. METHODS Patients with hearing ≤80-dB HL at 500 Hz were implanted with a slim-straight electrode array. ECochG responses to short, high-intensity, 500-Hz pure tones of alternating polarity were recorded continuously from the apical-most electrode during implantation. No feedback was provided to the surgeon. ECochG amplitude was derived from the difference response, and implantations classified by the presence ("ECochG drop") or absence ("no drop") of a ≥30% reduction in ECochG amplitude during insertion. Residual hearing (relative and absolute) was reported against the ECochG class. RESULTS ECochG was recorded from 109 patients. Of these, interpretable ECochG signals were recorded from 95. Sixty-six of 95 patients had an ECochG drop during implantation. Patients with an ECochG drop had poorer preoperative hearing above 1000 Hz. Hearing preservation (in decibels, relative to preoperative levels and functionally) was significantly poorer at 250-, 500-, and 1000-Hz at 3 months in patients exhibiting an ECochG drop. Twelve-month outcomes were available from 85 patients, with significantly poorer functional hearing, and greater relative and absolute hearing loss from 250 to 1000 Hz, when an ECochG drop had been encountered. CONCLUSION Patients exhibiting ECochG drops during implantation had significantly poorer hearing preservation 12 months later. These observational outcomes support the future development of surgical interventions responsive to real-time intracochlear ECochG. Early intervention to an ECochG drop could potentially lead to prolonged improvements in hearing preservation.
Collapse
Affiliation(s)
- Stephen O’Leary
- Department of Surgery—Otolaryngology, University of Melbourne
| | - Robert Briggs
- Cochlear Implant Clinic, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | | | - Claire Iseli
- Cochlear Implant Clinic, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Benjamin P.C. Wei
- Cochlear Implant Clinic, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Sylvia Tari
- Cochlear Implant Clinic, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Alex Rousset
- Cochlear Implant Clinic, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Christo Bester
- Department of Surgery—Otolaryngology, University of Melbourne
| |
Collapse
|
20
|
Kim JS. Electrocochleography in Cochlear Implant Users with Residual Acoustic Hearing: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7043. [PMID: 32993065 PMCID: PMC7579537 DOI: 10.3390/ijerph17197043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
(1) Objectives: This study reviews the use of electrocochleography (ECoG) as a tool for assessing the response of the peripheral auditory system and monitoring hearing preservation in the growing population of cochlear implant (CI) users with preserved hearing in the implanted ear. (2) Methods: A search was conducted in PubMed and CINAHL databases up to August 2020 to locate articles related to the ECoG measured during or after the cochlear implant (CI) surgery for monitoring purposes. Non-English articles, animal studies, literature reviews and editorials, case reports, and conference papers were excluded. The quality of studies was evaluated using the National Institute of Health (NIH) "Study Quality Assessment Tool for Case Series Studies". (3) Results: A total 30 articles were included for the systematic review. A total of 21 articles were intraoperative ECoG studies, while seven articles were postoperative studies. Two studies were conducted ECoG both during and after the surgery. Intraoperative ECoG studies focused on monitoring changes in ECoG response amplitudes during and/or after electrode insertion and predicting the scalar location of the electrode array. Postoperative ECoG studies focused on using the ECoG measurements to estimate behavioral audiometric thresholds and monitor pathophysiological changes related to delayed onset hearing loss postimplant. (4) Conclusions: ECoG is feasible to provide real-time feedback intraoperatively and has a potential clinical value to monitor the status of hearing preservation postoperatively in this CI population with residual acoustic hearing.
Collapse
Affiliation(s)
- Jeong-Seo Kim
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
21
|
Abstract
OBJECTIVES (1) To correlate simultaneously recorded intra- and extracochlear electrocochleography (ECochG) signals during electrode insertion into the cochlea, (2) to track changes in the ECochG signal during insertion and removal of an electrode, and (3) to correlate the findings with the preoperative residual hearing. We hypothesized that intracochlear ECochG recordings show signal changes not reflected in simultaneous extracochlear ECochG recordings. DESIGN During cochlear implantation in human cochlear implant recipients, a short, slim, custom-made electrode was inserted and removed in a stepwise manner. At each step, ECochG recordings were simultaneously recorded by an extracochlear electrode near the round window and via the inserted electrode. The acoustic stimulus was a 500 Hz tone burst at 110 to 130 dB SPL. RESULTS The mean amplitude difference between intra- and extracochlear ongoing ECochG responses was 14 dB (range 9 to 24 dB; n = 10) at the beginning of insertion. Intracochlear ECochG responses were larger in all cases. Extracochlear ECochG responses remained stable while intracochlear recordings showed large variations regarding amplitude and phase during the electrode array insertion. Intracochlear signal changes during insertion were reversible with retraction of the electrode. There were only weak to moderate (rs = 0.006 to 0.4), nonsignificant correlations of residual preoperative hearing with maximum amplitudes and amplitude changes during electrode insertion and removal in intracochlear recordings. CONCLUSIONS Signals in intracochlear ECochG recordings are reliably larger than ECochG signals recorded simultaneously from an extracochlear location. Intracochlear ECochG recordings show reversible amplitude and phase changes during insertion, not reflected in simultaneous extracochlear ECochG recordings. Such changes are most likely due to the movement of the recording electrode in relation to the signal generators. Residual high-frequency hearing is associated with larger ECochG signal amplitudes. Modeling of expected intracochlear ECochG changes during electrode insertions may allow detection of cochlear trauma in the future.
Collapse
|
22
|
Lorens A, Walkowiak A, Polak M, Kowalczuk A, Furmanek M, Skarzynski H, Obrycka A. Cochlear Microphonics in Hearing Preservation Cochlear Implantees. J Int Adv Otol 2020; 15:345-351. [PMID: 31846910 DOI: 10.5152/iao.2019.6334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES The intracochlear electrocochleography (ECoG) could be recorded directly from the cochlear implant (CI) electrode in CI recipients with residual hearing. The primary objective of this study is to identify the most sensitive frequency to record cochlear microphonics (CM) in CI users with a wide degree of hearing abilities and deep electrode insertion. The secondary objective is to identify the optimum location within the cochlea to record intracochlear potentials. MATERIALS AND METHODS CMs were recorded from the CI electrodes in eight females and eight males implanted with CIs Pulsar, Concerto, or Sonata, Med-El Corp. RESULTS Among the tone pips of various frequencies, 1k or 500 Hz were the most sensitive for CI users. The most sensitive place in the cochlea to record the CM potentials depended on the tone frequency used. The deeper into the cochlea the mean maximum CM peak-to-peak amplitude was measured, the lower the stimulating tone frequency was. CONCLUSION The most optimal recording parameters identified for intracochlear CM recording can be useful for intraoperative and postoperative monitoring of cochlear health in CI users with residual hearing.
Collapse
Affiliation(s)
- Artur Lorens
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Kajetany, Poland
| | - Adam Walkowiak
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Kajetany, Poland
| | | | - Aleksandra Kowalczuk
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Kajetany, Poland
| | - Mariusz Furmanek
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Kajetany, Poland
| | - Henryk Skarzynski
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Kajetany, Poland
| | - Anita Obrycka
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Kajetany, Poland
| |
Collapse
|
23
|
Intraoperative Intracochlear Electrocochleography and Residual Hearing Preservation Outcomes When Using Two Types of Slim Electrode Arrays in Cochlear Implantation. Otol Neurotol 2020; 40:S29-S37. [PMID: 31225820 DOI: 10.1097/mao.0000000000002212] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To report residual hearing preservation outcomes in patients with low frequency hearing, after cochlear implant (CI) electrode insertion with two types of electrode arrays: one straight and other perimodiolar, when using intraoperative intracochlear electrocochleography (ECochG) during (CI) electrode insertion. STUDY DESIGN Prospective, randomized study. SETTING Tertiary referral otology center. PATIENTS Fifteen patients ranging from 33 to 54 years old (mean 51.19). They had been diagnosed with a bilateral, profound sensorineural hearing loss and treated with a unilateral cochlear implant: eight of them with the CI532 and seven of them with the CI522 (Cochlear Ltd, Sydney, Australia). INTERVENTION Pure-tone audiometry was performed preoperatively and at 1 and 6 months postoperatively. Interoperatively, intracochlear ECochG was performed using the apical-most electrode. The amplitude of the first harmonic was plotted and monitored in real time by the audiologist-surgeon team during their CI electrode insertion. The different ECoch patterns of the insertion track were recorded and analyzed. RESULTS In 12 cases ECochG responses were successfully recorded. In three cases no ECochG responses could be recorded with no residual hearing observed postoperatively in two of them. With respect to the first harmonic amplitude changes, we found: four cases with an overall increase in amplitude measured from the beginning of insertion until completion, all of them showed residual hearing (<15 dB HL) at 6 months postoperation. Three cases with an increasing amplitude at the beginning of insertion, with a decrease in amplitude as insertion progressed to completion, in two cases dropping of residual hearing (15-30 dB HL) were observed after 6 months postoperation and, in one case, complete residual hearing was observed at 6 months postoperatively. And finally five cases presented amplitudes at the start of insertion with modifications of amplitude during the insertion dynamic, with increasing and descending in amplitude range during the whole insertion, two of them showed residual hearing at 6 months postoperation and three cases a drop of residual hearing (15-30 dB HL) was observed after 6 months postoperation. No statistical differences between CI532 and CI522 electrodes were found. Data of the ECochG responses are also presented (p value ≥ 0.05). CONCLUSION ECochG is a useful tool to evaluate the residual hearing in CI patients with straight and perimodiolar cochlear implant. More studies are needed to fully understand the relationship between ECochG and the presence of residual hearing, cochlear trauma, and functional outcomes.
Collapse
|
24
|
Ishiyama A, Risi F, Boyd P. Potential insertion complications with cochlear implant electrodes. Cochlear Implants Int 2020; 21:206-219. [PMID: 32079506 DOI: 10.1080/14670100.2020.1730066] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objectives: The aim of this discussion paper and literature review was to estimate the incidence of a variety of complications associated with the surgical placement of cochlear implant (CI) electrode arrays and to discuss the implications and management of sub-optimal electrode placement. Results: A review of the peer-reviewed literature suggests that the incidence of incomplete electrode insertion and kinking is more prevalent in straight arrays and not more than about 2% in CI recipients with normal cochlear anatomy/patency. Incidence of tip fold-over is greater with perimodiolar arrays but also occurs with straight arrays and is typically less than 5%. Conversely, electrode migration is more common with straight arrays, and high rates (up to 46%) have been reported in some studies. Scalar translocations have also been reported for both perimodiolar and straight arrays. Higher rates have been reported for stylet-based perimodiolar electrodes inserted via cochleostomy (up to 56%), but with much lower rates (<10%) with both sheath-based perimodiolar arrays and lateral wall arrays. Electrode positioning complications represent a significant proportion of perioperative CI complications and compromise the level of benefit from the device. Careful surgical planning and appropriate pre- and intraoperative imaging can reduce the likelihood and impact of electrode positioning complications. There is also evidence that newer array designs are less prone to certain complications, particularly scalar translocation. Conclusions: It is important that implanting surgeons are aware of the impact of sub-optimal electrode placement and the steps that can be taken to avoid, identify and manage such complications.
Collapse
Affiliation(s)
- Akira Ishiyama
- Rehabilitation Center, 1000 Veteran Ave., Los Angeles, CA, USA
| | - Frank Risi
- Clinical Affairs, Cochlear Ltd, Macquarie University, Sydney, Australia
| | - Paul Boyd
- Clinical Affairs, Cochlear Ltd, Macquarie University, Sydney, Australia
| |
Collapse
|
25
|
Four-point impedance as a biomarker for bleeding during cochlear implantation. Sci Rep 2020; 10:2777. [PMID: 32066743 PMCID: PMC7026160 DOI: 10.1038/s41598-019-56253-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022] Open
Abstract
Cochlear implantation has successfully restored the perception of hearing for nearly 200 thousand profoundly deaf adults and children. More recently, implant candidature has expanded to include those with considerable natural hearing which, when preserved, provides an improved hearing experience in noisy environments. But more than half of these patients lose this natural hearing soon after implantation. To reduce this burden, biosensing technologies are emerging that provide feedback on the quality of surgery. Here we report clinical findings on a new intra-operative measurement of electrical impedance (4-point impedance) which, when elevated, is associated with high rates of post-operative hearing loss and vestibular dysfunction. In vivo and in vitro data presented suggest that elevated 4-point impedance is likely due to the presence of blood within the cochlea rather than its geometry. Four-point impedance is a new marker for the detection of cochlear injury causing bleeding, that may be incorporated into intraoperative monitoring protocols during CI surgery.
Collapse
|
26
|
Impact of stimulus frequency and recording electrode on electrocochleography in Hybrid cochlear implant users. Hear Res 2019; 384:107815. [PMID: 31678892 DOI: 10.1016/j.heares.2019.107815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 11/21/2022]
Abstract
This report explores the impact of recording electrode position and stimulus frequency on intracochlear electrocochleography (ECoG) responses recorded from six Nucleus L24 Hybrid CI users. Acoustic tone bursts (250 Hz, 500 Hz, 750 Hz, and 1000 Hz) were presented to the implanted ear via an insert earphone. Recordings were obtained from intracochlear electrodes 6 (most basal), 8, 10, 12, 14, 16, 18, 20, and 22 (most apical). Responses to condensation and rarefaction stimuli were subtracted from one another to emphasize hair cell responses (CM/DIF) and added to one another to emphasize neural responses (ANN/SUM). For a fixed stimulus frequency, the CM/DIF and ANN/SUM magnitudes increased as the recording electrode moved apically. For a fixed recording electrode, as the stimulus frequency was lowered, response magnitudes increased. The CM/DIF and ANN/SUM response phase were generally stable across recording electrodes, although substantial phase shifts were noted for a few conditions. Given the recent interest in ECoG for assessing peripheral auditory function in CI users, the impact of stimulus frequency and recording electrode position on response magnitude should be considered. Results suggest optimal ECoG responses are obtained using the most apical recording electrode and a low frequency acoustic stimulus (250 Hz or 500 Hz).
Collapse
|
27
|
Response Changes During Insertion of a Cochlear Implant Using Extracochlear Electrocochleography. Ear Hear 2019; 39:1146-1156. [PMID: 29554036 DOI: 10.1097/aud.0000000000000571] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Electrocochleography is increasingly being utilized as an intraoperative monitor of cochlear function during cochlear implantation (CI). Intracochlear recordings from the advancing electrode can be obtained through the device by on-board capabilities. However, such recordings may not be ideal as a monitor because the recording electrode moves in relation to the neural and hair cell generators producing the responses. The purposes of this study were to compare two extracochlear recording locations in terms of signal strength and feasibility as intraoperative monitoring sites and to characterize changes in cochlear physiology during CI insertion. DESIGN In 83 human subjects, responses to 90 dB nHL tone bursts were recorded both at the round window (RW) and then at an extracochlear position-either adjacent to the stapes or on the promontory just superior to the RW. Recording from the fixed, extracochlear position continued during insertion of the CI in 63 cases. RESULTS Before CI insertion, responses to low-frequency tones at the RW were roughly 6 dB larger than when recording at either extracochlear site, but the two extracochlear sites did not differ from one another. During CI insertion, response losses from the promontory or adjacent to the stapes stayed within 5 dB in ≈61% (38/63) of cases, presumably indicating atraumatic insertions. Among responses which dropped more than 5 dB at any time during CI insertion, 12 subjects showed no response recovery, while in 13, the drop was followed by partial or complete response recovery by the end of CI insertion. In cases with recovery, the drop in response occurred relatively early (<15 mm insertion) compared to those where there was no recovery. Changes in response phase during the insertion occurred in some cases; these may indicate a change in the distributions of generators contributing to the response. CONCLUSIONS Monitoring the electrocochleography during CI insertion from an extracochlear site reveals insertions that are potentially atraumatic, show interaction with cochlear structures followed by response recovery, or show interactions such that response losses persist to the end of recording.
Collapse
|
28
|
Shepherd RK, Carter PM, Enke YL, Wise AK, Fallon JB. Chronic intracochlear electrical stimulation at high charge densities results in platinum dissolution but not neural loss or functional changes in vivo. J Neural Eng 2019; 16:026009. [PMID: 30523828 PMCID: PMC8687872 DOI: 10.1088/1741-2552/aaf66b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Although there are useful guidelines defining the boundary between damaging and non-damaging electrical stimulation they were derived from acute studies using large surface area electrodes in direct contact with cortical neurons. These parameters are a small subset of the parameters used by neural stimulators. More recently, histological examination of cochleae from patients that were long-term cochlear implant users have shown evidence of particulate platinum (Pt). The pathophysiological effect of Pt within the cochlea is unknown. We examined the response of the cochlea to stimulus levels beyond those regarded as safe, and to evaluate the pathophysiological response of the cochlea following chronic stimulation at charge densities designed to induce Pt corrosion in vivo. APPROACH 19 guinea pigs were systemically deafened and implanted with a cochlear electrode array containing eight Pt electrodes of 0.05, 0.075 or 0.2 mm2 area. Animals were electrically stimulated continuously for 28 d using charge balanced current pulses at charge densities of 400, 267 or 100 µC/cm2/phase. Electrically-evoked auditory brainstem responses (EABRs) were recorded to monitor neural function. On completion of stimulation electrodes were examined using scanning electron microscopy (SEM) and cochleae examined histology. Finally, analysis of Pt was measured using energy dispersive x-ray spectroscopy (EDS) and inductively coupled plasma mass spectrometry (ICP-MS). MAIN RESULTS Compared with unstimulated control electrodes and electrodes stimulated at 100 µC/cm2/phase, stimulation at 267 or 400 µC/cm2/phase resulted in significant Pt corrosion. Cochleae stimulated at these high charge densities contained particulate Pt. The extent of the foreign body response depended on the level of stimulation; cochleae stimulated at 267 or 400 µC/cm2/phase exhibited an extensive tissue response that included a focal region of necrosis close to the electrode. Despite chronic stimulation at high charge densities there was no loss of auditory neurons (ANs) in stimulated cochleae compared with their contralateral controls. Indeed, we report a statistically significant increase in AN density proximal to electrodes stimulated at 267 or 400 µC/cm2/phase. Finally, there was no evidence of a reduction in AN function associated with chronic stimulation at 100, 267 or 400 µC/cm2/phase as evidenced by stable EABR thresholds over the stimulation program. SIGNIFICANCE Chronic electrical stimulation of Pt electrodes at 267 or 400 µC/cm2/phase evoked a vigorous tissue response and produced Pt corrosion products that were located close to the electrode. Despite these changes at the electrode/tissue interface there was no evidence of neural loss or a reduction in neural function.
Collapse
Affiliation(s)
- Robert K Shepherd
- Bionics Institute, St Vincent's Hospital, Melbourne, Australia. Medical Bionics Department, The University of Melbourne, Melbourne, Australia
| | | | | | | | | |
Collapse
|
29
|
Patterns Seen During Electrode Insertion Using Intracochlear Electrocochleography Obtained Directly Through a Cochlear Implant. Otol Neurotol 2018; 38:1415-1420. [PMID: 28953607 DOI: 10.1097/mao.0000000000001559] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS Intraoperative, intracochlear electrocochleography (ECochG) will provide a means to monitor cochlear hair cell and neural response during cochlear implant (CI) electrode insertion. Distinct patterns in the insertion track can be characterized. BACKGROUND Conventional CI surgery is performed without a means of actively monitoring cochlear hair cell and neural responses. Intracochlear ECochG obtained directly through the CI may be a source of such feedback. Understanding the patterns observed in the "insertion track" is an essential step toward refining intracochlear ECochG as a tool that can be used to assist in intraoperative decision making and prognostication of hearing preservation. METHODS Intracochlear ECochG was performed in 17 patients. During electrode insertion, a 50-ms tone burst acoustic stimulus was delivered with a frequency of 500 Hz at 110 dB SPL. The ECochG response was monitored from the apical-most electrode. The amplitude of the first harmonic was plotted and monitored in near real time by the audiologist-surgeon team during CI electrode insertion. RESULTS Three distinct patterns in first harmonic amplitude change were observed across subjects during insertion: Type A (52%), overall increase in amplitude from the beginning of insertion until completion; Type B (11%), a maximum amplitude at the beginning of insertion, with a decrease in amplitude as insertion progressed to completion; and Type C (35%), comparable amplitudes at the beginning and completion of the insertion with the maximum amplitude mid-insertion. CONCLUSION Three ECochG patterns were observed during electrode advancement into the cochlea. Ongoing and future work will broaden our scope of knowledge regarding the relationship among these patterns, the presence of cochlear trauma, and functional outcomes related to hearing preservation.
Collapse
|
30
|
Lo J, Bester C, Collins A, Newbold C, Hampson A, Chambers S, Eastwood H, O'Leary S. Intraoperative force and electrocochleography measurements in an animal model of cochlear implantation. Hear Res 2018; 358:50-58. [DOI: 10.1016/j.heares.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/07/2017] [Accepted: 11/06/2017] [Indexed: 12/15/2022]
|
31
|
Fontenot TE, Giardina CK, Fitzpatrick DC. A Model-Based Approach for Separating the Cochlear Microphonic from the Auditory Nerve Neurophonic in the Ongoing Response Using Electrocochleography. Front Neurosci 2017; 11:592. [PMID: 29123468 PMCID: PMC5662900 DOI: 10.3389/fnins.2017.00592] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 10/09/2017] [Indexed: 12/02/2022] Open
Abstract
Electrocochleography (ECochG) is a potential clinically valuable technique for predicting speech perception outcomes in cochlear implant (CI) recipients, among other uses. Current analysis is limited by an inability to quantify hair cell and neural contributions which are mixed in the ongoing part of the response to low frequency tones. Here, we used a model based on source properties to account for recorded waveform shapes and to separate the combined signal into its components. The model for the cochlear microphonic (CM) was a sinusoid with parameters for independent saturation of the peaks and the troughs of the responses. The model for the auditory nerve neurophonic (ANN) was the convolution of a unit potential and population cycle histogram with a parameter for spread of excitation. Phases of the ANN and CM were additional parameters. The average cycle from the ongoing response was the input, and adaptive fitting identified CM and ANN parameters that best reproduced the waveform shape. Test datasets were responses recorded from the round windows of CI recipients, from the round window of gerbils before and after application of neurotoxins, and with simulated signals where each parameter could be manipulated in isolation. Waveforms recorded from 284 CI recipients had a variety of morphologies that the model fit with an average r2 of 0.97 ± 0.058 (standard deviation). With simulated signals, small systematic differences between outputs and inputs were seen with some variable combinations, but in general there were limited interactions among the parameters. In gerbils, the CM reported was relatively unaffected by the neurotoxins. In contrast, the ANN was strongly reduced and the reduction was limited to frequencies of 1,000 Hz and lower, consistent with the range of strong neural phase-locking. Across human CI subjects, the ANN contribution was variable, ranging from nearly none to larger than the CM. Development of this model could provide a means to isolate hair cell and neural activity that are mixed in the ongoing response to low-frequency tones. This tool can help characterize the residual physiology across CI subjects, and can be useful in other clinical settings where a description of the cochlear physiology is desirable.
Collapse
Affiliation(s)
- Tatyana E Fontenot
- Otolaryngology-Head and Neck Surgery, University of North Carolina, Chapel Hill, NC, United States
| | | | - Douglas C Fitzpatrick
- Otolaryngology-Head and Neck Surgery, University of North Carolina, Chapel Hill, NC, United States.,School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|