1
|
Petoe MA, Abbott CJ, Titchener SA, Kolic M, Kentler WG, Nayagam DAX, Baglin EK, Kvansakul J, Barnes N, Walker JG, Karapanos L, McGuinness MB, Ayton LN, Luu CD, Allen PJ. A Second-Generation (44-Channel) Suprachoroidal Retinal Prosthesis: A Single-Arm Clinical Trial of Feasibility. OPHTHALMOLOGY SCIENCE 2025; 5:100525. [PMID: 39328823 PMCID: PMC11426041 DOI: 10.1016/j.xops.2024.100525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/14/2024] [Accepted: 03/18/2024] [Indexed: 09/28/2024]
Abstract
Purpose To assess the feasibility of a second-generation (44-channel) suprachoroidal retinal prosthesis for provision of functional vision in recipients with end-stage retinitis pigmentosa (RP) over 2.7 years. Design Prospective, single-arm, unmasked interventional clinical trial. Participants Four participants, with advanced RP and bare-light perception vision. Methods The 44-channel suprachoroidal retinal prosthesis was implanted in the worse-seeing eye. Device stability, functionality, and adverse events were investigated at approximately 12-week intervals up to 140 weeks (2.7 years) postdevice activation. Main Outcome Measures Serious adverse event (SAE) reporting, visual response outcomes, functional vision outcomes, and quality-of-life outcomes. Results All 4 participants (aged 39-66 years, 3 males) were successfully implanted in 2018, and there were no device-related SAEs over the duration of the study. A mild postoperative subretinal hemorrhage was detected in 2 recipients, which cleared spontaneously within 2 weeks. OCT confirmed device stability and position under the macula. Improvements in localization abilities were demonstrated for all 4 participants in screen-based, tabletop, and orientation and mobility tasks. In addition, 3 of 4 participants recorded improvements in motion discrimination and 2 of 4 participants recorded substantial improvements in spatial discrimination and identification of tabletop objects. Participants reported their unsupervised use of the device included exploring new environments, detecting people, and safely navigating around obstacles. A positive effect of the implant on participants' daily lives in their local environments was confirmed by an orientation and mobility assessor and participant self-report. Emotional well-being was not impacted by device implantation or usage. Conclusions The completed clinical study demonstrates that the suprachoroidal prosthesis raises no safety concerns and provides improvements in functional vision, activities of daily living, and observer-rated quality of life. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Matthew A Petoe
- Bionics Institute, Melbourne, Victoria, Australia
- Medical Bionics Department, University of Melbourne, Melbourne, Victoria, Australia
| | - Carla J Abbott
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Samuel A Titchener
- Bionics Institute, Melbourne, Victoria, Australia
- Medical Bionics Department, University of Melbourne, Melbourne, Victoria, Australia
| | - Maria Kolic
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - William G Kentler
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - David A X Nayagam
- Bionics Institute, Melbourne, Victoria, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Department of Pathology, University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Elizabeth K Baglin
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Jessica Kvansakul
- Bionics Institute, Melbourne, Victoria, Australia
- Medical Bionics Department, University of Melbourne, Melbourne, Victoria, Australia
| | - Nick Barnes
- Research School of Engineering, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Janine G Walker
- Research School of Engineering, Australian National University, Canberra, Australian Capital Territory, Australia
- Health & Biosecurity, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Lewis Karapanos
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Myra B McGuinness
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Lauren N Ayton
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Penelope J Allen
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
- Vitreoretinal Unit, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| |
Collapse
|
2
|
Muqit MMK, Le Mer Y, Olmos de Koo L, Holz FG, Sahel JA, Palanker D. Prosthetic Visual Acuity with the PRIMA Subretinal Microchip in Patients with Atrophic Age-Related Macular Degeneration at 4 Years Follow-up. OPHTHALMOLOGY SCIENCE 2024; 4:100510. [PMID: 38881600 PMCID: PMC11179408 DOI: 10.1016/j.xops.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 06/18/2024]
Abstract
Objective To assess the efficacy and safety of the PRIMA neurostimulation system with a subretinal microchip for improving visual acuity (VA) in patients with geographic atrophy (GA) due to age-related macular degeneration (AMD) at 48-months postimplantation. Design Feasibility clinical trial of the PRIMA subretinal prosthesis in patients with atrophic AMD, measuring best-corrected ETDRS VA (Clinicaltrials.govNCT03333954). Subjects Five patients with GA, no foveal light perception, and VA of logarithm of the minimum angle of resolution (logMAR) 1.3 to 1.7 (20/400-20/1000) in their worse-seeing "study" eye. Methods In patients subretinally implanted with a photovoltaic neurostimulation array containing 378 pixels of 100 μm in size, the VA was measured with and without the PRIMA system using ETDRS charts at 1 m. The system's external components, augmented reality glasses, and pocket computer provide image processing capabilities, including zoom. Main Outcome Measures Visual acuity using ETDRS charts with and without the system, as well as light sensitivity in the central visual field, measured by Octopus perimetry. Anatomical outcomes demonstrated by fundus photography and OCT up to 48 months postimplantation. Results All 5 subjects met the primary end point of light perception elicited by the implant in the scotoma area. In 1 patient, the implant was incorrectly inserted into the choroid. One subject died 18 months postimplantation due to study-unrelated reasons. ETDRS VA results for the remaining 3 subjects are reported here. Without zoom, VA closely matched the pixel size of the implant: 1.17 ± 0.13 pixels, corresponding to a mean logMAR of 1.39, or Snellen of 20/500, ranging from 20/438 to 20/565. Using zoom at 48 months, subjects improved their VA by 32 ETDRS letters versus baseline (standard error 5.1) 95% confidence intervals (13.4, 49.9; P < 0.0001). Natural peripheral visual function in the treated eye did not decline after surgery or during the 48-month follow-up period (P = 0.08). Conclusions Subretinal implantation of PRIMA in subjects with GA experiencing profound vision loss due to AMD is feasible and well tolerated, with no reduction of natural peripheral vision up to 48 months. Prosthetic central vision provided by photovoltaic neurostimulation enabled patients to reliably recognize letters and sequences of letters, and with zoom, it improved VA of up to 8 ETDRS lines. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Mahiul Muhammed Khan Muqit
- Vitreoretinal Service, Moorfields Eye Hospital, London, United Kingdom
- Institute of Ophthalmology, University College London, United Kingdom
| | - Yannick Le Mer
- Department of Ophthalmology, Fondation Ophtalmologique A. de Rothschild, Paris, France
- Clinical Investigation Center, Quinze-Vingts National Eye Hospital, Paris, France
| | - Lisa Olmos de Koo
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Germany
| | - Jose A. Sahel
- Department of Ophthalmology, Fondation Ophtalmologique A. de Rothschild, Paris, France
- Clinical Investigation Center, Quinze-Vingts National Eye Hospital, Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Daniel Palanker
- Department of Ophthalmology, Stanford University, Stanford, California
| |
Collapse
|
3
|
Yang R, Zhao P, Wang L, Feng C, Peng C, Wang Z, Zhang Y, Shen M, Shi K, Weng S, Dong C, Zeng F, Zhang T, Chen X, Wang S, Wang Y, Luo Y, Chen Q, Chen Y, Jiang C, Jia S, Yu Z, Liu J, Wang F, Jiang S, Xu W, Li L, Wang G, Mo X, Zheng G, Chen A, Zhou X, Jiang C, Yuan Y, Yan B, Zhang J. Assessment of visual function in blind mice and monkeys with subretinally implanted nanowire arrays as artificial photoreceptors. Nat Biomed Eng 2024; 8:1018-1039. [PMID: 37996614 DOI: 10.1038/s41551-023-01137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Retinal prostheses could restore image-forming vision in conditions of photoreceptor degeneration. However, contrast sensitivity and visual acuity are often insufficient. Here we report the performance, in mice and monkeys with induced photoreceptor degeneration, of subretinally implanted gold-nanoparticle-coated titania nanowire arrays providing a spatial resolution of 77.5 μm and a temporal resolution of 3.92 Hz in ex vivo retinas (as determined by patch-clamp recording of retinal ganglion cells). In blind mice, the arrays allowed for the detection of drifting gratings and flashing objects at light-intensity thresholds of 15.70-18.09 μW mm-2, and offered visual acuities of 0.3-0.4 cycles per degree, as determined by recordings of visually evoked potentials and optomotor-response tests. In monkeys, the arrays were stable for 54 weeks, allowed for the detection of a 10-μW mm-2 beam of light (0.5° in beam angle) in visually guided saccade experiments, and induced plastic changes in the primary visual cortex, as indicated by long-term in vivo calcium imaging. Nanomaterials as artificial photoreceptors may ameliorate visual deficits in patients with photoreceptor degeneration.
Collapse
Affiliation(s)
- Ruyi Yang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Peng Zhao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Liyang Wang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Chenli Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Chen Peng
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai, P. R. China
| | - Zhexuan Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Yingying Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, P. R. China
| | - Minqian Shen
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Kaiwen Shi
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Shijun Weng
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Chunqiong Dong
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Fu Zeng
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, P. R. China
| | - Tianyun Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Xingdong Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Shuiyuan Wang
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, P. R. China
| | - Yiheng Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Yuanyuan Luo
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Qingyuan Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Yuqing Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Chengyong Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Shanshan Jia
- School of Computer Science, Institute for Artificial Intelligence, Peking University, Beijing, P.R. China
| | - Zhaofei Yu
- School of Computer Science, Institute for Artificial Intelligence, Peking University, Beijing, P.R. China
| | - Jian Liu
- School of Computer Science, University of Birmingham, Birmingham, UK
| | - Fei Wang
- Department of Hand Surgery, the National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Su Jiang
- Department of Hand Surgery, the National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Wendong Xu
- Department of Hand Surgery, the National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital, Fudan University, Shanghai, P.R. China
| | - Liang Li
- Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Gang Wang
- Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Xiaofen Mo
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai, P. R. China
| | - Aihua Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, P. R. China
| | - Xingtao Zhou
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Chunhui Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China.
| | - Yuanzhi Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, P.R. China.
| | - Biao Yan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China.
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
4
|
Han S, Kim T, Kim C, Lee S. Design and simulation of artificial retinal stimulation IC with switched capacitor using Si nanowire optical properties. Sci Prog 2024; 107:368504241275372. [PMID: 39223921 PMCID: PMC11375642 DOI: 10.1177/00368504241275372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study introduces an approach for converting the current from a sensor into controllable voltage. To this end, a switched-capacitor structure was integrated to provide efficient current-to-voltage conversion. The generated voltage was further regulated by an operational amplifier current source, enhancing stability and precision. An n-type metal oxide semiconductor field-effect transistor structure under an H-bridge was integrated into the system to achieve fine-tuned control over current stimulation. This component contributed to voltage regulation and enabled bi-directional control of current flow, offering versatility in adjusting current amplitudes using working and counter electrodes. This dynamic control mechanism was pivotal for effectively controlling the intensity of current stimulation. We applied Verilog-A modeling to simulate the optical characteristics of Si nanowires. The proposed system efficiently converted sensor-derived current into voltage using a switched-capacitor structure. Simultaneously, the precision was enhanced via operational amplifier regulation and n-type metal-oxide-semiconductor field-effect transistor-based H-bridge control. The simulation showed a current stimulus amplitude ranging from 2 to 13 μA for a variable photocurrent of Si nanowires (Rex: 10 kΩ, pulse: 100 Hz, 1 ms). The ability to finely control current stimulation intensity holds promise for diverse applications requiring accurate and adjustable current manipulation. This study contributes to the growing field of sensor technology by offering a unique perspective on the integration of nanostructures and electronic components for an enhanced control and functionality.
Collapse
Affiliation(s)
- Seungju Han
- Department of Electronics and Information convergence Engineering, Kyunghee University, Yongin, Republic of Korea
| | - Taehwan Kim
- Department of Electronics and Information convergence Engineering, Kyunghee University, Yongin, Republic of Korea
| | - Changhee Kim
- Department of Electronics and Information convergence Engineering, Kyunghee University, Yongin, Republic of Korea
| | - Sangmin Lee
- Department of Biomedical Engineering, Kyunghee University, Yongin, Republic of Korea
| |
Collapse
|
5
|
Zhang B, Zhang R, Zhao J, Yang J, Xu S. The mechanism of human color vision and potential implanted devices for artificial color vision. Front Neurosci 2024; 18:1408087. [PMID: 38962178 PMCID: PMC11221215 DOI: 10.3389/fnins.2024.1408087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
Vision plays a major role in perceiving external stimuli and information in our daily lives. The neural mechanism of color vision is complicated, involving the co-ordinated functions of a variety of cells, such as retinal cells and lateral geniculate nucleus cells, as well as multiple levels of the visual cortex. In this work, we reviewed the history of experimental and theoretical studies on this issue, from the fundamental functions of the individual cells of the visual system to the coding in the transmission of neural signals and sophisticated brain processes at different levels. We discuss various hypotheses, models, and theories related to the color vision mechanism and present some suggestions for developing novel implanted devices that may help restore color vision in visually impaired people or introduce artificial color vision to those who need it.
Collapse
Affiliation(s)
- Bingao Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Institute of Physical Electronics, Department of Electronics, Peking University, Beijing, China
| | - Rong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Institute of Physical Electronics, Department of Electronics, Peking University, Beijing, China
| | - Jingjin Zhao
- Key Laboratory for the Physics and Chemistry of Nanodevices, Institute of Physical Electronics, Department of Electronics, Peking University, Beijing, China
| | - Jiarui Yang
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Shengyong Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Institute of Physical Electronics, Department of Electronics, Peking University, Beijing, China
| |
Collapse
|
6
|
Carleton M, Oesch NW. Asymmetric Activation of ON and OFF Pathways in the Degenerated Retina. eNeuro 2024; 11:ENEURO.0110-24.2024. [PMID: 38719453 PMCID: PMC11097263 DOI: 10.1523/eneuro.0110-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/18/2024] Open
Abstract
Retinal prosthetics are one of the leading therapeutic strategies to restore lost vision in patients with retinitis pigmentosa and age-related macular degeneration. Much work has described patterns of spiking in retinal ganglion cells (RGCs) in response to electrical stimulation, but less work has examined the underlying retinal circuitry that is activated by electrical stimulation to drive these responses. Surprisingly, little is known about the role of inhibition in generating electrical responses or how inhibition might be altered during degeneration. Using whole-cell voltage-clamp recordings during subretinal electrical stimulation in the rd10 and wild-type (wt) retina, we found electrically evoked synaptic inputs differed between ON and OFF RGC populations, with ON cells receiving mostly excitation and OFF cells receiving mostly inhibition and very little excitation. We found that the inhibition of OFF bipolar cells limits excitation in OFF RGCs, and a majority of both pre- and postsynaptic inhibition in the OFF pathway arises from glycinergic amacrine cells, and the stimulation of the ON pathway contributes to inhibitory inputs to the RGC. We also show that this presynaptic inhibition in the OFF pathway is greater in the rd10 retina, compared with that in the wt retina.
Collapse
Affiliation(s)
- Maya Carleton
- Department of Psychology, University of California San Diego, La Jolla, California 92093
| | - Nicholas W Oesch
- Department of Psychology, University of California San Diego, La Jolla, California 92093
- Department of Ophthalmology, University of California San Diego, La Jolla, California 92093
- Neuroscience Graduate Program, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
7
|
Nadolskis LG, Turkstra LM, Larnyo E, Beyeler M. Great expectations: Aligning visual prosthetic development with implantee needs. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.12.24304186. [PMID: 38559196 PMCID: PMC10980134 DOI: 10.1101/2024.03.12.24304186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Purpose Visual prosthetics have emerged as a promising assistive technology for individuals with vision loss, yet research often overlooks the human aspects of this technology. While previous studies have concentrated on the perceptual experiences of implant recipients (implantees) or the attitudes of potential implantees towards near-future implants, a systematic account of how current implants are being used in everyday life is still lacking. Methods We interviewed six recipients of the most widely used visual implants (Argus II and Orion) and six leading researchers in the field. Through thematic and statistical analyses, we explored the daily usage of these implants by implantees and compared their responses to the expectations of researchers. We also sought implantees' input on desired features for future versions, aiming to inform the development of the next generation of implants. Results Although implants are designed to facilitate various daily activities, we found that implantees use them less frequently than researchers expected. This discrepancy primarily stems from issues with usability and reliability, with implantees finding alternative methods to accomplish tasks, reducing the need to rely on the implant. For future implants, implantees emphasized the desire for improved vision, smart integration, and increased independence. Conclusions Our study reveals a significant gap between researcher expectations and implantee experiences with visual prostheses, underscoring the importance of focusing future research on usability and real-world application. Translational relevance This work advocates for a better alignment between technology development and implantee needs to enhance clinical relevance and practical utility of visual prosthetics.
Collapse
Affiliation(s)
- Lucas Gil Nadolskis
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara
| | - Lily Marie Turkstra
- Department of Psychological & Brain Sciences, University of California, Santa Barbara
| | - Ebenezer Larnyo
- Center for Black Studies Research, University of California, Santa Barbara
| | - Michael Beyeler
- Department of Psychological & Brain Sciences, University of California, Santa Barbara
- Department of Computer Science, University of California, Santa Barbara
| |
Collapse
|
8
|
Granley J, Fauvel T, Chalk M, Beyeler M. Human-in-the-Loop Optimization for Deep Stimulus Encoding in Visual Prostheses. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 2023; 36:79376-79398. [PMID: 38984104 PMCID: PMC11232484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Neuroprostheses show potential in restoring lost sensory function and enhancing human capabilities, but the sensations produced by current devices often seem unnatural or distorted. Exact placement of implants and differences in individual perception lead to significant variations in stimulus response, making personalized stimulus optimization a key challenge. Bayesian optimization could be used to optimize patient-specific stimulation parameters with limited noisy observations, but is not feasible for high-dimensional stimuli. Alternatively, deep learning models can optimize stimulus encoding strategies, but typically assume perfect knowledge of patient-specific variations. Here we propose a novel, practically feasible approach that overcomes both of these fundamental limitations. First, a deep encoder network is trained to produce optimal stimuli for any individual patient by inverting a forward model mapping electrical stimuli to visual percepts. Second, a preferential Bayesian optimization strategy utilizes this encoder to optimize patient-specific parameters for a new patient, using a minimal number of pairwise comparisons between candidate stimuli. We demonstrate the viability of this approach on a novel, state-of-the-art visual prosthesis model. We show that our approach quickly learns a personalized stimulus encoder, leads to dramatic improvements in the quality of restored vision, and is robust to noisy patient feedback and misspecifications in the underlying forward model. Overall, our results suggest that combining the strengths of deep learning and Bayesian optimization could significantly improve the perceptual experience of patients fitted with visual prostheses and may prove a viable solution for a range of neuroprosthetic technologies.
Collapse
Affiliation(s)
- Jacob Granley
- Department of Computer Science, University of California, Santa Barbara
| | - Tristan Fauvel
- Institut de la Vision, Sorbonne Université, 17 rue Moreau, F-75012 Paris, France, Now with Quinten Health
| | - Matthew Chalk
- Institut de la Vision, Sorbonne Université, 17 rue Moreau, F-75012 Paris, France
| | - Michael Beyeler
- Department of Computer Science, Department of Psychological & Brain Sciences, University of California, Santa Barbara
| |
Collapse
|
9
|
Muqit M, Mer YL, de Koo LO, Holz FG, Sahel JA, Palanker D. Prosthetic Visual Acuity with the PRIMA System in Patients with Atrophic Age-related Macular Degeneration at 4 years follow-up. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.12.23298227. [PMID: 38014146 PMCID: PMC10680875 DOI: 10.1101/2023.11.12.23298227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Objective To assess the efficacy and safety of the PRIMA subretinal neurostimulation system 48-months post-implantation for improving visual acuity (VA) in patients with geographic atrophy (GA) due to age-related macular degeneration (AMD) at 48-months post-implantation. Design First-in-human clinical trial of the PRIMA subretinal prosthesis in patients with atrophic AMD, measuring best-corrected ETDRS VA (Clinicaltrials.gov NCT03333954). Subjects Five patients with GA, no foveal light perception and VA of logMAR 1.3 to 1.7 in their worse-seeing "study" eye. Methods In patients implanted with a subretinal photovoltaic neurostimulation array containing 378 pixels of 100 μm in size, the VA was measured with and without the PRIMA system using ETDRS charts at 1 meter. The system's external components: augmented reality glasses and pocket computer, provide image processing capabilities, including zoom. Main Outcome Measures VA using ETDRS charts with and without the system. Light sensitivity in the central visual field, as measured by Octopus perimetry. Anatomical outcomes demonstrated by fundus photography and optical coherence tomography up to 48-months post-implantation. Results All five subjects met the primary endpoint of light perception elicited by the implant in the scotoma area. In one patient the implant was incorrectly inserted into the choroid. One subject died 18-months post-implantation due to study-unrelated reason. ETDRS VA results for the remaining three subjects are reported herein. Without zoom, VA closely matched the pixel size of the implant: 1.17 ± 0.13 pixels, corresponding to mean logMAR 1.39, or Snellen 20/500, ranging from 20/438 to 20/565. Using zoom at 48 months, subjects improved their VA by 32 ETDRS letters versus baseline (SE 5.1) 95% CI[13.4,49.9], p<0.0001. Natural peripheral visual function in the treated eye did not decline after surgery compared to the fellow eye (p=0.08) during the 48 months follow-up period. Conclusions Subretinal implantation of PRIMA in subjects with GA suffering from profound vision loss due to AMD is feasible and well tolerated, with no reduction of natural peripheral vision up to 48-months. Using prosthetic central vision through photovoltaic neurostimulation, patients reliably recognized letters and sequences of letters,and with zoom it provided a clinically meaningful improvement in VA of up to eight ETDRS lines.
Collapse
Affiliation(s)
- Mmk Muqit
- Vitreoretinal Service, Moorfields Eye Hospital, London, UK
- Institute of Ophthalmology, University College London, UK
| | - Y Le Mer
- Department of Ophthalmology, Fondation Ophtalmologique A. de Rothschild, Paris, France
- Clinical Investigation Center, Quinze-Vingts National Eye Hospital, Paris, France
| | - L Olmos de Koo
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - F G Holz
- Department of Ophthalmology, University of Bonn, Germany
| | - J A Sahel
- Department of Ophthalmology, Fondation Ophtalmologique A. de Rothschild, Paris, France
- Clinical Investigation Center, Quinze-Vingts National Eye Hospital, Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - D Palanker
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| |
Collapse
|
10
|
Peiroten L, Zrenner E, Haq W. Artificial Vision: The High-Frequency Electrical Stimulation of the Blind Mouse Retina Decay Spike Generation and Electrogenically Clamped Intracellular Ca 2+ at Elevated Levels. Bioengineering (Basel) 2023; 10:1208. [PMID: 37892938 PMCID: PMC10604554 DOI: 10.3390/bioengineering10101208] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The electrical stimulation (stim) of retinal neurons enables blind patients to experience limited artificial vision. A rapid response outage of the stimulated ganglion cells (GCs) allows for a low visual sensation rate. Hence, to elucidate the underlying mechanism, we investigated different stim parameters and the role of the neuromodulator calcium (Ca2+). METHODS Subretinal stim was applied on retinal explants (blind rd1 mouse) using multielectrode arrays (MEAs) or single metal electrodes, and the GC activity was recorded using Ca2+ imaging or MEA, respectively. Stim parameters, including voltage, phase polarity, and frequency, were investigated using specific blockers. RESULTS At lower stim frequencies (<5 Hz), GCs responded synaptically according to the stim pulses (stim: biphasic, cathodic-first, -1.6/+1.5 V). In contrast, higher stim frequencies (≥5 Hz) also activated GCs directly and induced a rapid GC spike response outage (<500 ms, MEA recordings), while in Ca2+ imaging at the same frequencies, increased intracellular Ca2+ levels were observed. CONCLUSIONS Our study elucidated the mechanisms involved in stim-dependent GC spike response outage: sustained high-frequency stim-induced spike outage, accompanied by electrogenically clamped intracellular Ca2+ levels at elevated levels. These findings will guide future studies optimizing stim paradigms for electrical implant applications for interfacing neurons.
Collapse
Affiliation(s)
| | | | - Wadood Haq
- Neuroretinal Electrophysiology and Imaging, Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; (L.P.)
| |
Collapse
|
11
|
Cha S, Ahn J, Kim SW, Choi KE, Yoo Y, Eom H, Shin D, Goo YS. The Variation of Electrical Pulse Duration Elicits Reliable Network-Mediated Responses of Retinal Ganglion Cells in Normal, Not in Degenerate Primate Retinas. Bioengineering (Basel) 2023; 10:1135. [PMID: 37892865 PMCID: PMC10604198 DOI: 10.3390/bioengineering10101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to investigate the efficacy of electrical stimulation by comparing network-mediated RGC responses in normal and degenerate retinas using a N-methyl-N-nitrosourea (MNU)-induced non-human primate (NHPs) retinitis pigmentosa (RP) model. Adult cynomolgus monkeys were used for normal and outer retinal degeneration (RD) induced by MNU. The network-mediated RGC responses were recorded from the peripheral retina mounted on an 8 × 8 multielectrode array (MEA). The amplitude and duration of biphasic current pulses were modulated from 1 to 50 μA and 500 to 4000 μs, respectively. The threshold charge density for eliciting a network-mediated RGC response was higher in the RD monkeys than in the normal monkeys (1.47 ± 0.13 mC/cm2 vs. 1.06 ± 0.09 mC/cm2, p < 0.05) at a 500 μs pulse duration. The monkeys required a higher charge density than rodents among the RD models (monkeys; 1.47 ± 0.13 mC/cm2, mouse; 1.04 ± 0.09 mC/cm2, and rat; 1.16 ± 0.16 mC/cm2, p < 0.01). Increasing the pulse amplitude and pulse duration elicited more RGC spikes in the normal primate retinas. However, only pulse amplitude variation elicited more RGC spikes in degenerate primate retinas. Therefore, the pulse strategy for primate RD retinas should be optimized, eventually contributing to retinal prosthetics. Given that RD NHP RGCs are not sensitive to pulse duration, using shorter pulses may potentially be a more charge-effective approach for retinal prosthetics.
Collapse
Affiliation(s)
- Seongkwang Cha
- Department of Physiology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.C.); (J.A.)
| | - Jungryul Ahn
- Department of Physiology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.C.); (J.A.)
| | - Seong-Woo Kim
- Horang-I Eye Center, Seoul 07999, Republic of Korea;
| | - Kwang-Eon Choi
- Department of Ophthalmology, College of Medicine, Korea University, Seoul 08308, Republic of Korea;
| | - Yongseok Yoo
- School of Computer Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea;
| | - Heejong Eom
- Laboratory Animal Center, Osong Medical Innovation Foundation, Cheongju 28160, Republic of Korea; (H.E.); (D.S.)
| | - Donggwan Shin
- Laboratory Animal Center, Osong Medical Innovation Foundation, Cheongju 28160, Republic of Korea; (H.E.); (D.S.)
| | - Yong Sook Goo
- Department of Physiology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.C.); (J.A.)
| |
Collapse
|
12
|
Palanker D. Electronic Retinal Prostheses. Cold Spring Harb Perspect Med 2023; 13:a041525. [PMID: 36781222 PMCID: PMC10411866 DOI: 10.1101/cshperspect.a041525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Retinal prostheses are a promising means for restoring sight to patients blinded by photoreceptor atrophy. They introduce visual information by electrical stimulation of the surviving inner retinal neurons. Subretinal implants target the graded-response secondary neurons, primarily the bipolar cells, which then transfer the information to the ganglion cells via the retinal neural network. Therefore, many features of natural retinal signal processing can be preserved in this approach if the inner retinal network is retained. Epiretinal implants stimulate primarily the ganglion cells, and hence should encode the visual information in spiking patterns, which, ideally, should match the target cell types. Currently, subretinal arrays are being developed primarily for restoration of central vision in patients impaired by age-related macular degeneration (AMD), while epiretinal implants-for patients blinded by retinitis pigmentosa, where the inner retina is less preserved. This review describes the concepts and technologies, preclinical characterization of prosthetic vision and clinical outcomes, and provides a glimpse into future developments.
Collapse
Affiliation(s)
- Daniel Palanker
- Department of Ophthalmology and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
13
|
Ye Z, Hang Chan LL. Effect of the Aperiodic Electrical Stimulation on the Visual Cortical Neuronal Response . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083157 DOI: 10.1109/embc40787.2023.10341193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
In patients with retinal degenerative illnesses such as retinitis pigmentosa and age-related macular degeneration, retinal prosthesis shows the potential to restore partial vision. The natural stimuli are the aperiodic events distributed across a short time span. However, most studies commonly used periodic stimulation. Even though some in vitro studies explored the effect of aperiodic retinal stimulation on the retina ganglion cells' membrane potential, it still needs to understand how the aperiodic electrical stimulation on the retina affects the response in visual cortex. This study investigated how aperiodic retinal stimulation affects the electrically evoked cortical response compared with periodic stimulation in Sprague Dawley (SD) rats. We found that the aperiodic retinal stimulation evoked a significantly higher spike rate than the periodic pattern, especially at high frequencies (10 and 20 Hz). The spike rates showed a more significant difference between the periodic and 10% noise stimulation (P = 0.0013 at 20 Hz, two-tailed paired t-test) at 20 Hz stimulation. Regarding the temporal precision of responses, the responses to aperiodic stimulation showed higher temporal precision compared to periodic stimulation. The response to some stimulation pulse numbers under 10 and 20 Hz 50% noise and Poisson pattern stimulation was higher than the response to the first pulse. However, at the same frequency, the response to some stimulation pulse numbers under periodic stimulation was lower than the response to the first pulse. These findings raised a possible way to increase the response level and the temporal precision of the electrically evoked response.Clinical Relevance- This suggests that using aperiodic stimulation in retinal prostheses can increase electrically evoked response levels and temporal precision.
Collapse
|
14
|
Wu KY, Mina M, Sahyoun JY, Kalevar A, Tran SD. Retinal Prostheses: Engineering and Clinical Perspectives for Vision Restoration. SENSORS (BASEL, SWITZERLAND) 2023; 23:5782. [PMID: 37447632 PMCID: PMC10347280 DOI: 10.3390/s23135782] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
A retinal prosthesis, also known as a bionic eye, is a device that can be implanted to partially restore vision in patients with retinal diseases that have resulted in the loss of photoreceptors (e.g., age-related macular degeneration and retinitis pigmentosa). Recently, there have been major breakthroughs in retinal prosthesis technology, with the creation of numerous types of implants, including epiretinal, subretinal, and suprachoroidal sensors. These devices can stimulate the remaining cells in the retina with electric signals to create a visual sensation. A literature review of the pre-clinical and clinical studies published between 2017 and 2023 is conducted. This narrative review delves into the retinal anatomy, physiology, pathology, and principles underlying electronic retinal prostheses. Engineering aspects are explored, including electrode-retina alignment, electrode size and material, charge density, resolution limits, spatial selectivity, and bidirectional closed-loop systems. This article also discusses clinical aspects, focusing on safety, adverse events, visual function, outcomes, and the importance of rehabilitation programs. Moreover, there is ongoing debate over whether implantable retinal devices still offer a promising approach for the treatment of retinal diseases, considering the recent emergence of cell-based and gene-based therapies as well as optogenetics. This review compares retinal prostheses with these alternative therapies, providing a balanced perspective on their advantages and limitations. The recent advancements in retinal prosthesis technology are also outlined, emphasizing progress in engineering and the outlook of retinal prostheses. While acknowledging the challenges and complexities of the technology, this article highlights the significant potential of retinal prostheses for vision restoration in individuals with retinal diseases and calls for continued research and development to refine and enhance their performance, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Mina Mina
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jean-Yves Sahyoun
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
15
|
Wang C, Fang C, Zou Y, Yang J, Sawan M. SpikeSEE: An energy-efficient dynamic scenes processing framework for retinal prostheses. Neural Netw 2023; 164:357-368. [PMID: 37167749 DOI: 10.1016/j.neunet.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Intelligent and low-power retinal prostheses are highly demanded in this era, where wearable and implantable devices are used for numerous healthcare applications. In this paper, we propose an energy-efficient dynamic scenes processing framework (SpikeSEE) that combines a spike representation encoding technique and a bio-inspired spiking recurrent neural network (SRNN) model to achieve intelligent processing and extreme low-power computation for retinal prostheses. The spike representation encoding technique could interpret dynamic scenes with sparse spike trains, decreasing the data volume. The SRNN model, inspired by the human retina's special structure and spike processing method, is adopted to predict the response of ganglion cells to dynamic scenes. Experimental results show that the Pearson correlation coefficient of the proposed SRNN model achieves 0.93, which outperforms the state-of-the-art processing framework for retinal prostheses. Thanks to the spike representation and SRNN processing, the model can extract visual features in a multiplication-free fashion. The framework achieves 8 times power reduction compared with the convolutional recurrent neural network (CRNN) processing-based framework. Our proposed SpikeSEE predicts the response of ganglion cells more accurately with lower energy consumption, which alleviates the precision and power issues of retinal prostheses and provides a potential solution for wearable or implantable prostheses.
Collapse
Affiliation(s)
- Chuanqing Wang
- Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neurotechnologies, School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Chaoming Fang
- Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neurotechnologies, School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Yong Zou
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jie Yang
- Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neurotechnologies, School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China.
| | - Mohamad Sawan
- Center of Excellence in Biomedical Research on Advanced Integrated-on-chips Neurotechnologies, School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
16
|
Cehajic-Kapetanovic J, Singh MS, Zrenner E, MacLaren RE. Bioengineering strategies for restoring vision. Nat Biomed Eng 2023; 7:387-404. [PMID: 35102278 DOI: 10.1038/s41551-021-00836-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
Abstract
Late-stage retinal degenerative disease involving photoreceptor loss can be treated by optogenetic therapy, cell transplantation and retinal prostheses. These approaches aim to restore light sensitivity to the retina as well as visual perception by integrating neuronal responses for transmission to the cortex. In age-related macular degeneration, some cell-based therapies also aim to restore photoreceptor-supporting tissue to prevent complete photoreceptor loss. In the earlier stages of degeneration, gene-replacement therapy could attenuate retinal-disease progression and reverse loss of function. And gene-editing strategies aim to correct the underlying genetic defects. In this Review, we highlight the most promising gene therapies, cell therapies and retinal prostheses for the treatment of retinal disease, discuss the benefits and drawbacks of each treatment strategy and the factors influencing whether functional tissue is reconstructed and repaired or replaced with an electronic device, and summarize upcoming technologies for enhancing the restoration of vision.
Collapse
Affiliation(s)
- Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK.
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | | | - Eberhart Zrenner
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
17
|
Titchener SA, Goossens J, Kvansakul J, Nayagam DAX, Kolic M, Baglin EK, Ayton LN, Abbott CJ, Luu CD, Barnes N, Kentler WG, Shivdasani MN, Allen PJ, Petoe MA. Estimating Phosphene Locations Using Eye Movements of Suprachoroidal Retinal Prosthesis Users. Transl Vis Sci Technol 2023; 12:20. [PMID: 36943168 PMCID: PMC10043502 DOI: 10.1167/tvst.12.3.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Purpose Accurate mapping of phosphene locations from visual prostheses is vital to encode spatial information. This process may involve the subject pointing to evoked phosphene locations with their finger. Here, we demonstrate phosphene mapping for a retinal implant using eye movements and compare it with retinotopic electrode positions and previous results using conventional finger-based mapping. Methods Three suprachoroidal retinal implant recipients (NCT03406416) indicated the spatial position of phosphenes. Electrodes were stimulated individually, and the subjects moved their finger (finger based) or their eyes (gaze based) to the perceived phosphene location. The distortion of the measured phosphene locations from the expected locations (retinotopic electrode locations) was characterized with Procrustes analysis. Results The finger-based phosphene locations were compressed spatially relative to the expected locations all three subjects, but preserved the general retinotopic arrangement (scale factors ranged from 0.37 to 0.83). In two subjects, the gaze-based phosphene locations were similar to the expected locations (scale factors of 0.72 and 0.99). For the third subject, there was no apparent relationship between gaze-based phosphene locations and electrode locations (scale factor of 0.07). Conclusions Gaze-based phosphene mapping was achievable in two of three tested retinal prosthesis subjects and their derived phosphene maps correlated well with the retinotopic electrode layout. A third subject could not produce a coherent gaze-based phosphene map, but this may have revealed that their phosphenes were indistinct spatially. Translational Relevance Gaze-based phosphene mapping is a viable alternative to conventional finger-based mapping, but may not be suitable for all subjects.
Collapse
Affiliation(s)
- Samuel A Titchener
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Melbourne, VIC, Australia
| | - Jeroen Goossens
- Donders Institute for Brain Cognition and Behaviour, Radboudumc, the Netherlands
| | - Jessica Kvansakul
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Melbourne, VIC, Australia
| | - David A X Nayagam
- Bionics Institute, East Melbourne, VIC, Australia
- Department of Pathology, University of Melbourne, Victoria, Australia
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, VIC, Australia
| | - Maria Kolic
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, VIC, Australia
| | - Elizabeth K Baglin
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, VIC, Australia
| | - Lauren N Ayton
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Carla J Abbott
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Nick Barnes
- Data61, CSIRO, Canberra, ACT, Australia
- Research School of Engineering, Australian National University, ACT, Australia
| | - William G Kentler
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| | - Mohit N Shivdasani
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW, Australia
| | - Penelope J Allen
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Matthew A Petoe
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Oh Y, Hong J, Kim J. Integrated Low-Voltage Compliance and Wide-Dynamic Stimulator Design for Neural Implantable Devices. SENSORS (BASEL, SWITZERLAND) 2023; 23:492. [PMID: 36617100 PMCID: PMC9823420 DOI: 10.3390/s23010492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
In this study, a pulse frequency modulation (PFM)-based stimulator is proposed for use in biomedical implantable devices. Conventionally, functional electrical stimulation (FES) techniques have been used to reinforce damaged nerves, such as retina tissue and brain tissue, by injecting a certain amount of charge into tissues. Although several design methods are present for implementing FES devices, an FES stimulator for retinal implants is difficult to realize because of the chip area, which needs to be inserted in a fovea, sized 5 mm x 5 mm, and power limitations to prevent the heat generation that causes tissue damage. In this work, we propose a novel stimulation structure to reduce the compliance voltage during stimulation, which can result in high-speed and low-voltage operation. A new stimulator that is composed of a modified high-speed PFM, a 4-bit counter, a serializer, a digital controller, and a current driver is designed and verified using a DB HiTek standard 0.18 μm process. This proposed stimulator can generate a charge up to 130 nC, consumes an average power of 375 µW during a stimulation period, and occupies a total area of 700 µm × 68 µm.
Collapse
Affiliation(s)
- Yeonji Oh
- Department of Medical Science, Korea University, Seoul 02841, Republic of Korea
| | - Jonggi Hong
- Department of Health Sciences & Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Jungsuk Kim
- Department of Biomedical Engineering, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
19
|
Pfeiffer RL, Jones BW. Current perspective on retinal remodeling: Implications for therapeutics. Front Neuroanat 2022; 16:1099348. [PMID: 36620193 PMCID: PMC9813390 DOI: 10.3389/fnana.2022.1099348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The retinal degenerative diseases retinitis pigmentosa and age-related macular degeneration are a leading cause of irreversible vision loss. Both present with progressive photoreceptor degeneration that is further complicated by processes of retinal remodeling. In this perspective, we discuss the current state of the field of retinal remodeling and its implications for vision-restoring therapeutics currently in development. Here, we discuss the challenges and pitfalls retinal remodeling poses for each therapeutic strategy under the premise that understanding the features of retinal remodeling in totality will provide a basic framework with which therapeutics can interface. Additionally, we discuss the potential for approaching therapeutics using a combined strategy of using diffusible molecules in tandem with other vision-restoring therapeutics. We end by discussing the potential of the retina and retinal remodeling as a model system for more broadly understanding the progression of neurodegeneration across the central nervous system.
Collapse
|
20
|
Cojocaru AE, Corna A, Reh M, Zeck G. High spatial resolution artificial vision inferred from the spiking output of retinal ganglion cells stimulated by optogenetic and electrical means. Front Cell Neurosci 2022; 16:1033738. [PMID: 36568888 PMCID: PMC9780279 DOI: 10.3389/fncel.2022.1033738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
With vision impairment affecting millions of people world-wide, various strategies aiming at vision restoration are being undertaken. Thanks to decades of extensive research, electrical stimulation approaches to vision restoration began to undergo clinical trials. Quite recently, another technique employing optogenetic therapy emerged as a possible alternative. Both artificial vision restoration strategies reported poor spatial resolution so far. In this article, we compared the spatial resolution inferred ex vivo under ideal conditions using a computational model analysis of the retinal ganglion cell (RGC) spiking activity. The RGC spiking was stimulated in epiretinal configuration by either optogenetic or electrical means. RGCs activity was recorded from the ex vivo retina of transgenic late-stage photoreceptor-degenerated mice (rd10) using a high-density Complementary Metal Oxide Semiconductor (CMOS) based microelectrode array. The majority of retinal samples were stimulated by both, optogenetic and electrical stimuli using a spatial grating stimulus. A population-level analysis of the spiking activity of identified RGCs was performed and the spatial resolution achieved through electrical and optogenetic photo-stimulation was inferred using a support vector machine classifier. The best f1 score of the classifier for the electrical stimulation in epiretinal configuration was 86% for 32 micron wide gratings and increased to 100% for 128 microns. For optogenetically activated cells, we obtained high f1 scores of 82% for 10 microns grid width for a photo-stimulation frequency of 2.5 Hz and 73% for a photo-stimulation frequency of 10 Hz. A subsequent analysis, considering only the RGCs modulated in both electrical and optogenetic stimulation protocols revealed no significant difference in the prediction accuracy between the two stimulation modalities. The results presented here indicate that a high spatial resolution can be achieved for electrical or optogenetic artificial stimulation using the activated retinal ganglion cell output.
Collapse
Affiliation(s)
| | - Andrea Corna
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| | - Miriam Reh
- Institute for Ophthalmic Research at the University of Tübingen, Tübingen, Germany
| | - Günther Zeck
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| |
Collapse
|
21
|
Jeong H, Kim J, Seo JM, Neviani A. Neurostimulators for high-resolution artificial retina: ASIC design challenges and solutions. J Neural Eng 2022; 19. [PMID: 36374010 DOI: 10.1088/1741-2552/aca262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Objective.Neurostimulator is one of the most important part in artificial retina design. In this paper, we discuss the main challenges in the design of application-specific integrated circuit for high-resolution artificial retina and suggest corresponding solutions.Approach. Problems in the design of the neurostimulator for the existing artificial retina have not been solved yet are analyzed and solutions are presented. For verification of the solutions, mathematical proof, MATLAB and Ansys simulations are used.Main results. The drawbacks of resorting to a high-voltage complementary metal oxide semiconductor (CMOS) process to deal with the large voltage compliance demanded by the stimulator output stage are pointed out, and an alternative approach based on a circuit that switches the voltage of the common reference electrode is proposed to overcome. The necessity of an active discharge circuit to remove the residual charge of electrodes caused by an unbalanced stimulus is investigated. We present a circuit analysis showing that the use of a passive discharge circuit is sufficient to suppress problematic direct current in most situations. Finally, possible restrictions on input and output (I/O) count are investigated by estimating the resistive-capacitive delay caused by the interconnection between the I/O pad and the microelectrode array.Significance. The results of this paper clarified the problems currently faced by neurostimulator design for the artificial retina. Through the solutions presented in this study, circuits with more competitiveness in power and area consumption can be designed.
Collapse
Affiliation(s)
- Hyunbeen Jeong
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jisung Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jong-Mo Seo
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea.,Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Andrea Neviani
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
22
|
Granley J, Relic L, Beyeler M. Hybrid Neural Autoencoders for Stimulus Encoding in Visual and Other Sensory Neuroprostheses. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 2022; 35:22671-22685. [PMID: 37719469 PMCID: PMC10504858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Sensory neuroprostheses are emerging as a promising technology to restore lost sensory function or augment human capabilities. However, sensations elicited by current devices often appear artificial and distorted. Although current models can predict the neural or perceptual response to an electrical stimulus, an optimal stimulation strategy solves the inverse problem: what is the required stimulus to produce a desired response? Here, we frame this as an end-to-end optimization problem, where a deep neural network stimulus encoder is trained to invert a known and fixed forward model that approximates the underlying biological system. As a proof of concept, we demonstrate the effectiveness of this hybrid neural autoencoder (HNA) in visual neuroprostheses. We find that HNA produces high-fidelity patient-specific stimuli representing handwritten digits and segmented images of everyday objects, and significantly outperforms conventional encoding strategies across all simulated patients. Overall this is an important step towards the long-standing challenge of restoring high-quality vision to people living with incurable blindness and may prove a promising solution for a variety of neuroprosthetic technologies.
Collapse
Affiliation(s)
- Jacob Granley
- Department of Computer Science, University of California, Santa Barbara
| | - Lucas Relic
- Department of Computer Science, University of California, Santa Barbara
| | - Michael Beyeler
- Department of Computer Science, University of California, Santa Barbara; Department of Psychological & Brain Sciences, University of California, Santa Barbara
| |
Collapse
|
23
|
Muqit MMK, Mer YL, Holz FG, Sahel JA. Long-term observations of macular thickness after subretinal implantation of a photovoltaic prosthesis in patients with atrophic age-related macular degeneration. J Neural Eng 2022; 19:10.1088/1741-2552/ac9645. [PMID: 36174540 PMCID: PMC9684097 DOI: 10.1088/1741-2552/ac9645] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/29/2022] [Indexed: 11/12/2022]
Abstract
Objective. Subretinal prostheses electrically stimulate the residual inner retinal neurons to partially restore vision. We investigated the changes in neurosensory macular structures and it is thickness associated with subretinal implantation in geographic atrophy (GA) secondary to age-related macular degeneration (AMD).Approach. Using optical coherence tomography, changes in distance between electrodes and retinal inner nuclear layer (INL) as well as alterations in thickness of retinal layers were measured over time above and near the subretinal chip implanted within the atrophic area. Retinal thickness (RT) was quantified across the implant surface and edges as well as outside the implant zone to compare with the natural macular changes following subretinal surgery, and the natural course of dry AMD.Main results. GA was defined based on complete retinal pigment epithelium and outer retinal atrophy (cRORA). Based on the analysis of three patients with subretinal implantation, we found that the distance between the implant and the target cells was stable over the long-term follow-up. Total RT above the implant decreased on average, by 39 ± 12µm during 3 months post-implantation, but no significant changes were observed after that, up to 36 months of the follow-up. RT also changed near the temporal entry point areas outside the implantation zone following the surgical trauma of retinal detachment. There was no change in the macula cRORA nasal to the implanted zone, where there was no surgical trauma or manipulation.Significance. The surgical delivery of the photovoltaic subretinal implant causes minor RT changes that settle after 3 months, and then remain stable over long-term with no adverse structural or functional effects. Distance between the implant and the INL remains stable up to 36 months of the follow-up.
Collapse
Affiliation(s)
- Mahiul M K Muqit
- Vitreoretinal Service, Moorfields Eye Hospital, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Yannick Le Mer
- Department of Ophthalmology, Fondation Ophtalmologique A. de Rothschild, Paris, France
| | - Frank G Holz
- University of Bonn, Department of Ophthalmology, Bonn, Germany
| | - José A Sahel
- Department of Ophthalmology, Fondation Ophtalmologique A. de Rothschild, Paris, France
- Clinical Investigation Center INSERM-DGOS 1423, Quinze-Vingts National Eye Hospital, Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| |
Collapse
|
24
|
Vu QA, Seo HW, Choi KE, Kim N, Kang YN, Lee J, Park SH, Kim JT, Kim S, Kim SW. Structural changes in the retina after implantation of subretinal three-dimensional implants in mini pigs. Front Neurosci 2022; 16:1010445. [PMID: 36248640 PMCID: PMC9561346 DOI: 10.3389/fnins.2022.1010445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
The retinal structural changes after subretinal implantation of three-dimensional (3D) microelectrodes were investigated in a mini pig. Three types of electrode were implanted into the subretinal spaces of nine mini pigs: 75-μm-high 3D electrodes on a 200-μm-thick right-angled polydimethylsiloxane (PDMS) substrate (group 1); a 140-μm-thick sloped PDMS substrate without electrodes (group 2); and a 140-μm-thick sloped PDMS substrate with 20-μm-high 3D electrodes (group 3). One mini pig was used as a control. Spectral domain–optical coherence tomography (SD–OCT) images were obtained at baseline and 2, 6, and 12 weeks post-surgery. Retinal specimens were immunostained using a tissue-clearing method 3 months post-implantation. The 75-μm-high 3D electrodes progressively penetrated the inner nuclear layer (INL) and touched the inner plexiform layer (IPL) 2 weeks post-surgery. At 6 weeks post-operatively, the electrodes were in contact with the nerve-fiber layer, accompanied by a severe fibrous reaction. In the other groups, the implants remained in place without subretinal migration. Immunostaining showed that retinal ganglion and bipolar cells were preserved without fibrosis over the retinal implants in groups 2 and 3 during the 12-week implantation period. In summary, SD–OCT and immunohistology results showed differences in the extent of reactions, such as fibrosis over the implants and penetration of the electrodes into the inner retinal layer depending on different types of electrodes. A sloped substrate performed better than a right-angled substrate in terms of retinal preservation over the implanted electrodes. The 20-μm-high electrodes showed better structural compatibility than the 75-μm-high 3D electrodes. There was no significant difference between the results of sloped implants without electrodes and 20-μm-high 3D electrodes, indicating that the latter had no adverse effects on retinal tissue.
Collapse
Affiliation(s)
- Que Anh Vu
- Department of Ophthalmology, Korea University School of Medicine, Seoul, South Korea
- Department of Ophthalmology, Hanoi Medical University, Hanoi, Vietnam
| | - Hee Won Seo
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Kwang-Eon Choi
- Department of Ophthalmology, Korea University School of Medicine, Seoul, South Korea
| | - Namju Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Yoo Na Kang
- Department of Medical Assistant Robot, Korea Institute of Machinery and Materials (KIMM), Daegu, South Korea
| | - Jaemeun Lee
- R&D Center for Advanced Pharmaceuticals and Evaluation, Korea Institute of Toxicology, Daejeon, South Korea
| | - Sun-Hyun Park
- R&D Center for Advanced Pharmaceuticals and Evaluation, Korea Institute of Toxicology, Daejeon, South Korea
| | - Jee Taek Kim
- Department of Ophthalmology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Sohee Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
- *Correspondence: Sohee Kim,
| | - Seong-Woo Kim
- Department of Ophthalmology, Korea University School of Medicine, Seoul, South Korea
- Seong-Woo Kim,
| |
Collapse
|
25
|
Wang BY, Chen ZC, Bhuckory M, Kochnev Goldstein A, Palanker D. Pixel size limit of the PRIMA implants: from humans to rodents and back. J Neural Eng 2022; 19:10.1088/1741-2552/ac8e31. [PMID: 36044878 PMCID: PMC9527086 DOI: 10.1088/1741-2552/ac8e31] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/31/2022] [Indexed: 11/11/2022]
Abstract
Objective.Retinal prostheses aim at restoring sight in patients with retinal degeneration by electrically stimulating the inner retinal neurons. Clinical trials with patients blinded by atrophic age-related macular degeneration using the PRIMA subretinal implant, a 2 × 2 mm array of 100µm-wide photovoltaic pixels, have demonstrated a prosthetic visual acuity closely matching the pixel size. Further improvement in resolution requires smaller pixels, which, with the current bipolar design, necessitates more intense stimulation.Approach.We examine the lower limit of the pixel size for PRIMA implants by modeling the electric field, leveraging the clinical benchmarks, and using animal data to assess the stimulation strength and contrast of various patterns. Visually evoked potentials measured in Royal College of Surgeons rats with photovoltaic implants composed of 100µm and 75µm pixels were compared to clinical thresholds with 100µm pixels. Electrical stimulation model calibrated by the clinical and rodent data was used to predict the performance of the implant with smaller pixels.Main results.PRIMA implants with 75µm bipolar pixels under the maximum safe near-infrared (880 nm) illumination of 8 mW mm-2with 30% duty cycle (10 ms pulses at 30 Hz) should provide a similar perceptual brightness as with 100µm pixels under 3 mW mm-2irradiance, used in the current clinical trials. Contrast of the Landolt C pattern scaled down to 75µm pixels is also similar under such illumination to that with 100µm pixels, increasing the maximum acuity from 20/420 to 20/315.Significance.Computational modeling defines the minimum pixel size of the PRIMA implants as 75µm. Increasing the implant width from 2 to 3 mm and reducing the pixel size from 100 to 75µm will nearly quadrupole the number of pixels, which should be very beneficial for patients. Smaller pixels of the same bipolar flat geometry would require excessively intense illumination, and therefore a different pixel design should be considered for further improvement in resolution.
Collapse
Affiliation(s)
- Bing-Yi Wang
- Department of Physics, Stanford University, Stanford, CA, United States of America
| | - Zhijie Charles Chen
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States of America
| | - Mohajeet Bhuckory
- Department of Ophthalmology, Stanford University, Stanford, CA, United States of America
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, United States of America
| | - Anna Kochnev Goldstein
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States of America
| | - Daniel Palanker
- Department of Ophthalmology, Stanford University, Stanford, CA, United States of America
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
26
|
Daich Varela M, Bellingham J, Motta F, Jurkute N, Ellingford JM, Quinodoz M, Oprych K, Niblock M, Janeschitz-Kriegl L, Kaminska K, Cancellieri F, Scholl HPN, Lenassi E, Schiff E, Knight H, Black G, Rivolta C, Cheetham ME, Michaelides M, Mahroo OA, Moore AT, Webster AR, Arno G. Multidisciplinary team directed analysis of whole genome sequencing reveals pathogenic non-coding variants in molecularly undiagnosed inherited retinal dystrophies. Hum Mol Genet 2022; 32:595-607. [PMID: 36084042 PMCID: PMC9896476 DOI: 10.1093/hmg/ddac227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 09/04/2022] [Indexed: 02/07/2023] Open
Abstract
The purpose of this paper is to identify likely pathogenic non-coding variants in inherited retinal dystrophy (IRD) genes, using genome sequencing (GS). Patients with IRD were recruited to the study and underwent comprehensive ophthalmological evaluation and GS. The results of GS were investigated through virtual gene panel analysis, and plausible pathogenic variants and clinical phenotype evaluated by the multidisciplinary team (MDT) discussion. For unsolved patients in whom a specific gene was suspected to harbor a missed pathogenic variant, targeted re-analysis of non-coding regions was performed on GS data. Candidate variants were functionally tested by messenger RNA analysis, minigene or luciferase reporter assays. Previously unreported, likely pathogenic, non-coding variants in 7 genes (PRPF31, NDP, IFT140, CRB1, USH2A, BBS10 and GUCY2D), were identified in 11 patients. These were shown to lead to mis-splicing (PRPF31, IFT140, CRB1 and USH2A) or altered transcription levels (BBS10 and GUCY2D). MDT-led, phenotype-driven, non-coding variant re-analysis of GS is effective in identifying the missing causative alleles.
Collapse
Affiliation(s)
- Malena Daich Varela
- UCL Institute of Ophthalmology, London EC1V 9EL, UK,Moorfields Eye Hospital, London EC1V 2PD, UK
| | | | - Fabiana Motta
- UCL Institute of Ophthalmology, London EC1V 9EL, UK,Department of Ophthalmology, Universidade Federal de Sao Paulo, Sao Paulo 04021001, Brazil
| | - Neringa Jurkute
- UCL Institute of Ophthalmology, London EC1V 9EL, UK,Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Jamie M Ellingford
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, St Mary’s Hospital, Manchester M13 9WL, UK,Division of Evolution and Genomic Sciences, Neuroscience and Mental Health Domain, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel, Basel 4031, Switzerland,Department of Ophthalmology, University of Basel, Basel 4031, Switzerland,Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | | | | | - Lucas Janeschitz-Kriegl
- Institute of Molecular and Clinical Ophthalmology Basel, Basel 4031, Switzerland,Department of Ophthalmology, University of Basel, Basel 4031, Switzerland
| | - Karolina Kaminska
- Institute of Molecular and Clinical Ophthalmology Basel, Basel 4031, Switzerland,Department of Ophthalmology, University of Basel, Basel 4031, Switzerland
| | - Francesca Cancellieri
- Institute of Molecular and Clinical Ophthalmology Basel, Basel 4031, Switzerland,Department of Ophthalmology, University of Basel, Basel 4031, Switzerland
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology Basel, Basel 4031, Switzerland,Department of Ophthalmology, University of Basel, Basel 4031, Switzerland
| | - Eva Lenassi
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, St Mary’s Hospital, Manchester M13 9WL, UK,Division of Evolution and Genomic Sciences, Neuroscience and Mental Health Domain, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | | | | | - Graeme Black
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, St Mary’s Hospital, Manchester M13 9WL, UK,Division of Evolution and Genomic Sciences, Neuroscience and Mental Health Domain, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel, Basel 4031, Switzerland,Department of Ophthalmology, University of Basel, Basel 4031, Switzerland,Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | | | - Michel Michaelides
- UCL Institute of Ophthalmology, London EC1V 9EL, UK,Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Omar A Mahroo
- UCL Institute of Ophthalmology, London EC1V 9EL, UK,Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, London EC1V 9EL, UK,Moorfields Eye Hospital, London EC1V 2PD, UK,University of California, San Francisco, CA 94607, USA
| | - Andrew R Webster
- UCL Institute of Ophthalmology, London EC1V 9EL, UK,Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Gavin Arno
- To whom correspondence should be addressed at: UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1 9EL, UK. Tel: +44 2076086971;
| |
Collapse
|
27
|
Haq W, Basavaraju S, Speck A, Zrenner E. Nature-inspired saccadic-like electrical stimulation paradigm promotes sustained retinal ganglion cell responses by spatiotemporally alternating activation of contiguous multi-electrode patterns. J Neural Eng 2022; 19. [PMID: 36066085 DOI: 10.1088/1741-2552/ac8ad0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/18/2022] [Indexed: 11/12/2022]
Abstract
Objective. Retinal electrical stimulation using multi-electrode arrays (MEAs) aims to restore visual object perception in blind patients. However, the rate and duration of the artificial visual sensations are limited due to the rapid response decay of the stimulated neurons. Hence, we investigated a novel nature-inspired saccadic-like stimulation paradigm (biomimetic) to evoke sustained retinal responses. For implementation, the macroelectrode was replaced by several contiguous microelectrodes and activated non-simultaneously but alternating topologically.Approach.MEAs with hexagonally arranged electrodes were utilized to simulate and record mouse retinal ganglion cells (RGCs). Two shapes were presented electrically using MEAs: a 6e-hexagon (six hexagonally arranged 10µm electrodes; 6e-hexagon diameter: 80µm) and a double-bar (180µm spaced, 320µm in length). Electrodes of each shape were activated in three different modes (simultaneous, circular, and biomimetic ('zig-zag')), stimulating at different frequencies (1-20 Hz).Main results.The biomimetic stimulation generated enhanced RGC responses increasing the activity rate by 87.78%. In the spatiotemporal context, the electrical representation of the 6e-hexagon produced sustained and local RGC responses (∼130µm corresponding to ∼2.5° of the human visual angle) for up to 90 s at 10 Hz stimulation and resolved the electrically presented double-bar. In contrast, during conventional simultaneous stimulation, the responses were poor and declined within seconds. Similarly, the applicability of the biomimetic mode for retinal implants (7 × 8 pixels) was successfully demonstrated. An object shape impersonating a smile was presented electrically, and the recorded data were used to emulate the implant's performance. The spatiotemporal pixel mapping of the activity produced a complete retinal image of the smile.Significance.The application of electrical stimulation in the biomimetic mode produced locally enhanced RGC responses with significantly reduced fading effects and yielded advanced spatiotemporal performance reflecting the presented electrode shapes in the mapped activity imprint. Therefore, it is likely that the RGC responses persist long enough to evoke visual perception and generate a seamless image, taking advantage of the flicker fusion. Hence, replacing the implant's macroelectrodes with microelectrodes and their activation in a topologically alternating biomimetic fashion may overcome the patient's perceptual image fading, thereby enhancing the spatiotemporal characteristics of artificial vision.
Collapse
Affiliation(s)
- Wadood Haq
- Neuroretinal Electrophysiology and Imaging, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 5-7, D-72076 Tübingen, Germany
| | - Sunetra Basavaraju
- Neuroretinal Electrophysiology and Imaging, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 5-7, D-72076 Tübingen, Germany
| | - Achim Speck
- Neuroretinal Electrophysiology and Imaging, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 5-7, D-72076 Tübingen, Germany
| | - Eberhart Zrenner
- Neuroretinal Electrophysiology and Imaging, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 5-7, D-72076 Tübingen, Germany
| |
Collapse
|
28
|
Elnabawy RH, Abdennadher S, Hellwich O, Eldawlatly S. PVGAN: A generative adversarial network for object simplification in prosthetic vision. J Neural Eng 2022; 19. [PMID: 35981530 DOI: 10.1088/1741-2552/ac8acf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/18/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE By means of electrical stimulation of the visual system, visual prostheses provide promising solution for blind patients through partial restoration of their vision. Despite the great success achieved so far in this field, the limited resolution of the perceived vision using these devices hinders the ability of visual prostheses users to correctly recognize viewed objects. Accordingly, we propose a deep learning approach based on Generative Adversarial Networks (GANs), termed PVGAN, to enhance object recognition for the implanted patients by representing objects in the field of view based on a corresponding simplified clip art version. APPROACH To assess the performance, an axon map model was used to simulate prosthetic vision in experiments involving normally-sighted participants. In these experiments, four types of image representation were examined. The first and second types comprised presenting phosphene simulation of real images containing the actual high-resolution object, and presenting phosphene simulation of the real image followed by the clip art image, respectively. The other two types were utilized to evaluate the performance in the case of electrode dropout, where the third type comprised presenting phosphene simulation of only clip art images without electrode dropout, while the fourth type involved clip art images with electrode dropout. MAIN RESULTS The performance was measured through three evaluation metrics which are the accuracy of the participants in recognizing the objects, the time taken by the participants to correctly recognize the object, and the confidence level of the participants in the recognition process. Results demonstrate that representing the objects using clip art images generated by the PVGAN model results in a significant enhancement in the speed and confidence of the subjects in recognizing the objects. SIGNIFICANCE These results demonstrate the utility of using GANs in enhancing the quality of images perceived using prosthetic vision.
Collapse
Affiliation(s)
- Reham H Elnabawy
- Digital Media Engineering and Technology, German University in Cairo, German University in Cairo Campus, 5th Settlement, New Cairo, Cairo, Egypt, Cairo, 11835, EGYPT
| | - Slim Abdennadher
- Computer Science and Engineering, German University in Cairo, German University in Cairo Campus, 5th Settlement, New Cairo, Cairo, Egypt, Cairo, 11835, EGYPT
| | - Olaf Hellwich
- Department of Computer Vision & Remote Sensing, Technische Universität Berlin, MAR 6-5 Marchstr. 23 D-10587 Berlin, Berlin, 10623, GERMANY
| | - Seif Eldawlatly
- Computer and Systems Engineering, Ain Shams University Faculty of Engineering, 1 El-sarayat st, Cairo, 11517, EGYPT
| |
Collapse
|
29
|
Li W, Haji Ghaffari D, Misra R, Weiland JD. Retinal ganglion cell desensitization is mitigated by varying parameter constant excitation pulse trains. Front Cell Neurosci 2022; 16:897146. [PMID: 36035262 PMCID: PMC9407683 DOI: 10.3389/fncel.2022.897146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/15/2022] [Indexed: 11/20/2022] Open
Abstract
Retinal prostheses partially restore vision in patients blinded by retinitis pigmentosa (RP) and age-related macular degeneration (AMD). One issue that limits the effectiveness of retinal stimulation is the desensitization of the retina response to repeated pulses. Rapid fading of percepts is reported in clinical studies. We studied the retinal output evoked by fixed pulse trains vs. pulse trains that have variable parameters pulse-to-pulse. We used the current clamp to record RGC spiking in the isolated mouse retina. Trains of biphasic current pulses at different frequencies and amplitudes were applied. The main results we report are: (1) RGC desensitization was induced by increasing stimulus frequency, but was unrelated to stimulus amplitude. Desensitization persisted when the 20 Hz stimulation pulses were applied to the retinal ganglion cells at 65 μA, 85 μA, and 105 μA. Subsequent pulses in the train evoked fewer spikes. There was no obvious desensitization when 2 Hz stimulation pulse trains were applied. (2) Blocking inhibitory GABAA receptor increased spontaneous activity but did not reduce desensitization. (3) Pulse trains with constant charge or excitation (based on strength-duration curves) but varying pulse width, amplitude, and shape increased the number of evoked spikes/pulse throughout the pulse train. This suggests that retinal desensitization can be partially overcome by introducing variability into each pulse.
Collapse
Affiliation(s)
- Wennan Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Dorsa Haji Ghaffari
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Rohit Misra
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - James D. Weiland
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: James D. Weiland
| |
Collapse
|
30
|
Cha S, Ahn J, Jeong Y, Lee YH, Kim HK, Lee D, Yoo Y, Goo YS. Stage-Dependent Changes of Visual Function and Electrical Response of the Retina in the rd10 Mouse Model. Front Cell Neurosci 2022; 16:926096. [PMID: 35936494 PMCID: PMC9345760 DOI: 10.3389/fncel.2022.926096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022] Open
Abstract
One of the critical prerequisites for the successful development of retinal prostheses is understanding the physiological features of retinal ganglion cells (RGCs) in the different stages of retinal degeneration (RD). This study used our custom-made rd10 mice, C57BL/6-Pde6bem1(R560C)Dkl/Korl mutated on the Pde6b gene in C57BL/6J mouse with the CRISPR/Cas9-based gene-editing method. We selected the postnatal day (P) 45, P70, P140, and P238 as representative ages for RD stages. The optomotor response measured the visual acuity across degeneration stages. At P45, the rd10 mice exhibited lower visual acuity than wild-type (WT) mice. At P140 and older, no optomotor response was observed. We classified RGC responses to the flashed light into ON, OFF, and ON/OFF RGCs via in vitro multichannel recording. With degeneration, the number of RGCs responding to the light stimulation decreased in all three types of RGCs. The OFF response disappeared faster than the ON response with older postnatal ages. We elicited RGC spikes with electrical stimulation and analyzed the network-mediated RGC response in the rd10 mice. Across all postnatal ages, the spikes of rd10 RGCs were less elicited by pulse amplitude modulation than in WT RGCs. The ratio of RGCs showing multiple peaks of spike burst increased in older ages. The electrically evoked RGC spikes by the pulse amplitude modulation differ across postnatal ages. Therefore, degeneration stage-dependent stimulation strategies should be considered for developing retinal prosthesis and successful vision restoration.
Collapse
Affiliation(s)
- Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Yurim Jeong
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Yong Hee Lee
- Department of Biochemistry, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Hyong Kyu Kim
- Department of Microbiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Yongseok Yoo
- Department of Electronics Engineering, Incheon National University, Incheon, South Korea
- *Correspondence: Yongseok Yoo,
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
- Yong Sook Goo,
| |
Collapse
|
31
|
Copper–Ruthenium Composite as Perspective Material for Bioelectrodes: Laser-Assisted Synthesis, Biocompatibility Study, and an Impedance-Based Cellular Biosensor as Proof of Concept. BIOSENSORS 2022; 12:bios12070527. [PMID: 35884330 PMCID: PMC9313201 DOI: 10.3390/bios12070527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Copper is an inexpensive material that has found wide application in electronics due to its remarkable electric properties. However, the high toxicity of both copper and copper oxide imposes restrictions on the application of this metal as a material for bioelectronics. One way to increase the biocompatibility of pure copper while keeping its remarkable properties is to use copper-based composites. In the present study, we explored a new copper–ruthenium composite as a potential biocompatible material for bioelectrodes. Sample electrodes were obtained by subsequent laser deposition of copper and ruthenium on glass plates from a solution containing salts of these metals. The fabricated Cu–Ru electrodes exhibit high effective area and their impedance properties can be described by simple R-CPE equivalent circuits that make them perspective for sensing applications. Finally, we designed a simple impedance cell-based biosensor using this material that allows us to distinguish between dead and alive HeLa cells.
Collapse
|
32
|
Jeganathan VSE, Lin CE, Son H, Krishnagiri DS, Wei Y, Weiland JD. Integration of artificial vision with non-visual peripheral cues to guide mobility. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:5136-5139. [PMID: 36086298 DOI: 10.1109/embc48229.2022.9871117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Visual prostheses can improve vision for people with severe vision loss, but low image resolution and lack of peripheral vision limit their effectiveness. To address both problems, we developed a prototype advanced video processing system with a headworn depth camera and feature detection capabilities. We used computer vision algorithms to detect landmarks representing a goal and plan a path towards the goal, while removing unnecessary distractors from the video. If the landmark fell outside the visual prosthesis's field-of-view (20 degrees central vision) but within the camera's field-of-view (70 degrees), we provided vibrational cues to the left or right temple to guide the user in pointing the camera. We evaluated an Argus II retinal prosthesis participant with significant vision loss who could not complete the task (finding a door in a large room) with either his remaining vision or his retinal prosthesis. His success rate improved to 57%, 37.5%, and 100% while requiring 52.3, 83.0, and 58.8 seconds to reach the door using only vibration feedback, retinal prosthesis with modified video, and retinal prosthesis with modified video and vibration feedback, respectively. This case study demonstrates a possible means of augmenting artificial vision. Clinical Relevance- Retinal prostheses can be enhanced by adding computer vision and non-visual cues.
Collapse
|
33
|
Fauvel T, Chalk M. Human-in-the-loop optimization of visual prosthetic stimulation. J Neural Eng 2022; 19. [PMID: 35667363 DOI: 10.1088/1741-2552/ac7615] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/06/2022] [Indexed: 11/12/2022]
Abstract
Retinal prostheses are a promising strategy to restore sight to patients with retinal degenerative diseases. These devices compensate for the loss of photoreceptors by electrically stimulating neurons in the retina. Currently, the visual function that can be recovered with such devices is very limited. This is due, in part, to current spread, unintended axonal activation, and the limited resolution of existing devices. Here we show, using a recent model of prosthetic vision, that optimizing how visual stimuli are encoded by the device can help overcome some of these limitations, leading to dramatic improvements in visual perception. APPROACH We propose a strategy to do this in practice, using patients' feedback in a visual task. The main challenge of our approach comes from the fact that, typically, one only has access to a limited number of noisy responses from patients. We propose two ways to deal with this: first, we use a model of prosthetic vision to constrain and simplify the optimization. We show that, if one knew the parameters of this model for a given patient, it would be possible to greatly improve their perceptual performance. Second we propose a preferential Bayesian optimization to efficiently learn these model parameters for each patient, using minimal trials. MAIN RESULTS To test our approach, we presented healthy subjects with visual stimuli generated by a recent model of prosthetic vision, to replicate the perceptual experience of patients fitted with an implant. Our optimization procedure led to significant and robust improvements in perceived image quality, that transferred to increased performance in other tasks. SIGNIFICANCE Importantly, our strategy is agnostic to the type of prosthesis and thus could readily be implemented in existing implants.
Collapse
Affiliation(s)
- Tristan Fauvel
- Institut de la Vision, INSERM, 17 Rue Moreau, Paris, Île-de-France, 75014, FRANCE
| | - Matthew Chalk
- Institut de l a Vision, INSERM, 17 Rue Moreau, Paris, 75014, FRANCE
| |
Collapse
|
34
|
Van Gelder RN, Chiang MF, Dyer MA, Greenwell TN, Levin LA, Wong RO, Svendsen CN. Regenerative and restorative medicine for eye disease. Nat Med 2022; 28:1149-1156. [PMID: 35715505 PMCID: PMC10718186 DOI: 10.1038/s41591-022-01862-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022]
Abstract
Causes of blindness differ across the globe; in higher-income countries, most blindness results from the degeneration of specific classes of cells in the retina, including retinal pigment epithelium (RPE), photoreceptors, and retinal ganglion cells. Advances over the past decade in retinal regenerative medicine have allowed each of these cell types to be produced ex vivo from progenitor stem cells. Here, we review progress in applying these technologies to cell replacement - with the goal of vision restoration in degenerative disease. We discuss the landscape of human clinical trials for RPE transplantation and advanced preclinical studies for other cell types. We also review progress toward in situ repair of retinal degeneration using endogenous progenitor cells. Finally, we provide a high-level overview of progress toward prosthetic ocular vision restoration, including advanced photovoltaic devices, opsin-based gene therapy, and small-molecule photoswitches. Progress in each of these domains is at or near the human clinical-trial stage, bringing the audacious goal of vision restoration within sight.
Collapse
Affiliation(s)
- Russell N Van Gelder
- Karalis-Johnson Retina Center, Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA.
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA.
- Department of Pathology and Laboratory Medicine, University of Washington School of Medicine, Seattle, WA, USA.
- Roger and Angie Karalis Johnson Retina Center, University of Washington School of Medicine, Seattle, WA, USA.
| | - Michael F Chiang
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude's Research Hospital, Memphis, TN, USA
| | - Thomas N Greenwell
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Leonard A Levin
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Rachel O Wong
- Karalis-Johnson Retina Center, Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
35
|
Chaffiol A, Provansal M, Joffrois C, Blaize K, Labernede G, Goulet R, Burban E, Brazhnikova E, Duebel J, Pouget P, Sahel JA, Picaud S, Arcizet F, Gauvain G. In vivo optogenetic stimulation of the primate retina activates the visual cortex after long-term transduction. Mol Ther Methods Clin Dev 2022; 24:1-10. [PMID: 34977267 PMCID: PMC8671818 DOI: 10.1016/j.omtm.2021.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/19/2021] [Indexed: 11/26/2022]
Abstract
Over the last 15 years, optogenetics has changed fundamental research in neuroscience and is now reaching toward therapeutic applications. Vision restoration strategies using optogenetics are now at the forefront of these new clinical opportunities. But applications to human patients suffering from retinal diseases leading to blindness raise important concerns on the long-term functional expression of optogenes and the efficient signal transmission to higher visual centers. Here, we demonstrate in non-human primates continued expression and functionality at the retina level ∼20 months after delivery of our construct. We also performed in vivo recordings of visually evoked potentials in the primary visual cortex of anesthetized animals. Using synaptic blockers, we isolated the in vivo cortical activation resulting from the direct optogenetic stimulation of primate retina. In conclusion, our work indicates long-term transgene expression and transmission of the signal generated in the macaque retina to the visual cortex, two important features for future clinical applications.
Collapse
Affiliation(s)
- Antoine Chaffiol
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 75012 Paris, France
| | - Matthieu Provansal
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 75012 Paris, France
| | - Corentin Joffrois
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 75012 Paris, France
| | - Kévin Blaize
- Institut de Neurosciences de la Timone, UMR 7289 Centre National de la Recherche Scientifique and Aix-Marseille Université, 13385 Marseille Cedex 05, France
| | - Guillaume Labernede
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 75012 Paris, France
| | - Ruben Goulet
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 75012 Paris, France
| | - Emma Burban
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 75012 Paris, France
| | - Elena Brazhnikova
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 75012 Paris, France
| | - Jens Duebel
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 75012 Paris, France
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
| | - Pierre Pouget
- INSERM 1127, CNRS 7225, Institut du Cerveau et de la Moelle Épinière, Sorbonne Université, 75013 Paris, France
| | - José Alain Sahel
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 75012 Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Serge Picaud
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 75012 Paris, France
| | - Fabrice Arcizet
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 75012 Paris, France
| | - Gregory Gauvain
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 75012 Paris, France
| |
Collapse
|
36
|
Bellapianta A, Cetkovic A, Bolz M, Salti A. Retinal Organoids and Retinal Prostheses: An Overview. Int J Mol Sci 2022; 23:2922. [PMID: 35328339 PMCID: PMC8953078 DOI: 10.3390/ijms23062922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 01/27/2023] Open
Abstract
Despite the progress of modern medicine in the last decades, millions of people diagnosed with retinal dystrophies (RDs), such as retinitis pigmentosa, or age-related diseases, such as age-related macular degeneration, are suffering from severe visual impairment or even legal blindness. On the one hand, the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) and the progress of three-dimensional (3D) retinal organoids (ROs) technology provide a great opportunity to study, understand, and even treat retinal diseases. On the other hand, research advances in the field of electronic retinal prosthesis using inorganic photovoltaic polymers and the emergence of organic semiconductors represent an encouraging therapeutical strategy to restore vision to patients at the late onset of the disease. This review will provide an overview of the latest advancement in both fields. We first describe the retina and the photoreceptors, briefly mention the most used RD animal models, then focus on the latest RO differentiation protocols, carry out an overview of the current technology on inorganic and organic retinal prostheses to restore vision, and finally summarize the potential utility and applications of ROs.
Collapse
Affiliation(s)
| | | | | | - Ahmad Salti
- Center for Medical Research, Faculty of Medicine, University Clinic for Ophthalmology and Optometry, Johannes Kepler University Linz, 4020 Linz, Austria; (A.B.); (A.C.); (M.B.)
| |
Collapse
|
37
|
Greco JA, Wagner NL, Jensen RJ, Lawrence DB, Ranaghan MJ, Sandberg MN, Sandberg DJ, Birge RR. Activation of retinal ganglion cells using a biomimetic artificial retina. J Neural Eng 2021; 18. [PMID: 34768254 DOI: 10.1088/1741-2552/ac395c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/12/2021] [Indexed: 11/12/2022]
Abstract
Objective.Biomimetic protein-based artificial retinas offer a new paradigm for restoring vision for patients blinded by retinal degeneration. Artificial retinas, comprised of an ion-permeable membrane and alternating layers of bacteriorhodopsin (BR) and a polycation binder, are assembled using layer-by-layer electrostatic adsorption. Upon light absorption, the oriented BR layers generate a unidirectional proton gradient. The main objective of this investigation is to demonstrate the ability of the ion-mediated subretinal artificial retina to activate retinal ganglion cells (RGCs) of degenerated retinal tissue.Approach. Ex vivoextracellular recording experiments with P23H line 1 rats are used to measure the response of RGCs following selective stimulation of our artificial retina using a pulsed light source. Single-unit recording is used to evaluate the efficiency and latency of activation, while a multielectrode array (MEA) is used to assess the spatial sensitivity of the artificial retina films.Main results.The activation efficiency of the artificial retina increases with increased incident light intensity and demonstrates an activation latency of ∼150 ms. The results suggest that the implant is most efficient with 200 BR layers and can stimulate the retina using light intensities comparable to indoor ambient light. Results from using an MEA show that activation is limited to the targeted receptive field.Significance.The results of this study establish potential effectiveness of using an ion-mediated artificial retina to restore vision for those with degenerative retinal diseases, including retinitis pigmentosa.
Collapse
Affiliation(s)
- Jordan A Greco
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, United States of America
| | - Nicole L Wagner
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, United States of America.,Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, United States of America
| | - Ralph J Jensen
- VA Boston Healthcare System, 150 South Huntington Avenue, Boston, MA 02130, United States of America
| | - Daniel B Lawrence
- University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06032, United States of America
| | - Matthew J Ranaghan
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, United States of America
| | - Megan N Sandberg
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, United States of America
| | - Daniel J Sandberg
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, United States of America
| | - Robert R Birge
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, United States of America.,Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, United States of America
| |
Collapse
|
38
|
Esquenazi RB, Meier K, Beyeler M, Boynton GM, Fine I. Learning to see again: Perceptual learning of simulated abnormal on- off-cell population responses in sighted individuals. J Vis 2021; 21:10. [PMID: 34935878 PMCID: PMC8727313 DOI: 10.1167/jov.21.13.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Many forms of artificial sight recovery, such as electronic implants and optogenetic proteins, generally cause simultaneous, rather than complementary firing of on- and off-center retinal cells. Here, using virtual patients—sighted individuals viewing distorted input—we examine whether plasticity might compensate for abnormal neuronal population responses. Five participants were dichoptically presented with a combination of original and contrast-reversed images. Each image (I) and its contrast-reverse (Iʹ) was filtered using a radial checkerboard (F) in Fourier space and its inverse (Fʹ). [I * F′] + [Iʹ * F] was presented to one eye, and [I * F] + [Iʹ * F′] was presented to the other, such that regions of the image that produced on-center responses in one eye produced off-center responses in the other eye, and vice versa. Participants continuously improved in a naturalistic object discrimination task over 20 one-hour sessions. Pre-training and post-training tests suggest that performance improvements were due to two learning processes: learning to recognize objects with reduced visual information and learning to suppress contrast-reversed image information in a non–eye-selective manner. These results suggest that, with training, it may be possible to adapt to the unnatural on- and off-cell population responses produced by electronic and optogenetic sight recovery technologies.
Collapse
Affiliation(s)
| | - Kimberly Meier
- Department of Psychology, University of Washington, USA.,
| | - Michael Beyeler
- Department of Computer Science, University of California, Santa Barbara, Santa Barbara, California, USA.,Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, USA.,
| | | | - Ione Fine
- Department of Psychology, University of Washington, USA.,
| |
Collapse
|
39
|
Ezeokafor I, Upadhya A, Shetty S. Neurosensory Prosthetics: An Integral Neuromodulation Part of Bioelectronic Device. Front Neurosci 2021; 15:671767. [PMID: 34867141 PMCID: PMC8637173 DOI: 10.3389/fnins.2021.671767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
Bioelectronic medicines (BEMs) constitute a branch of bioelectronic devices (BEDs), which are a class of therapeutics that combine neuroscience with molecular biology, immunology, and engineering technologies. Thus, BEMs are the culmination of thought processes of scientists of varied fields and herald a new era in the treatment of chronic diseases. BEMs work on the principle of neuromodulation of nerve stimulation. Examples of BEMs based on neuromodulation are those that modify neural circuits through deep brain stimulation, vagal nerve stimulation, spinal nerve stimulation, and retinal and auditory implants. BEDs may also serve as diagnostic tools by mimicking human sensory systems. Two examples of in vitro BEDs used as diagnostic agents in biomedical applications based on in vivo neurosensory circuits are the bioelectronic nose and bioelectronic tongue. The review discusses the ever-growing application of BEDs to a wide variety of health conditions and practices to improve the quality of life.
Collapse
Affiliation(s)
| | - Archana Upadhya
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal (SVKM) Narsee Monjee Institute of Management Studies (NMiMS) (SVKM’S NMiMS), Mumbai, India
| | - Saritha Shetty
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal (SVKM) Narsee Monjee Institute of Management Studies (NMiMS) (SVKM’S NMiMS), Mumbai, India
| |
Collapse
|
40
|
Wang L, Marek N, Steffen J, Pollmann S. Perceptual Learning of Object Recognition in Simulated Retinal Implant Perception - The Effect of Video Training. Transl Vis Sci Technol 2021; 10:22. [PMID: 34661623 PMCID: PMC8525839 DOI: 10.1167/tvst.10.12.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinal implants (RIs) provide new vision for patients suffering from photoreceptor degeneration in the retina. The limited vision gained by RI, however, leaves room for improvement by training regimes. Methods Two groups of normal-sighted participants were respectively trained with videos or still images of daily objects in a labeling task. Object appearance was simulated to resemble RI perception. In Experiment 1, the training effect was measured as the change in performance during the training, and the same labeling task was conducted after 1 week to test the retention. In Experiment 2 with a different pool of participants, a reverse labeling task was included before (pre-test) and after the training (post-test) to show if the training effect could be generalized into a different task context. Results Both groups showed improved object recognition through training that was maintained for a week, and the video group showed better improvement (Experiment 1). Both groups showed improved object recognition in a different task that was maintained for a week, but the video group did not show better retention than the image group (Experiment 2). Conclusions Training with video materials leads to more improvement than training with still images in simulated RI perception, but this better improvement was specific to the trained task. Translational Relevance We recommend videos as better training materials than still images for patients with RIs to improve object recognition when the task-goal is highly specific. We also propose here that achieving highly specific training goals runs the risk of limiting the generalization of the training effects.
Collapse
Affiliation(s)
- Lihui Wang
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Psychology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Nico Marek
- Department of Psychology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Johannes Steffen
- Department of Simulation and Graphics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Stefan Pollmann
- Department of Psychology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing, China
| |
Collapse
|
41
|
Assessing Photoreceptor Status in Retinal Dystrophies: From High-Resolution Imaging to Functional Vision. Am J Ophthalmol 2021; 230:12-47. [PMID: 34000280 PMCID: PMC8682761 DOI: 10.1016/j.ajo.2021.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 01/05/2023]
Abstract
Purpose To describe the value of integrating phenotype/genotype data, disease staging, and evaluation of functional vision in patient-centered management of retinal dystrophies. Methods (1) Cross-sectional structure-function and retrospective longitudinal studies to assess the correlations between standard fundus autofluorescence (FAF), optical coherence tomography, visual acuity (VA), and perimetry (visual field [VF]) examinations to evaluate photoreceptor functional loss in a cohort of patients with rod-cone dystrophy (RCD); (2) flood-illumination adaptive optics (FIAO) imaging focusing on photoreceptor misalignment and orientation of outer segments; and (3) evaluation of the impact of visual impairment in daily life activities, based on functional (visual and mobility) vision assessment in a naturalistic environment in visually impaired subjects with RCD and subjects treated with LuxturnaⓇ for RPE65-related Leber congenital amaurosis before and after therapy. Results The results of the cross-sectional transversal study showed that (1) VA and macular sensitivity were weakly correlated with the structural variables; and (2) functional impairment (VF) was correlated with reduction of anatomical markers of photoreceptor structure and increased width of autofluorescent ring. The dimensions of the ring of increased FAF evolved faster. Other criteria that differed among groups were the lengths of the ellipsoid zone, the external limiting membrane, and the foveal thickness. FIAO revealed a variety of phenotypes: paradoxical visibility of foveal cones; heterogeneous brightness of cones; dim, inner segment–like, and RPE-like mosaic. Directional illumination by varying orientation of incident light (Stiles-Crawford effect) and the amount of side illumination (gaze-dependent imaging) affected photoreceptor visibility. Mobility assessment under different lighting conditions showed correlation with VF, VA, contrast sensitivity (CS), and dark adaptation, with different predictive values depending on mobility study paradigms and illumination level. At high illumination level (235 lux), VF was a predictor for all mobility performance models. Under low illumination (1 and 2 lux), VF was the most significant predictor of mobility performance variables, while CS best explained the number of collisions and segments. In subjects treated with LuxturnaⓇ, a very favorable impact on travel speed and reduction in the number of collisions, especially at low luminance, was observable 6 months following injection, in both children and adults. Conclusions Our results suggest the benefit of development and implementation of quantitative and reproducible tools to evaluate the status of photoreceptors and the impact of both visual impairment and novel therapies in real-life conditions. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
|
42
|
Hallum LE, Dakin SC. Retinal Implantation of Electronic Vision Prostheses to Treat Retinitis Pigmentosa: A Systematic Review. Transl Vis Sci Technol 2021; 10:8. [PMID: 34383874 PMCID: PMC8362638 DOI: 10.1167/tvst.10.10.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose Retinitis pigmentosa (RP) is a hereditary disease causing photoreceptor degeneration and permanent vision loss. Retinal implantation of a stimulating electrode array is a new treatment for RP, but quantification of its efficacy is the subject of ongoing work. This review evaluates vision-related outcomes resulting from retinal implantation in participants with RP. Methods We searched MEDLINE and Embase for journal articles published since January 1, 2015. We selected articles describing studies of implanted participants that reported the postimplantation measurement of vision. We extracted study information including design, participants’ residual vision, comparators, and assessed outcomes. To assess the risk of bias, we used signaling questions and a target trial. Results Our search returned 425 abstracts. We reviewed the full text of 34 articles. We judged all studies to be at high risk of bias owing to the study design or experimental conduct. Regarding design, studies lacked the measures that typical clinical trials take to protect against bias (e.g., control groups and masking). Regarding experimental conduct, outcome measures were rarely comparable before and after implantation, and psychophysical methods were prone to bias (subjective, not forced choice, methods). The most common comparison found was between postimplantation visual function with the device powered off versus on. This comparison is at high risk of bias. Conclusions There is a need for high-quality evidence of efficacy of retinal implantation to treat RP. Translational Relevance For patients and clinicians to make informed choices about RP treatment, visual function restored by retinal implantation must be properly quantified and reported.
Collapse
Affiliation(s)
- Luke E Hallum
- Department of Mechanical Engineering, University of Auckland, Auckland, New Zealand
| | - Steven C Dakin
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
43
|
Petoe MA, Titchener SA, Kolic M, Kentler WG, Abbott CJ, Nayagam DAX, Baglin EK, Kvansakul J, Barnes N, Walker JG, Epp SB, Young KA, Ayton LN, Luu CD, Allen PJ. A Second-Generation (44-Channel) Suprachoroidal Retinal Prosthesis: Interim Clinical Trial Results. Transl Vis Sci Technol 2021; 10:12. [PMID: 34581770 PMCID: PMC8479573 DOI: 10.1167/tvst.10.10.12] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To report the initial safety and efficacy results of a second-generation (44-channel) suprachoroidal retinal prosthesis at 56 weeks after device activation. Methods Four subjects, with advanced retinitis pigmentosa and bare-light perception only, enrolled in a phase II trial (NCT03406416). A 44-channel electrode array was implanted in a suprachoroidal pocket. Device stability, efficacy, and adverse events were investigated at 12-week intervals. Results All four subjects were implanted successfully and there were no device-related serious adverse events. Color fundus photography indicated a mild postoperative subretinal hemorrhage in two recipients, which cleared spontaneously within 2 weeks. Optical coherence tomography confirmed device stability and position under the macula. Screen-based localization accuracy was significantly better for all subjects with device on versus device off. Two subjects were significantly better with the device on in a motion discrimination task at 7, 15, and 30°/s and in a spatial discrimination task at 0.033 cycles per degree. All subjects were more accurate with the device on than device off at walking toward a target on a modified door task, localizing and touching tabletop objects, and detecting obstacles in an obstacle avoidance task. A positive effect of the implant on subjects' daily lives was confirmed by an orientation and mobility assessor and subject self-report. Conclusions These interim study data demonstrate that the suprachoroidal prosthesis is safe and provides significant improvements in functional vision, activities of daily living, and observer-rated quality of life. Translational Relevance A suprachoroidal prosthesis can provide clinically useful artificial vision while maintaining a safe surgical profile.
Collapse
Affiliation(s)
- Matthew A Petoe
- Bionics Institute, East Melbourne, Victoria, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, Victoria, Australia
| | - Samuel A Titchener
- Bionics Institute, East Melbourne, Victoria, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, Victoria, Australia
| | - Maria Kolic
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - William G Kentler
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Carla J Abbott
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - David A X Nayagam
- Bionics Institute, East Melbourne, Victoria, Australia.,Department of Pathology, University of Melbourne, St. Vincent's Hospital, Victoria, Australia
| | - Elizabeth K Baglin
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Jessica Kvansakul
- Bionics Institute, East Melbourne, Victoria, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, Victoria, Australia
| | - Nick Barnes
- Research School of Engineering, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Janine G Walker
- Research School of Engineering, Australian National University, Canberra, Australian Capital Territory, Australia.,Health & Biosecurity, CSIRO, Canberra, Australian Capital Territory, Australia
| | | | - Kiera A Young
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Lauren N Ayton
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia.,Department of Optometry and Vision Sciences, University of Melbourne, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Penelope J Allen
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
44
|
Faber H, Ernemann U, Sachs H, Gekeler F, Danz S, Koitschev A, Besch D, Bartz-Schmidt KU, Zrenner E, Stingl K, Kernstock C. CT Assessment of Intraorbital Cable Movement of Electronic Subretinal Prosthesis in Three Different Surgical Approaches. Transl Vis Sci Technol 2021; 10:16. [PMID: 34264295 PMCID: PMC8299430 DOI: 10.1167/tvst.10.8.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Purpose Electronic retinal implants restore some visual perception in patients blind from retinitis pigmentosa. Eye movements cause mechanical stress in intraorbital power supply cables leading to cable breaks. By using computer tomography (CT) scans at the extreme positions of the four cardinal gaze directions, this study determined in vivo, which of three surgical routing techniques results in minimal bending radius variation and favors durability. Methods Nine patients received the first-generation subretinal implant Alpha IMS (Retina Implant AG, Reutlingen, Germany) in one eye. Three techniques for intraorbital cable routing were used (straight cable route (A), parabulbar loop (B), and encircling band (C)), each in three patients. All patients underwent computer tomography of the orbital region. The bending radius of the intraorbital cable was measured with the DICOM viewer Osirix v4.1.2 (Pixmeo SARL, Bernex, Switzerland) and served as indicator for mechanical stress. Results Average bending radius variation was 87% for method A, 11% for method B, and 16% for method C. Methods A and B (P = 0.005) and methods A and C (P = 0.007) differed significantly, while method B and C showed no statistical difference (P = 0.07). Conclusions Compared to straight routes, arcuated cable routes significantly reduce cable movement and bending. Due to an easier surgical procedure, a parabulbar loop is the preferred method to minimize bending radius variation and prolong survival time of electronic subretinal implants. Translational Relevance CT analysis of cable bending of implanted medical devices allows to determine which surgical routing technique favors durability in vivo.
Collapse
Affiliation(s)
- Hanna Faber
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Ulrike Ernemann
- Department of Diagnostic and Interventional Neuroradiology, Radiological Clinic, University of Tuebingen, Tuebingen, Germany
| | - Helmut Sachs
- Ophthalmology Clinic, Städtisches Klinikum Dresden Friedrichstadt, Dresden, Germany
| | - Florian Gekeler
- Ophthalmology Clinic, Klinikum Stuttgart, Stuttgart, Germany
| | - Søren Danz
- Radiologische Praxis Hofbauer Danz Fischer, Sindelfingen, Germany
| | - Assen Koitschev
- Clinic for Ear, Nose and Throat Disorders, Plastic Surgery, Klinikum Stuttgart, Stuttgart, Germany
| | - Dorothea Besch
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | | | - Eberhart Zrenner
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany.,Institute for Ophthalmic Research, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Katarina Stingl
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany.,Center of Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany
| | - Christoph Kernstock
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
45
|
Sadeghi R, Kartha A, Barry MP, Bradley C, Gibson P, Caspi A, Roy A, Dagnelie G. Glow in the dark: Using a heat-sensitive camera for blind individuals with prosthetic vision. Vision Res 2021; 184:23-29. [PMID: 33780753 PMCID: PMC8137663 DOI: 10.1016/j.visres.2021.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 02/12/2021] [Accepted: 02/28/2021] [Indexed: 11/29/2022]
Abstract
To date, retinal implants are the only available treatment for blind individuals with retinal degenerations such as retinitis pigmentosa. Argus II is the only visual implant with FDA approval, with more than 300 users worldwide. Argus II stimulation is based on a grayscale image coming from a head-mounted visible-light camera. Normally, the 11°×19° field of view of the Argus II user is full of objects that may elicit similar phosphenes. The prosthesis cannot meaningfully convey so much visual information, and the percept is reduced to an ambiguous impression of light. This study is aimed at investigating the efficacy of simplifying the video input in real-time using a heat-sensitive camera. Data were acquired from four Argus II users in 5 stationary tasks with either hot objects or human targets as stimuli. All tasks were of m-alternative forced choice design where precisely one of the m≥2 response alternatives was defined to be "correct" by the experimenter. To compare performance with heat-sensitive and normal cameras across all tasks, regardless of m, we used an extension of signal detection theory to latent variables, estimating person ability and item difficulty in d' units. Results demonstrate that subject performance was significantly better across all tasks with the thermal camera compared to the regular Argus II camera. The future addition of thermal imaging to devices with very poor spatial resolution may have significant real-life benefits for orientation, personal safety, and social interactions, thereby improving quality of life.
Collapse
Affiliation(s)
- Roksana Sadeghi
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Arathy Kartha
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Chris Bradley
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Paul Gibson
- Advanced Medical Electronics Corporation, Maple Grove, MN, USA
| | - Avi Caspi
- Second Sight Medical Products, Sylmar, CA, USA; Jerusalem College of Technology, Jerusalem, Israel
| | - Arup Roy
- Second Sight Medical Products, Sylmar, CA, USA
| | - Gislin Dagnelie
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Morimoto T, Fujikado T, Kanda H, Miyoshi T, Endo T, Nishida K, Kishima H, Saito T, Ito K, Ozawa M, Nishida K. Testing of Newly Developed Wide-Field Dual-Array Suprachoroidal-Transretinal Stimulation Prosthesis in Dogs. Transl Vis Sci Technol 2021; 10:13. [PMID: 34003947 PMCID: PMC7961109 DOI: 10.1167/tvst.10.3.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose This study was conducted to investigate the feasibility of a newly developed wide-field dual-array suprachoroidal–transretinal stimulation (STS) prosthesis in dogs and to examine its biocompatibility and stability over a 4-month period. Methods Three types of STS dual arrays were designed and tested. The STS dual-array was implanted into a scleral pocket of the left eye of six healthy beagle dogs. Ophthalmic examinations, fundus photography, fluorescein angiography (FA), electroretinography (ERG), and functional testing of this system were conducted postoperatively. The dogs were euthanatized at the end of the experiment, and their eyes were enucleated and histologically examined. Results All prostheses were successfully implanted without complications, and no serious adverse event occurred during the postoperative period. Fundus photographs and FA showed no serious damage in the retina surrounding the arrays. The ERGs recorded from the implanted eyes showed no significant differences from those from control eyes. Histological evaluations demonstrated good preservation of the retina over the array. However, system failure occurred in 50% of the dogs owing to dog-specific habits. Conclusions Implantation of this prosthesis system in dogs is feasible and can be performed without significant damage to the eye. The biocompatibility and stability of the array were good during the observation period, but the low durability of the system against dogs (not humans) is an issue to be resolved in the future. Translational Relevance This study suggests that this wide-field dual-array prosthesis might widen the visual field and might be useful for patients with retinitis pigmentosa.
Collapse
Affiliation(s)
- Takeshi Morimoto
- Department of Advanced Visual Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Fujikado
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hiroyuki Kanda
- Department of Applied Visual Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomomitsu Miyoshi
- Department of Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takao Endo
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kentaro Nishida
- Department of Advanced Visual Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toru Saito
- NIDEK, Co., Ltd., Gamagori, Aichi, Japan
| | | | | | - Kohji Nishida
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| |
Collapse
|
47
|
Corna A, Ramesh P, Jetter F, Lee MJ, Macke JH, Zeck G. Discrimination of simple objects decoded from the output of retinal ganglion cells upon sinusoidal electrical stimulation. J Neural Eng 2021; 18. [PMID: 34049288 DOI: 10.1088/1741-2552/ac0679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/28/2021] [Indexed: 11/12/2022]
Abstract
Objective. Most neuroprosthetic implants employ pulsatile square-wave electrical stimuli, which are significantly different from physiological inter-neuronal communication. In case of retinal neuroprosthetics, which use a certain type of pulsatile stimuli, reliable object and contrast discrimination by implanted blind patients remained challenging. Here we investigated to what extent simple objects can be discriminated from the output of retinal ganglion cells (RGCs) upon sinusoidal stimulation.Approach. Spatially confined objects were formed by different combinations of 1024 stimulating microelectrodes. The RGC activity in theex vivoretina of photoreceptor-degenerated mouse, of healthy mouse or of primate was recorded simultaneously using an interleaved recording microelectrode array implemented in a CMOS-based chip.Main results. We report that application of sinusoidal electrical stimuli (40 Hz) in epiretinal configuration instantaneously and reliably modulates the RGC activity in spatially confined areas at low stimulation threshold charge densities (40 nC mm-2). Classification of overlapping but spatially displaced objects (1° separation) was achieved by distinct spiking activity of selected RGCs. A classifier (regularized logistic regression) discriminated spatially displaced objects (size: 5.5° or 3.5°) with high accuracy (90% or 62%). Stimulation with low artificial contrast (10%) encoded by different stimulus amplitudes generated RGC activity, which was classified with an accuracy of 80% for large objects (5.5°).Significance. We conclude that time-continuous smooth-wave stimulation provides robust, localized neuronal activation in photoreceptor-degenerated retina, which may enable future artificial vision at high temporal, spatial and contrast resolution.
Collapse
Affiliation(s)
- Andrea Corna
- Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany.,Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Graduate School of Neural Information Processing/International Max Planck Research School, Tübingen, Germany.,Biomedical Electronics and Systems, EMCE Institute, TU Wien, Wien, Austria
| | - Poornima Ramesh
- Computational Neuroengineering, Technical University München, München, Germany.,Machine Learning in Science, University of Tübingen, Tübingen, Germany
| | - Florian Jetter
- Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany.,Graduate School of Neural Information Processing/International Max Planck Research School, Tübingen, Germany
| | - Meng-Jung Lee
- Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany.,Graduate School of Neural Information Processing/International Max Planck Research School, Tübingen, Germany
| | - Jakob H Macke
- Computational Neuroengineering, Technical University München, München, Germany.,Machine Learning in Science, University of Tübingen, Tübingen, Germany.,MPI for Intelligent Systems, Tübingen, Germany
| | - Günther Zeck
- Neurophysics, NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany.,Biomedical Electronics and Systems, EMCE Institute, TU Wien, Wien, Austria
| |
Collapse
|
48
|
Kare SS, Rountree CM, Troy JB, Finan JD, Saggere L. Neuromodulation using electroosmosis. J Neural Eng 2021; 18:10.1088/1741-2552/ac00d3. [PMID: 33984848 PMCID: PMC8177066 DOI: 10.1088/1741-2552/ac00d3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 05/13/2021] [Indexed: 11/12/2022]
Abstract
Objective.Our laboratory has proposed chemical stimulation of retinal neurons using exogenous glutamate as a biomimetic strategy for treating vision loss caused by photoreceptor (PR) degenerative diseases. Although our previousin-vitrostudies using pneumatic actuation indicate that chemical retinal stimulation is achievable, an actuation technology that is amenable to microfabrication, as needed for anin-vivoimplantable device, has yet to be realized. In this study, we sought to evaluate electroosmotic flow (EOF) as a mechanism for delivering small quantities of glutamate to the retina. EOF has great potential for miniaturization.Approach.An EOF device to dispense small quantities of glutamate was constructed and its ability to drive retinal output tested in anin-vitropreparation of PR degenerate rat retina.Main results.We built and tested an EOF microfluidic system, with 3D printed and off-the-shelf components, capable of injecting small volumes of glutamate in a pulsatile fashion when a low voltage control signal was applied. With this device, we produced excitatory and inhibitory spike rate responses in PR degenerate rat retinae. Glutamate evoked spike rate responses were also observed to be voltage-dependent and localized to the site of injection.Significance.The EOF device performed similarly to a previously tested conventional pneumatic microinjector as a means of chemically stimulating the retina while eliminating the moving plunger of the pneumatic microinjector that would be difficult to miniaturize and parallelize. Although not implantable, the prototype device presented here as a proof of concept indicates that a retinal prosthetic based on EOF-driven chemical stimulation is a viable and worthwhile goal. EOF should have similar advantages for controlled dispensing of charged neurochemicals at any neural interface.
Collapse
Affiliation(s)
- Sai Siva Kare
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Corey M Rountree
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - John B Troy
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| | - John D Finan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Laxman Saggere
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
49
|
Yamashita K, Tanaka T, Matsuo T, Uchida T. Development and chemical properties of retinal prostheses using photoelectric dyes coupled to polyethylene films with various anions to achieve high durability. Polym J 2021. [DOI: 10.1038/s41428-021-00468-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Full gaze contingency provides better reading performance than head steering alone in a simulation of prosthetic vision. Sci Rep 2021; 11:11121. [PMID: 34045485 PMCID: PMC8160142 DOI: 10.1038/s41598-021-86996-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/23/2021] [Indexed: 11/08/2022] Open
Abstract
The visual pathway is retinotopically organized and sensitive to gaze position, leading us to hypothesize that subjects using visual prostheses incorporating eye position would perform better on perceptual tasks than with devices that are merely head-steered. We had sighted subjects read sentences from the MNREAD corpus through a simulation of artificial vision under conditions of full gaze compensation, and head-steered viewing. With 2000 simulated phosphenes, subjects (n = 23) were immediately able to read under full gaze compensation and were assessed at an equivalent visual acuity of 1.0 logMAR, but were nearly unable to perform the task under head-steered viewing. At the largest font size tested, 1.4 logMAR, subjects read at 59 WPM (50% of normal speed) with 100% accuracy under the full-gaze condition, but at 0.7 WPM (under 1% of normal) with below 15% accuracy under head-steering. We conclude that gaze-compensated prostheses are likely to produce considerably better patient outcomes than those not incorporating eye movements.
Collapse
|