1
|
Fixed-time and continuous assays of very-low-density lipoprotein secretion rate from rat liver: mean vs. instantaneous velocity. Clin Exp Hepatol 2021; 7:165-171. [PMID: 34295983 PMCID: PMC8284163 DOI: 10.5114/ceh.2021.106527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/09/2021] [Indexed: 11/17/2022] Open
Abstract
Aim of the study The secretion rate of triglyceride from rat liver is assayed by the measurement of triglyceride accumulation in plasma when its clearance is inhibited. The aim of the study was to measure and compare the secretion rate of triglyceride from rat liver by two methods of fixed-time and continuous assays. Material and methods A single dose of 200 mg of poloxamer-407 (P-407) was injected i.p. into starved male rats. The secretion rate of triglyceride was measured by fixed-time and continuous assays. Results The time course for the changes of serum triglyceride following injection of P-407 showed three distinct phases: a lag period of about 30 minutes, a linear increase in serum triglyceride that lasted more than 4 hours, and a slight decline of triglyceride accumulation that lasted about 24 hours. The mean rate of triglyceride secretion was 234.1 ±9.6 mg/dl/h during the linear phase. The linear phase was divided into five time protocols of 240, 180, 120, 60, and 30 minutes and the secretion rate was measured at three points of time in each protocol. The mean rate of triglyceride secretion was 3.91 ±0.15, 3.83 ±0.16, 3.76 ±0.29, 3.57 ±0.43 and 3.13 ±0.34 mg/dl/min in these protocols respectively. In the kinetic assay, the change in the absorbance per three successive five minutes (ΔA/Δt) was measured and the secretion rate was calculated as 3.82 ±0.11 mg/dl/min. Conclusions The rate of triglyceride secretion can be measured by both fixed-time and kinetic assays and was about 3.82 ±0.11 mg/dl/min. The results of the two methods are more corresponded as the mean and instantaneous velocity respectively.
Collapse
|
2
|
Nuzzaci D, Cansell C, Liénard F, Nédélec E, Ben Fradj S, Castel J, Foppen E, Denis R, Grouselle D, Laderrière A, Lemoine A, Mathou A, Tolle V, Heurtaux T, Fioramonti X, Audinat E, Pénicaud L, Nahon JL, Rovère C, Benani A. Postprandial Hyperglycemia Stimulates Neuroglial Plasticity in Hypothalamic POMC Neurons after a Balanced Meal. Cell Rep 2021; 30:3067-3078.e5. [PMID: 32130907 DOI: 10.1016/j.celrep.2020.02.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 12/17/2019] [Accepted: 02/06/2020] [Indexed: 12/31/2022] Open
Abstract
Mechanistic studies in rodents evidenced synaptic remodeling in neuronal circuits that control food intake. However, the physiological relevance of this process is not well defined. Here, we show that the firing activity of anorexigenic POMC neurons located in the hypothalamus is increased after a standard meal. Postprandial hyperactivity of POMC neurons relies on synaptic plasticity that engages pre-synaptic mechanisms, which does not involve structural remodeling of synapses but retraction of glial coverage. These functional and morphological neuroglial changes are triggered by postprandial hyperglycemia. Chemogenetically induced glial retraction on POMC neurons is sufficient to increase POMC activity and modify meal patterns. These findings indicate that synaptic plasticity within the melanocortin system happens at the timescale of meals and likely contributes to short-term control of food intake. Interestingly, these effects are lost with a high-fat meal, suggesting that neuroglial plasticity of POMC neurons is involved in the satietogenic properties of foods.
Collapse
Affiliation(s)
- Danaé Nuzzaci
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Céline Cansell
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Fabienne Liénard
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Emmanuelle Nédélec
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Selma Ben Fradj
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Julien Castel
- Unité "Biologie Fonctionnelle & Adaptative," CNRS, Université Paris Diderot, 75005 Paris, France
| | - Ewout Foppen
- Unité "Biologie Fonctionnelle & Adaptative," CNRS, Université Paris Diderot, 75005 Paris, France
| | - Raphael Denis
- Unité "Biologie Fonctionnelle & Adaptative," CNRS, Université Paris Diderot, 75005 Paris, France
| | - Dominique Grouselle
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014 Paris, France
| | - Amélie Laderrière
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Aleth Lemoine
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Alexia Mathou
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Virginie Tolle
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014 Paris, France
| | - Tony Heurtaux
- Luxembourg Center of Neuropathology, Department of Life Sciences and Medicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Xavier Fioramonti
- Laboratoire NutriNeuro, INRA, Université de Bordeaux, 33076 Bordeaux, France
| | - Etienne Audinat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Luc Pénicaud
- StromaLab, CNRS, EFS, INP-ENVT, INSERM, Université Paul Sabatier, 31100 Toulouse, France
| | - Jean-Louis Nahon
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Carole Rovère
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France.
| |
Collapse
|
3
|
Anastasia I, Ilacqua N, Raimondi A, Lemieux P, Ghandehari-Alavijeh R, Faure G, Mekhedov SL, Williams KJ, Caicci F, Valle G, Giacomello M, Quiroga AD, Lehner R, Miksis MJ, Toth K, de Aguiar Vallim TQ, Koonin EV, Scorrano L, Pellegrini L. Mitochondria-rough-ER contacts in the liver regulate systemic lipid homeostasis. Cell Rep 2021; 34:108873. [PMID: 33730569 DOI: 10.1016/j.celrep.2021.108873] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Contacts between organelles create microdomains that play major roles in regulating key intracellular activities and signaling pathways, but whether they also regulate systemic functions remains unknown. Here, we report the ultrastructural organization and dynamics of the inter-organellar contact established by sheets of curved rough endoplasmic reticulum closely wrapped around the mitochondria (wrappER). To elucidate the in vivo function of this contact, mouse liver fractions enriched in wrappER-associated mitochondria are analyzed by transcriptomics, proteomics, and lipidomics. The biochemical signature of the wrappER points to a role in the biogenesis of very-low-density lipoproteins (VLDL). Altering wrappER-mitochondria contacts curtails VLDL secretion and increases hepatic fatty acids, lipid droplets, and neutral lipid content. Conversely, acute liver-specific ablation of Mttp, the most upstream regulator of VLDL biogenesis, recapitulates this hepatic dyslipidemia phenotype and promotes remodeling of the wrappER-mitochondria contact. The discovery that liver wrappER-mitochondria contacts participate in VLDL biology suggests an involvement of inter-organelle contacts in systemic lipid homeostasis.
Collapse
Affiliation(s)
- Irene Anastasia
- Graduate Program in Neuroscience, Faculty of Medicine, Laval University, Quebec, QC, Canada; Mitochondria Biology Laboratory, Brain Research Center, Quebec, QC, Canada
| | - Nicolò Ilacqua
- Graduate Program in Neuroscience, Faculty of Medicine, Laval University, Quebec, QC, Canada; Mitochondria Biology Laboratory, Brain Research Center, Quebec, QC, Canada
| | - Andrea Raimondi
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Philippe Lemieux
- Mitochondria Biology Laboratory, Brain Research Center, Quebec, QC, Canada
| | | | - Guilhem Faure
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; National Center for Biotechnology Information, NLM, NIH, Bethesda, MD, USA
| | - Sergei L Mekhedov
- National Center for Biotechnology Information, NLM, NIH, Bethesda, MD, USA
| | - Kevin J Williams
- Department of Biological Chemistry, Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | | - Giorgio Valle
- Department of Biology, University of Padua, Padua, Italy
| | | | - Ariel D Quiroga
- Instituto de Fisiología Experimental, CONICET, UNR, Rosario, Argentina; Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Richard Lehner
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Michael J Miksis
- Department of Engineering Science and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Katalin Toth
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Thomas Q de Aguiar Vallim
- Department of Biological Chemistry, Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, NLM, NIH, Bethesda, MD, USA
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
| | - Luca Pellegrini
- Mitochondria Biology Laboratory, Brain Research Center, Quebec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, QC, Canada.
| |
Collapse
|
4
|
Brenachot X, Nédélec E, Ben Fradj S, Boudry G, Douard V, Laderrière A, Lemoine A, Liénard F, Nuzzaci D, Pénicaud L, Rigault C, Benani A. Lack of Hypothalamus Polysialylation Inducibility Correlates With Maladaptive Eating Behaviors and Predisposition to Obesity. Front Nutr 2019; 5:125. [PMID: 30619871 PMCID: PMC6295648 DOI: 10.3389/fnut.2018.00125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
High variability exists in individual susceptibility to develop overweight in an obesogenic environment and the biological underpinnings of this heterogeneity are poorly understood. In this brief report, we show in mice that the vulnerability to diet-induced obesity is associated with low level of polysialic acid-neural cell adhesion molecule (PSA-NCAM), a factor of neural plasticity, in the hypothalamus. As we previously shown that reduction of hypothalamic PSA-NCAM is sufficient to alter energy homeostasis and promote fat storage under hypercaloric pressure, inter-individual variability in hypothalamic PSA-NCAM might account for the vulnerability to diet-induced obesity. These data support the concept that reduced plasticity in brain circuits that control appetite, metabolism and body weight confers risk for eating disorders and obesity.
Collapse
Affiliation(s)
- Xavier Brenachot
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Dijon, France
| | - Emmanuelle Nédélec
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Dijon, France
| | - Selma Ben Fradj
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Dijon, France
| | - Gaelle Boudry
- Institut NuMeCan, INRA, INSERM, Université Rennes, Domaine de la Prise, Saint-Gilles, France
| | - Véronique Douard
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, Jouy-en-Josas, France
| | - Amélie Laderrière
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Dijon, France
| | - Aleth Lemoine
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Dijon, France
| | - Fabienne Liénard
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Dijon, France
| | - Danaé Nuzzaci
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Dijon, France
| | - Luc Pénicaud
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Dijon, France
| | - Caroline Rigault
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Dijon, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Dijon, France
| |
Collapse
|
5
|
Bhide GP, Zapater JL, Colley KJ. Autopolysialylation of polysialyltransferases is required for polysialylation and polysialic acid chain elongation on select glycoprotein substrates. J Biol Chem 2017; 293:701-716. [PMID: 29183999 DOI: 10.1074/jbc.ra117.000401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/21/2017] [Indexed: 11/06/2022] Open
Abstract
Polysialic acid (polySia) is a large glycan polymer that is added to some glycoproteins by two polysialyltransferases (polySTs), ST8Sia-II and ST8Sia-IV. As polySia modulates cell adhesion and signaling, immune cell function, and tumor metastasis, it is of interest to determine how the polySTs recognize their select substrates. We have recently identified residues within the ST8Sia-IV polybasic region (PBR) that are required for neural cell adhesion molecule (NCAM) recognition and subsequent polysialylation. Here, we compared the PBR sequence requirements for NCAM, neuropilin-2 (NRP-2), and synaptic cell adhesion molecule 1 (SynCAM 1) for polysialylation by their respective polySTs. We found that the polySTs use unique but overlapping sets of PBR residues for substrate recognition, that the NCAM-recognizing PBR sites in ST8Sia-II and ST8Sia-IV include homologous residues, but that the ST8Sia-II site is larger, and that fewer PBR residues are involved in NRP-2 and SynCAM 1 recognition than in NCAM recognition. Noting that the two sites for ST8Sia-IV autopolysialylation flank the PBR, we evaluated the role of PBR residues in autopolysialylation and found that the requirements for polyST autopolysialylation and substrate polysialylation overlap. These data together with the evaluation of the polyST autopolysialylation mechanism enabled us to further identify PBR residues potentially playing dual roles in substrate recognition and in polySia chain polymerization. Finally, we found that ST8Sia-IV autopolysialylation is required for NRP-2 polysialylation and that ST8Sia-II autopolysialylation promotes the polymerization of longer polySia chains on SynCAM 1, suggesting a critical role for polyST autopolysialylation in substrate selection and polySia chain elongation.
Collapse
Affiliation(s)
- Gaurang P Bhide
- From the Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Joseph L Zapater
- From the Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Karen J Colley
- From the Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|