1
|
Bonfanti L, La Rosa C, Ghibaudi M, Sherwood CC. Adult neurogenesis and "immature" neurons in mammals: an evolutionary trade-off in plasticity? Brain Struct Funct 2024; 229:1775-1793. [PMID: 37833544 PMCID: PMC11485216 DOI: 10.1007/s00429-023-02717-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Neuronal plasticity can vary remarkably in its form and degree across animal species. Adult neurogenesis, namely the capacity to produce new neurons from neural stem cells through adulthood, appears widespread in non-mammalian vertebrates, whereas it is reduced in mammals. A growing body of comparative studies also report variation in the occurrence and activity of neural stem cell niches between mammals, with a general trend of reduction from small-brained to large-brained species. Conversely, recent studies have shown that large-brained mammals host large amounts of neurons expressing typical markers of neurogenesis in the absence of cell division. In layer II of the cerebral cortex, populations of prenatally generated, non-dividing neurons continue to express molecules indicative of immaturity throughout life (cortical immature neurons; cINs). After remaining in a dormant state for a very long time, these cINs retain the potential of differentiating into mature neurons that integrate within the preexisting neural circuits. They are restricted to the paleocortex in small-brained rodents, while extending into the widely expanded neocortex of highly gyrencephalic, large-brained species. The current hypothesis is that these populations of non-newly generated "immature" neurons might represent a reservoir of developmentally plastic cells for mammalian species that are characterized by reduced stem cell-driven adult neurogenesis. This indicates that there may be a trade-off between various forms of plasticity that coexist during brain evolution. This balance may be necessary to maintain a "reservoir of plasticity" in brain regions that have distinct roles in species-specific socioecological adaptations, such as the neocortex and olfactory structures.
Collapse
Affiliation(s)
- Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Turin, Grugliasco, Italy.
| | - Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Turin, Grugliasco, Italy
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA.
| |
Collapse
|
2
|
Bagnoli S, Chiavacci E, Cellerino A, Terzibasi Tozzini E. Localization and Characterization of Major Neurogenic Niches in the Brain of the Lesser-Spotted Dogfish Scyliorhinus canicula. Int J Mol Sci 2023; 24:ijms24043650. [PMID: 36835066 PMCID: PMC9967623 DOI: 10.3390/ijms24043650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Adult neurogenesis is defined as the ability of specialized cells in the postnatal brain to produce new functional neurons and to integrate them into the already-established neuronal network. This phenomenon is common in all vertebrates and has been found to be extremely relevant for numerous processes, such as long-term memory, learning, and anxiety responses, and it has been also found to be involved in neurodegenerative and psychiatric disorders. Adult neurogenesis has been studied extensively in many vertebrate models, from fish to human, and observed also in the more basal cartilaginous fish, such as the lesser-spotted dogfish, Scyliorhinus canicula, but a detailed description of neurogenic niches in this animal is, to date, limited to the telencephalic areas. With this article, we aim to extend the characterization of the neurogenic niches of S. canicula in other main areas of the brain: we analyzed via double immunofluorescence sections of telencephalon, optic tectum, and cerebellum with markers of proliferation (PCNA) and mitosis (pH3) in conjunction with glial cell (S100β) and stem cell (Msi1) markers, to identify the actively proliferating cells inside the neurogenic niches. We also labeled adult postmitotic neurons (NeuN) to exclude double labeling with actively proliferating cells (PCNA). Lastly, we observed the presence of the autofluorescent aging marker, lipofuscin, contained inside lysosomes in neurogenic areas.
Collapse
Affiliation(s)
- Sara Bagnoli
- Biology Laboratory (BIO@SNS), Scuola Normale Superiore, 56126 Pisa, Italy
| | - Elena Chiavacci
- Biology Laboratory (BIO@SNS), Scuola Normale Superiore, 56126 Pisa, Italy
- Biology and Evolution of Marine Organisms Department (BEOM), Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Alessandro Cellerino
- Biology Laboratory (BIO@SNS), Scuola Normale Superiore, 56126 Pisa, Italy
- Fritz Lipmann Institute for Age Research, Leibniz Institute, 07745 Jena, Germany
| | - Eva Terzibasi Tozzini
- Biology and Evolution of Marine Organisms Department (BEOM), Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
- Correspondence:
| |
Collapse
|
3
|
Ghibaudi M, Amenta A, Agosti M, Riva M, Graïc JM, Bifari F, Bonfanti L. Consistency and Variation in Doublecortin and Ki67 Antigen Detection in the Brain Tissue of Different Mammals, including Humans. Int J Mol Sci 2023; 24:2514. [PMID: 36768845 PMCID: PMC9916846 DOI: 10.3390/ijms24032514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Recently, a population of "immature" neurons generated prenatally, retaining immaturity for long periods and finally integrating in adult circuits has been described in the cerebral cortex. Moreover, comparative studies revealed differences in occurrence/rate of different forms of neurogenic plasticity across mammals, the "immature" neurons prevailing in gyrencephalic species. To extend experimentation from laboratory mice to large-brained mammals, including humans, it is important to detect cell markers of neurogenic plasticity in brain tissues obtained from different procedures (e.g., post-mortem/intraoperative specimens vs. intracardiac perfusion). This variability overlaps with species-specific differences in antigen distribution or antibody species specificity, making it difficult for proper comparison. In this work, we detect the presence of doublecortin and Ki67 antigen, markers for neuronal immaturity and cell division, in six mammals characterized by widely different brain size. We tested seven commercial antibodies in four selected brain regions known to host immature neurons (paleocortex, neocortex) and newly born neurons (hippocampus, subventricular zone). In selected human brains, we confirmed the specificity of DCX antibody by performing co-staining with fluorescent probe for DCX mRNA. Our results indicate that, in spite of various types of fixations, most differences were due to the use of different antibodies and the existence of real interspecies variation.
Collapse
Affiliation(s)
- Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy
| | - Alessia Amenta
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Miriam Agosti
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Marco Riva
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy
| |
Collapse
|
4
|
Faykoo-Martinez M, Collins T, Peragine D, Malik M, Javed F, Kolisnyk M, Ziolkowski J, Jeewa I, Cheng AH, Lowden C, Mascarenhas B, Cheng HYM, Holmes MM. Protracted neuronal maturation in a long-lived, highly social rodent. PLoS One 2022; 17:e0273098. [PMID: 36107951 PMCID: PMC9477366 DOI: 10.1371/journal.pone.0273098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/02/2022] [Indexed: 11/19/2022] Open
Abstract
Naked mole-rats are a long-lived rodent species (current lifespan >37 years) and an increasingly popular biomedical model. Naked mole-rats exhibit neuroplasticity across their long lifespan. Previous studies have begun to investigate their neurogenic patterns. Here, we test the hypothesis that neuronal maturation is extended in this long-lived rodent. We characterize cell proliferation and neuronal maturation in established rodent neurogenic regions over 12 months following seven days of consecutive BrdU injection. Given that naked mole-rats are eusocial (high reproductive skew where only a few socially-dominant individuals reproduce), we also looked at proliferation in brain regions relevant to the social-decision making network. Finally, we measured co-expression of EdU (newly-born cells), DCX (immature neuron marker), and NeuN (mature neuron marker) to assess the timeline of neuronal maturation in adult naked mole-rats. This work reaffirms the subventricular zone as the main source of adult cell proliferation and suggests conservation of the rostral migratory stream in this species. Our profiling of socially-relevant brain regions suggests that future work which manipulates environmental context can unveil how newly-born cells integrate into circuitry and facilitate adult neuroplasticity. We also find naked mole-rat neuronal maturation sits at the intersection of rodents and long-lived, non-rodent species: while neurons can mature by 3 weeks (rodent-like), most neurons mature at 5 months and hippocampal neurogenic levels are low (like long-lived species). These data establish a timeline for future investigations of longevity- and socially-related manipulations of naked mole-rat adult neurogenesis.
Collapse
Affiliation(s)
| | - Troy Collins
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Diana Peragine
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Manahil Malik
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Fiza Javed
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Matthew Kolisnyk
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Justine Ziolkowski
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Imaan Jeewa
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Arthur H. Cheng
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Christopher Lowden
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Brittany Mascarenhas
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hai-Ying Mary Cheng
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Melissa M. Holmes
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Ghibaudi M, Bonfanti L. How Widespread Are the “Young” Neurons of the Mammalian Brain? Front Neurosci 2022; 16:918616. [PMID: 35733930 PMCID: PMC9207312 DOI: 10.3389/fnins.2022.918616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
After the discovery of adult neurogenesis (stem cell-driven production of new neuronal elements), it is conceivable to find young, undifferentiated neurons mixed with mature neurons in the neural networks of the adult mammalian brain. This “canonical” neurogenesis is restricted to small stem cell niches persisting from embryonic germinal layers, yet, the genesis of new neurons has also been reported in various parenchymal brain regions. Whichever the process involved, several populations of “young” neurons can be found at different locations of the brain. Across the years, further complexity emerged: (i) molecules of immaturity can also be expressed by non-dividing cells born during embryogenesis, then maintaining immature features later on; (ii) remarkable interspecies differences exist concerning the types, location, amount of undifferentiated neurons; (iii) re-expression of immaturity can occur in aging (dematuration). These twists are introducing a somewhat different definition of neurogenesis than normally assumed, in which our knowledge of the “young” neurons is less sharp. In this emerging complexity, there is a need for complete mapping of the different “types” of young neurons, considering their role in postnatal development, plasticity, functioning, and interspecies differences. Several important aspects are at stake: the possible role(s) that the young neurons may play in maintaining brain efficiency and in prevention/repair of neurological disorders; nonetheless, the correct translation of results obtained from laboratory rodents. Hence, the open question is: how many types of undifferentiated neurons do exist in the brain, and how widespread are they?
Collapse
Affiliation(s)
- Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- *Correspondence: Luca Bonfanti,
| |
Collapse
|
6
|
Seki T. Understanding the Real State of Human Adult Hippocampal Neurogenesis From Studies of Rodents and Non-human Primates. Front Neurosci 2020; 14:839. [PMID: 32848586 PMCID: PMC7432251 DOI: 10.3389/fnins.2020.00839] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
The concept of adult hippocampal neurogenesis (AHN) has been widely accepted, and a large number of studies have been performed in rodents using modern experimental techniques, which have clarified the nature and developmental processes of adult neural stem/progenitor cells, the functions of AHN, such as memory and learning, and its association with neural diseases. However, a fundamental problem is that it remains unclear as to what extent AHN actually occurs in humans. The answer to this is indispensable when physiological and pathological functions of human AHN are deduced from studies of rodent AHN, but there are controversial data on the extent of human AHN. In this review, studies on AHN performed in rodents and humans will be briefly reviewed, followed by a discussion of the studies in non-human primates. Then, how data of rodent and non-human primate AHN should be applied for understanding human AHN will be discussed.
Collapse
Affiliation(s)
- Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
7
|
LaDage LD. Broadening the functional and evolutionary understanding of postnatal neurogenesis using reptilian models. ACTA ACUST UNITED AC 2020; 223:223/15/jeb210542. [PMID: 32788272 DOI: 10.1242/jeb.210542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The production of new neurons in the brains of adult animals was first identified by Altman and Das in 1965, but it was not until the late 20th century when methods for visualizing new neuron production improved that there was a dramatic increase in research on neurogenesis in the adult brain. We now know that adult neurogenesis is a ubiquitous process that occurs across a wide range of taxonomic groups. This process has largely been studied in mammals; however, there are notable differences between mammals and other taxonomic groups in how, why and where new neuron production occurs. This Review will begin by describing the processes of adult neurogenesis in reptiles and identifying the similarities and differences in these processes between reptiles and model rodent species. Further, this Review underscores the importance of appreciating how wild-caught animals vary in neurogenic properties compared with laboratory-reared animals and how this can be used to broaden the functional and evolutionary understanding of why and how new neurons are produced in the adult brain. Studying variation in neural processes across taxonomic groups provides an evolutionary context to adult neurogenesis while also advancing our overall understanding of neurogenesis and brain plasticity.
Collapse
Affiliation(s)
- Lara D LaDage
- Division of Mathematics and Natural Sciences, Penn State Altoona, 3000 Ivyside Dr., Altoona, PA 16601, USA
| |
Collapse
|
8
|
La Rosa C, Parolisi R, Bonfanti L. Brain Structural Plasticity: From Adult Neurogenesis to Immature Neurons. Front Neurosci 2020; 14:75. [PMID: 32116519 PMCID: PMC7010851 DOI: 10.3389/fnins.2020.00075] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
Brain structural plasticity is an extraordinary tool that allows the mature brain to adapt to environmental changes, to learn, to repair itself after lesions or disease, and to slow aging. A long history of neuroscience research led to fascinating discoveries of different types of plasticity, involving changes in the genetically determined structure of nervous tissue, up to the ultimate dream of neuronal replacement: a stem cell-driven “adult neurogenesis” (AN). Yet, this road does not seem a straight one, since mutable dogmas, conflicting results and conflicting interpretations continue to warm the field. As a result, after more than 10,000 papers published on AN, we still do not know its time course, rate or features with respect to other kinds of structural plasticity in our brain. The solution does not appear to be behind the next curve, as differences among mammals reveal a very complex landscape that cannot be easily understood from rodents models alone. By considering evolutionary aspects, some pitfalls in the interpretation of cell markers, and a novel population of undifferentiated cells that are not newly generated [immature neurons (INs)], we address some conflicting results and controversies in order to find the right road forward. We suggest that considering plasticity in a comparative framework might help assemble the evolutionary, anatomical and functional pieces of a very complex biological process with extraordinary translational potential.
Collapse
Affiliation(s)
- Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
9
|
van Dijk RM, Wiget F, Wolfer DP, Slomianka L, Amrein I. Consistent within-group covariance of septal and temporal hippocampal neurogenesis with behavioral phenotypes for exploration and memory retention across wild and laboratory small rodents. Behav Brain Res 2019; 372:112034. [DOI: 10.1016/j.bbr.2019.112034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/22/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
|
10
|
La Rosa C, Ghibaudi M, Bonfanti L. Newly Generated and Non-Newly Generated "Immature" Neurons in the Mammalian Brain: A Possible Reservoir of Young Cells to Prevent Brain Aging and Disease? J Clin Med 2019; 8:jcm8050685. [PMID: 31096632 PMCID: PMC6571946 DOI: 10.3390/jcm8050685] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 01/21/2023] Open
Abstract
Brain plasticity is important for translational purposes since most neurological disorders and brain aging problems remain substantially incurable. In the mammalian nervous system, neurons are mostly not renewed throughout life and cannot be replaced. In humans, the increasing life expectancy explains the increase in brain health problems, also producing heavy social and economic burden. An exception to the “static” brain is represented by stem cell niches leading to the production of new neurons. Such adult neurogenesis is dramatically reduced from fish to mammals, and in large-brained mammals with respect to rodents. Some examples of neurogenesis occurring outside the neurogenic niches have been reported, yet these new neurons actually do not integrate in the mature nervous tissue. Non-newly generated, “immature” neurons (nng-INs) are also present: Prenatally generated cells continuing to express molecules of immaturity (mostly shared with the newly born neurons). Of interest, nng-INs seem to show an inverse phylogenetic trend across mammals, being abundant in higher-order brain regions not served by neurogenesis and providing structural plasticity in rather stable areas. Both newly generated and nng-INs represent a potential reservoir of young cells (a “brain reserve”) that might be exploited for preventing the damage of aging and/or delay the onset/reduce the impact of neurological disorders.
Collapse
Affiliation(s)
- Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy.
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy.
| | - Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy.
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy.
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy.
| |
Collapse
|
11
|
Ton ST, Tsai SY, Vaagenes IC, Glavin K, Wu J, Hsu J, Flink HM, Nockels D, O'Brien TE, Kartje GL. Subventricular zone neural precursor cell responses after traumatic brain injury and binge alcohol in male rats. J Neurosci Res 2019; 97:554-567. [PMID: 30614539 PMCID: PMC6599533 DOI: 10.1002/jnr.24382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 11/10/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of disability worldwide. Additionally, many TBI patients are intoxicated with alcohol at the time of injury, but the impact of acute intoxication on recovery from brain injury is not well understood. We have previously found that binge alcohol prior to TBI impairs spontaneous functional sensorimotor recovery. However, whether alcohol administration in this setting affects reactive neurogenesis after TBI is not known. This study, therefore, sought to determine the short- and long-term effects of pre-TBI binge alcohol on neural precursor cell responses in the subventricular zone (SVZ) following brain injury in male rats. We found that TBI alone significantly increased proliferation in the SVZ as early as 24 hr after injury. Surprisingly, binge alcohol alone also significantly increased proliferation in the SVZ after 24 hr. However, a combined binge alcohol and TBI regimen resulted in decreased TBI-induced proliferation in the SVZ at 24 hr and 1 week post-TBI. Furthermore, at 6 weeks after TBI, binge alcohol administered at the time of TBI significantly decreased the TBI-induced neuroblast response in the SVZ and the rostral migratory stream (RMS). The results from this study suggest that pre-TBI binge alcohol negatively impacts reparative processes in the brain by decreasing short-term neural precursor cell proliferative responses as well as long-term neuroblasts in the SVZ and RMS.
Collapse
Affiliation(s)
- Son T Ton
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Health Sciences Division, Maywood, Illinois
| | - Shih-Yen Tsai
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
| | - Ian C Vaagenes
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
| | - Kelly Glavin
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
| | - Joanna Wu
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
| | - Jonathan Hsu
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
| | - Hannah M Flink
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
| | - Daniel Nockels
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
| | - Timothy E O'Brien
- Department of Mathematics and Statistics, Institute of Environmental Sustainability, Loyola University Chicago, Chicago, Illinois
| | - Gwendolyn L Kartje
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Health Sciences Division, Maywood, Illinois
| |
Collapse
|
12
|
Oppenheim RW. Adult Hippocampal Neurogenesis in Mammals (and Humans): The Death of a Central Dogma in Neuroscience and its Replacement by a New Dogma. Dev Neurobiol 2019; 79:268-280. [DOI: 10.1002/dneu.22674] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Ronald W. Oppenheim
- Department of Neurobiology and Anatomy, The Neuroscience Program Wake Forest School of Medicine Medical Center Blvd. Winston‐Salem NC 27157‐1010
| |
Collapse
|
13
|
La Rosa C, Bonfanti L. Brain Plasticity in Mammals: An Example for the Role of Comparative Medicine in the Neurosciences. Front Vet Sci 2018; 5:274. [PMID: 30443551 PMCID: PMC6221904 DOI: 10.3389/fvets.2018.00274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022] Open
Abstract
Comparative medicine deals with similarities and differences between veterinary and human medicine. All mammals share most basic cellular and molecular mechanisms, thus justifying murine animal models in a translational perspective; yet “mice are not men,” thus some biases can emerge when complex biological processes are concerned. Brain plasticity is a cutting-edge, expanding topic in the field of Neurosciences with important translational implications, yet, with remarkable differences among mammals, as emerging from comparative studies. In particular, adult neurogenesis (the genesis of new neurons from brain stem cell niches) is a life-long process in laboratory rodents but a vestigial, mostly postnatal remnant in humans and dolphins. Another form of “whole cell” plasticity consisting of a population of “immature” neurons which are generated prenatally but continue to express markers of immaturity during adulthood has gained interest more recently, as a reservoir of young neurons in the adult brain. The distribution of the immature neurons also seems quite heterogeneous among different animal species, being confined within the paleocortex in rodents while extending into neocortex in other mammals. A recent study carried out in sheep, definitely showed that gyrencephalic, large-sized brains do host higher amounts of immature neurons, also involving subcortical, white, and gray matter regions. Hence, “whole cell” plasticity such as adult neurogenesis and immature neurons are biological processes which, as a whole, cannot be studied exclusively in laboratory rodents, but require investigation in comparative medicine, involving large-sized, long-living mammals, in order to gain insights for translational purposes.
Collapse
Affiliation(s)
- Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy.,Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy.,Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Parolisi R, Cozzi B, Bonfanti L. Humans and Dolphins: Decline and Fall of Adult Neurogenesis. Front Neurosci 2018; 12:497. [PMID: 30079011 PMCID: PMC6062615 DOI: 10.3389/fnins.2018.00497] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Pre-clinical research is carried out on animal models, mostly laboratory rodents, with the ultimate aim of translating the acquired knowledge to humans. In the last decades, adult neurogenesis (AN) has been intensively studied since it is viewed as a tool for fostering brain plasticity, possibly repair. Yet, occurrence, location, and rate of AN vary among mammals: the capability for constitutive neuronal production is substantially reduced when comparing small-brained, short living (laboratory rodents) and large-brained, long-living species (humans, dolphins). Several difficulties concerning scarce availability of fresh tissues, technical limits and ethical concerns did contribute in delaying and diverting the achievement of the picture of neurogenic plasticity in large-brained mammals. Some reports appeared in the last few years, starting to shed more light on this issue. Despite technical limits, data from recent studies mostly converge to indicate that neurogenesis is vestigial, or possibly absent, in regions of the adult human brain where in rodents neuronal addition continues into adult life. Analyses carried out in dolphins, mammals devoid of olfaction, but descendant of ancestors provided with olfaction, has shown disappearance of neurogenesis in both neonatal and adult individuals. Heterogeneity in mammalian structural plasticity remains largely underestimated by scientists focusing their research in rodents. Comparative studies are the key to understand the function of AN and the possible translational significance of neuronal replacement in humans. Here, we summarize comparative studies on AN and discuss the evolutionary implications of variations on the recruitment of new neurons in different regions and different species.
Collapse
Affiliation(s)
- Roberta Parolisi
- NICO - Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Luca Bonfanti
- NICO - Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy.,Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
15
|
La Rosa C, Parolisi R, Palazzo O, Lévy F, Meurisse M, Bonfanti L. Clusters of DCX+ cells "trapped" in the subcortical white matter of early postnatal Cetartiodactyla (Tursiops truncatus, Stenella coeruloalba and Ovis aries). Brain Struct Funct 2018; 223:3613-3632. [PMID: 29980931 DOI: 10.1007/s00429-018-1708-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/02/2018] [Indexed: 01/08/2023]
Abstract
The cytoskeletal protein doublecortin (DCX) is a marker for neuronal cells retaining high potential for structural plasticity, originating from both embryonic and adult neurogenic processes. Some of these cells have been described in the subcortical white matter of neonatal and postnatal mammals. In mice and humans it has been shown they are young neurons migrating through the white matter after birth, reaching the cortex in a sort of protracted neurogenesis. Here we show that DCX+ cells in the white matter of neonatal and young Cetartiodactyla (dolphin and sheep) form large clusters which are not newly generated (in sheep, and likely neither in dolphins) and do not reach the cortical layers, rather appearing "trapped" in the white matter tissue. No direct contact or continuity can be observed between the subventricular zone region and the DCX+ clusters, thus indicating their independence from any neurogenic source (in dolphins further confirmed by the recent demonstration that periventricular neurogenesis is inactive since birth). Cetartiodactyla include two orders of large-brained, relatively long-living mammals (cetaceans and artiodactyls) which were recognized as two separate monophyletic clades until recently, yet, despite the evident morphological distinctions, they are monophyletic in origin. The brain of Cetartiodactyla is characterized by an advanced stage of development at birth, a feature that might explain the occurrence of "static" cell clusters confined within their white matter. These results further confirm the existence of high heterogeneity in the occurrence, distribution and types of structural plasticity among mammals, supporting the emerging view that multiple populations of DCX+, non-newly generated cells can be abundant in large-brained, long-living species.
Collapse
Affiliation(s)
- Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Roberta Parolisi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Ottavia Palazzo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Frederic Lévy
- UMR INRA, CNRS/Universitè F. Rabelais, IFCE Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Maryse Meurisse
- UMR INRA, CNRS/Universitè F. Rabelais, IFCE Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy. .,Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy.
| |
Collapse
|