1
|
Winberg S, Sneddon L. Impact of intraspecific variation in teleost fishes: aggression, dominance status and stress physiology. J Exp Biol 2022; 225:278485. [DOI: 10.1242/jeb.169250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ABSTRACT
Dominance-based social hierarchies are common among teleost fishes. The rank of an animal greatly affects its behaviour, physiology and development. The outcome of fights for social dominance is affected by heritable factors and previous social experience. Divergent stress-coping styles have been demonstrated in a large number of teleosts, and fish displaying a proactive coping style have an advantage in fights for social dominance. Coping style has heritable components, but it appears to be largely determined by environmental factors, especially social experience. Agonistic behaviour is controlled by the brain's social decision-making network, and its monoaminergic systems play important roles in modifying the activity of this neuronal network. In this Review, we discuss the development of dominance hierarchies, how social rank is signalled through visual and chemical cues, and the neurobiological mechanisms controlling or correlating with agonistic behaviour. We also consider the effects of social interactions on the welfare of fish reared in captivity.
Collapse
Affiliation(s)
- Svante Winberg
- Uppsala University 1 Behavioural Neuroendocrinology, Department of Medical Cell Biology , , 751 23 Uppsala , Sweden
| | - Lynne Sneddon
- University of Gothenburg 2 Department of Biological and Environmental Sciences , , PO Box: 463, 405 31 Gothenburg , Sweden
| |
Collapse
|
2
|
Hoyo-Alvarez E, Arechavala-Lopez P, Jiménez-García M, Solomando A, Alomar C, Sureda A, Moranta D, Deudero S. Effects of pollutants and microplastics ingestion on oxidative stress and monoaminergic activity of seabream brains. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106048. [PMID: 34875488 DOI: 10.1016/j.aquatox.2021.106048] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, microplastics (MPs) and adsorbed pollutants are considered a global thread to marine ecosystems. This study describes the effects of pollutants and MPs ingestion on fish brains through the assessment of oxidative stress biomarkers and monoaminergic neurotransmitters using gilthead seabream (Sparus aurata) as fish model. Juveniles were experimentally exposed to three different dietary treatments for 90 days: Control treatment (C) consisted of standard feed; Virgin treatment (V) contained feed enriched with 10% of MPs; and Exposed treatment (E) consisted of feed with 10% of MPs that were exposed to seawater in an anthropogenically impacted area for 2 months in order to enrich the plastic with the pollutants within the water column. Sampling was made at the start of the experiment (T0), at the end of the dietary treatments (T90) and after a posterior detoxification period of 30 days (T120). Results evidenced that a MPs and pollutants enriched diet increases the activity of some of the oxidative stress biomarkers (e.g. CAT and GST), and it was shown for the first time alterations on dopaminergic and serotonergic system activity on seabream brains, indicating potential neurofunctional effects associated to MPs and pollutants ingestion. In addition, results showed a tendency to recover enzymatic and brain monoaminergic neurotransmitter levels after a 30-day detoxification period. In conclusion, MPs and pollutants exposure for 90 days induced oxidative stress and changes on monoaminergic activity in the brain of S. aurata.
Collapse
Affiliation(s)
| | - Pablo Arechavala-Lopez
- Fish Ethology and Welfare Group, Centro de Ciencias do Mar (CCMAR), Faro, Portugal.; Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados (IMEDEA-CSIC/UIB), Mallorca, Spain
| | - Manuel Jiménez-García
- Group of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Palma de Mallorca, Spain
| | - Antònia Solomando
- Research Group in Community Nutrition and Oxidative Stress, and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands (UIB)-IUNICS, Palma de Mallorca, Spain. CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Carlos III Health Institute, Madrid, Spain
| | - Carmen Alomar
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares (COB-IEO), Mallorca, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands (UIB)-IUNICS, Palma de Mallorca, Spain. CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Carlos III Health Institute, Madrid, Spain
| | - David Moranta
- Group of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Palma de Mallorca, Spain
| | - Salud Deudero
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares (COB-IEO), Mallorca, Spain
| |
Collapse
|
3
|
Rey S, Jin X, Damsgård B, Bégout ML, Mackenzie S. Analysis across diverse fish species highlights no conserved transcriptome signature for proactive behaviour. BMC Genomics 2021; 22:33. [PMID: 33413108 PMCID: PMC7792025 DOI: 10.1186/s12864-020-07317-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background Consistent individual differences in behaviour, known as animal personalities, have been demonstrated within and across species. In fish, studies applying an animal personality approach have been used to resolve variation in physiological and molecular data suggesting a linkage, genotype-phenotype, between behaviour and transcriptome regulation. In this study, using three fish species (zebrafish; Danio rerio, Atlantic salmon; Salmo salar and European sea bass; Dicentrarchus labrax), we firstly address whether personality-specific mRNA transcript abundances are transferrable across distantly-related fish species and secondly whether a proactive transcriptome signature is conserved across all three species. Results Previous zebrafish transcriptome data was used as a foundation to produce a curated list of mRNA transcripts related to animal personality across all three species. mRNA transcript copy numbers for selected gene targets show that differential mRNA transcript abundance in the brain appears to be partially conserved across species relative to personality type. Secondly, we performed RNA-Seq using whole brains from S. salar and D. labrax scoring positively for both behavioural and molecular assays for proactive behaviour. We further enriched this dataset by incorporating a zebrafish brain transcriptome dataset specific to the proactive phenotype. Our results indicate that cross-species molecular signatures related to proactive behaviour are functionally conserved where shared functional pathways suggest that evolutionary convergence may be more important than individual mRNAs. Conclusions Our data supports the proposition that highly polygenic clusters of genes, with small additive effects, likely support the underpinning molecular variation related to the animal personalities in the fish used in this study. The polygenic nature of the proactive brain transcriptome across all three species questions the existence of specific molecular signatures for proactive behaviour, at least at the granularity of specific regulatory gene modules, level of genes, gene networks and molecular functions. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07317-z.
Collapse
Affiliation(s)
- Sonia Rey
- Institute of Aquaculture, University of Stirling, Stirlingshire, FK9 4LA, UK
| | - Xingkun Jin
- Institute of Aquaculture, University of Stirling, Stirlingshire, FK9 4LA, UK.,Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, NO-0316, Oslo, Norway.,Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Børge Damsgård
- Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | | | - Simon Mackenzie
- Institute of Aquaculture, University of Stirling, Stirlingshire, FK9 4LA, UK.
| |
Collapse
|
4
|
Armstrong EA, Voelkl B, Voegeli S, Gebhardt-Henrich SG, Guy JH, Sandilands V, Boswell T, Toscano MJ, Smulders TV. Cell Proliferation in the Adult Chicken Hippocampus Correlates With Individual Differences in Time Spent in Outdoor Areas and Tonic Immobility. Front Vet Sci 2020; 7:587. [PMID: 33005647 PMCID: PMC7479223 DOI: 10.3389/fvets.2020.00587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022] Open
Abstract
Access to outdoor areas is provided as a means of enhancing welfare in commercial systems for laying hens (Gallus gallus domesticus), but substantial individual differences exist in their proportional use. Baseline cell proliferation levels of Adult Hippocampal Neurogenesis (AHN) have been associated with individual differences in reactive vs. proactive coping style, and in both mammals and birds, AHN is upregulated by positive experiences including environmental enrichment and exercise. We thus sought to explore whether individual differences in use of outdoor areas and in tonic immobility responses (indicative of fearfulness) were associated with hippocampal cell proliferation and neuronal differentiation. Radio frequency identification technology was used to track the ranging behavior of 440 individual focal hens within a commercially-relevant system over a 72-days period, after which tonic immobility durations were measured. Following hippocampal tissue collection from 58 focal hens, proliferation and neuronal differentiation were measured through quantitative PCR for proliferating cell nuclear antigen (PCNA) and doublecortin mRNA, respectively. Individual differences in tonic immobility duration positively correlated with PCNA expression over the whole hippocampal formation, while greater time spent in outdoor areas (the grassy range and stone yard) was associated with higher proliferation in the rostral subregion. Basal proliferation in the chicken hippocampal formation may thus relate to reactivity, while levels in the rostral region may be stimulated by ranging experience. Doublecortin expression in the caudal hippocampus negatively co-varied with time on the grassy range, but was not associated with tonic immobility duration. This suggests that ranging outside may be associated with stress. Within laying hen flocks, individual differences in hippocampal plasticity thus relate to coping style and use of external areas.
Collapse
Affiliation(s)
- Elena A Armstrong
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, United Kingdom.,Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bernhard Voelkl
- Centre for Proper Housing: Poultry and Rabbits (ZTHZ), University of Bern, Bern, Switzerland
| | - Sabine Voegeli
- Centre for Proper Housing: Poultry and Rabbits (ZTHZ), University of Bern, Bern, Switzerland
| | | | - Jonathan H Guy
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, United Kingdom.,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Victoria Sandilands
- Department of Agriculture, Horticulture, and Engineering Science, SRUC, Edinburgh, United Kingdom
| | - Tim Boswell
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, United Kingdom.,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael J Toscano
- Centre for Proper Housing: Poultry and Rabbits (ZTHZ), University of Bern, Bern, Switzerland
| | - Tom V Smulders
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, United Kingdom.,Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
5
|
Kolakshyapati M, Taylor PS, Hamlin A, Sibanda TZ, Vilela JDS, Ruhnke I. Frequent Visits to an Outdoor Range and Lower Areas of an Aviary System Is Related to Curiosity in Commercial Free-Range Laying Hens. Animals (Basel) 2020; 10:E1706. [PMID: 32967104 PMCID: PMC7552704 DOI: 10.3390/ani10091706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 11/20/2022] Open
Abstract
Individual hen preferences to spend time at particular locations within a free-range aviary system and relationships with temperament is relatively unknown. Hens (n = 769) from three commercial flocks were monitored with Radio Frequency Identification technology to determine time spent on the range, upper and lower aviary tiers, and nest boxes. Prior depopulation, novel arena (NA) and novel object (NO) tests assessed exploration and fearfulness. During early life; more time on the lower tier was associated with more lines crossed in the NA test (p < 0.05). No other evidence suggested preference during early life was related to fear or curiosity. More time on the range and lower tier were associated with heavier pre-ranging body weight and gain (p = 0.0001). Over the hens' whole life; time spent on range and lower tier was associated with approaching the NO (p < 0.01). More time spent on the upper tier was associated with less time near the NO and fewer lines crossed in NA (p < 0.01). The relationships during early and whole life use of space and some potential indicators of fearfulness were inconsistent and therefore, no strong, valid, and reliable indicators of hen fearfulness such as freezing were identified.
Collapse
Affiliation(s)
- Manisha Kolakshyapati
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia; (P.S.T.); (T.Z.S.); (J.d.S.V.); (I.R.)
| | - Peta Simone Taylor
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia; (P.S.T.); (T.Z.S.); (J.d.S.V.); (I.R.)
| | - Adam Hamlin
- School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia;
| | - Terence Zimazile Sibanda
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia; (P.S.T.); (T.Z.S.); (J.d.S.V.); (I.R.)
| | - Jessica de Souza Vilela
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia; (P.S.T.); (T.Z.S.); (J.d.S.V.); (I.R.)
| | - Isabelle Ruhnke
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia; (P.S.T.); (T.Z.S.); (J.d.S.V.); (I.R.)
| |
Collapse
|
6
|
Gesto M, Zupa W, Alfonso S, Spedicato MT, Lembo G, Carbonara P. Using acoustic telemetry to assess behavioral responses to acute hypoxia and ammonia exposure in farmed rainbow trout of different competitive ability. Appl Anim Behav Sci 2020. [DOI: 10.1016/j.applanim.2020.105084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Arechavala-Lopez P, Caballero-Froilán JC, Jiménez-García M, Capó X, Tejada S, Saraiva JL, Sureda A, Moranta D. Enriched environments enhance cognition, exploratory behaviour and brain physiological functions of Sparus aurata. Sci Rep 2020; 10:11252. [PMID: 32647185 PMCID: PMC7347547 DOI: 10.1038/s41598-020-68306-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Environmental enrichment is considered as a recommended tool to guarantee or improve the welfare of captive fish. This study demonstrates for the first time that structural environmental enrichment enhances cognition, exploratory behaviour and brain physiological functions of gilthead seabream (Sparus aurata). Seabream was reared in groups (n = 15) during 60 days under two different treatments: enriched tanks with plant-fibre ropes (EE) or bare/non-enriched tanks (NE). Fish were then exposed to a purpose-built maze for 1 h every second day in four trials. Analysis of video recordings showed that seabream under EE conditions presented higher overall exploratory behaviour, spatial orientation and learning capability compared to seabream from NE conditions. Results from brain monoamines analyses may suggest increased recent dopaminergic activity in telencephalon, known to be involved in learning processes; and increased serotonergic activity in cerebellum, involved in the coordination of balance, movements and orientation. In addition, EE-reared fish showed increased antioxidant activity in whole brain, with no apparent oxidative damage. Structural EE seemed to induce an hormetic response on juvenile seabream, improving their welfare status during captivity. Application of this kind of physical structure might be feasible at fish farms as a passive and non-invasive tool to improve welfare of intensively cultured seabream.
Collapse
Affiliation(s)
- P Arechavala-Lopez
- Fish Ethology and Welfare Group, CCMAR, Faro, Portugal.
- Fish Ecology Group, IMEDEA (CSIC/UIB), Esporles, Spain.
| | - J C Caballero-Froilán
- Laboratory of Neurophisiology, Universitat de les Illes Balears (UIB), Palma de Mallorca, Spain
| | - M Jiménez-García
- Laboratory of Neurophisiology, Universitat de les Illes Balears (UIB), Palma de Mallorca, Spain
| | - X Capó
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands and Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Palma de Mallorca, Spain
| | - S Tejada
- Laboratory of Neurophisiology, Universitat de les Illes Balears (UIB), Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Palma de Mallorca, Spain
| | - J L Saraiva
- Fish Ethology and Welfare Group, CCMAR, Faro, Portugal
| | - A Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands and Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Palma de Mallorca, Spain
| | - D Moranta
- Laboratory of Neurophisiology, Universitat de les Illes Balears (UIB), Palma de Mallorca, Spain
| |
Collapse
|
8
|
Yi JH, Jeon J, Kwon H, Cho E, Yun J, Lee YC, Ryu JH, Park SJ, Cho JH, Kim DH. Rubrofusarin Attenuates Chronic Restraint Stress-Induced Depressive Symptoms. Int J Mol Sci 2020; 21:E3454. [PMID: 32414166 PMCID: PMC7278964 DOI: 10.3390/ijms21103454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to examine whether rubrofusarin, an active ingredient of the Cassia species, has an antidepressive effect in chronic restraint stress (CRS) mouse model. Although acute treatment using rubrofusarin failed, chronic treatment using rubrofusarin ameliorated CRS-induced depressive symptoms. Rubrofusarin treatment significantly reduced the number of Fluoro-Jade B-positive cells and caspase-3 activation within the hippocampus of CRS-treated mice. Moreover, rubrofusarin treatment significantly increased the number of newborn neurons in the hippocampus of CRS-treated mice. CRS induced activation of glycogen synthase kinase-3β and regulated development and DNA damage responses, and reductions in the extracellular-signal-regulated kinase pathway activity were also reversed by rubrofusarin treatment. Microglial activation and inflammasome markers, including nod-like receptor family pyrin domain containing 3 and adaptor protein apoptosis-associated speck-like protein containing CARD, which were induced by CRS, were ameliorated by rubrofusarin. Synaptic plasticity dysfunction within the hippocampus was also rescued by rubrofusarin treatment. Within in vitro experiments, rubrofusarin blocked corticosterone-induced long-term potentiation impairments. These were blocked by LY294002, which is an Akt inhibitor. Finally, we found that the antidepressant effects of rubrofusarin were blocked by an intracerebroventricular injection of LY294002. These results suggest that rubrofusarin ameliorated CRS-induced depressive symptoms through PI3K/Akt signaling.
Collapse
Affiliation(s)
- Jee Hyun Yi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 169148, Korea;
| | - Jieun Jeon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.J.); (H.K.); (E.C.); (Y.C.L.)
| | - Huiyoung Kwon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.J.); (H.K.); (E.C.); (Y.C.L.)
| | - Eunbi Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.J.); (H.K.); (E.C.); (Y.C.L.)
| | - Jeanho Yun
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea;
| | - Young Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.J.); (H.K.); (E.C.); (Y.C.L.)
| | - Jong Hoon Ryu
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea;
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Korea;
| | - Jong Hyun Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.J.); (H.K.); (E.C.); (Y.C.L.)
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (J.J.); (H.K.); (E.C.); (Y.C.L.)
| |
Collapse
|
9
|
Jacquin L, Petitjean Q, Côte J, Laffaille P, Jean S. Effects of Pollution on Fish Behavior, Personality, and Cognition: Some Research Perspectives. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00086] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
10
|
Johansen IB, Höglund E, Øverli Ø. Individual Variations and Coping Style. Anim Welf 2020. [DOI: 10.1007/978-3-030-41675-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
de Haas EN, van der Eijk JA. Where in the serotonergic system does it go wrong? Unravelling the route by which the serotonergic system affects feather pecking in chickens. Neurosci Biobehav Rev 2018; 95:170-188. [DOI: 10.1016/j.neubiorev.2018.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/16/2022]
|
12
|
Wu X, Xu FL, Wang BJ, Yao J. Analysis of the Promoter Region of Human Dopamine Receptor D1. J Mol Neurosci 2018; 65:438-443. [PMID: 30022436 DOI: 10.1007/s12031-018-1116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
Abstract
Dysregulation of dopamine receptor D1 (DRD1) is involved in multiple neuropsychiatric disorders. The 5' regulatory region of DRD1 has not been characterized fully. We applied the luciferase assay and the electrophoretic mobility shift assay to explore the activity of the 5' regulatory region of DRD1 in SH-SY5Y and 293T cells. We found that the promoter region of DRD1 corresponded to positions - 1250 to + 250 in the DNA sequence, and the putative core promoter region was from - 113 to + 250 (transcriptional start site of exon, +1). The sequence 5'-gggacgcgcgggcggggtgggctgtgccccgcgggaaccccgccggcctgtgcgcttgctg-3' was identified as a possible transcription factor-binding domain. Further research is warranted to explore the function of the 5' regulatory region of DRD1.
Collapse
Affiliation(s)
- Xue Wu
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
| | - Feng-Ling Xu
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
13
|
Thörnqvist PO, McCarrick S, Ericsson M, Roman E, Winberg S. Bold zebrafish (Danio rerio) express higher levels of delta opioid and dopamine D2 receptors in the brain compared to shy fish. Behav Brain Res 2018; 359:927-934. [PMID: 29935279 DOI: 10.1016/j.bbr.2018.06.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/28/2018] [Accepted: 06/19/2018] [Indexed: 11/26/2022]
Abstract
Individual variation in coping with environmental challenges is a well-known phenomenon across vertebrates, including teleost fish. Dopamine is the major transmitter in the brain reward networks, and important for motivational processes and stress coping. Functions of the endogenous opioid system are not well studied in teleosts. However, in mammals the activity in the brain reward networks is regulated by the endogenous opioid system. This study aimed at investigating if there was a correlation between risk-taking behavior and the expression of dopamine and opioid receptors in the zebrafish (Danio rerio) brain. Risk-taking behavior was assessed in a novel tank diving test, and the most extreme high risk taking, i.e. bold, and low risk taking, i.e. shy, fish were sampled for qPCR analysis of whole brain gene expression. The expression analysis showed a significantly higher expression of the dopamine D2 receptors (drd2a and drd2b) and the delta opioid receptor (DOR; oprd1b) in bold compared to shy fish. Besides reward and reinforcing properties, DORs are also involved in emotional responses. Dopamine D2 receptors are believed to be important for active stress coping in rodents, and taken together the results of the current study suggest similar functions in zebrafish. However, additional experiments are required to clarify how dopamine and opioid receptor activation affect behavior and stress coping in this species.
Collapse
Affiliation(s)
- Per-Ove Thörnqvist
- Department of Neuroscience, Physiology Unit, Biomedical Centre (BMC), Uppsala University, Box 593, SE-75124 Uppsala, Sweden.
| | - Sarah McCarrick
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Maja Ericsson
- Department of Neuroscience, Physiology Unit, Biomedical Centre (BMC), Uppsala University, Box 593, SE-75124 Uppsala, Sweden
| | - Erika Roman
- Department of Pharmaceutical Biosciences, Neuropharmacology, Addiction and Behavior Unit, Biomedical Centre (BMC), Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| | - Svante Winberg
- Department of Neuroscience, Physiology Unit, Biomedical Centre (BMC), Uppsala University, Box 593, SE-75124 Uppsala, Sweden
| |
Collapse
|
14
|
Early life stress induces long-term changes in limbic areas of a teleost fish: the role of catecholamine systems in stress coping. Sci Rep 2018; 8:5638. [PMID: 29618742 PMCID: PMC5884775 DOI: 10.1038/s41598-018-23950-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/20/2018] [Indexed: 01/05/2023] Open
Abstract
Early life stress (ELS) shapes the way individuals cope with future situations. Animals use cognitive flexibility to cope with their ever-changing environment and this is mainly processed in forebrain areas. We investigated the performance of juvenile gilthead seabream, previously subjected to an ELS regime. ELS fish showed overall higher brain catecholaminergic (CA) signalling and lower brain derived neurotrophic factor (bdnf) and higher cfos expression in region-specific areas. All fish showed a normal cortisol and serotonergic response to acute stress. Brain dopaminergic activity and the expression of the α2Α adrenergic receptor were overall higher in the fish homologue to the lateral septum (Vv), suggesting that the Vv is important in CA system regulation. Interestingly, ELS prevented post-acute stress downregulation of the α2Α receptor in the amygdala homologue (Dm3). There was a lack of post-stress response in the β2 adrenergic receptor expression and a downregulation in bdnf in the Dm3 of ELS fish, which together indicate an allostatic overload in their stress coping ability. ELS fish showed higher neuronal activity (cfos) post-acute stress in the hippocampus homologue (Dlv) and the Dm3. Our results show clear long-term effects on limbic systems of seabream that may compromise their future coping ability to environmental challenges.
Collapse
|