1
|
Tang M, Zhong L, Rong H, Li K, Ye M, Peng J, Ge J. Efficient retinal ganglion cells transduction by retro-orbital venous sinus injection of AAV-PHP.eB in mature mice. Exp Eye Res 2024; 244:109931. [PMID: 38763353 DOI: 10.1016/j.exer.2024.109931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Gene therapy is one of the strategies that may reduce or reverse progressive neurodegeneration in retinal neurodegenerative diseases. However, efficiently delivering transgenes to retinal ganglion cells (RGCs) remains hard to achieve. In this study, we innovatively investigated transduction efficiency of adeno-associated virus (AAV)-PHP.eB in murine RGCs by retro-orbital venous sinus injection. Five doses of AAV-PHP.eB-EGFP were retro-orbitally injected in venous sinus in adult C57/BL6J mice. Two weeks after administration, RGCs transduction efficiency was quantified by retinal flat-mounts and frozen section co-labeling with RGCs marker Rbpms. In addition, safety of this method was evaluated by RGCs survival rate and retinal morphology. To conform efficacy of this new method, AAV-PHP.eB-CNTF was administrated into mature mice through single retro-orbital venous injection after optic nerve crush injury to evaluate axonal elongation. Results indicated that AAV- PHP.eB readily crossed the blood-retina barrier and was able to transduce more than 90% of RGCs when total dose of virus reached 5 × 1010 vector genomes (vg). Moreover, this technique did not affect RGCs survival rate and retinal morphology. Furthermore, retro-orbital venous delivery of AAV-PHP.eB-CNTF effectively transduced RGCs, robustly promoted axonal regeneration after optic nerve crush injury. Thus, novel AAV-PHP.eB retro-orbital injection provides a minimally invasive and efficient route for transgene delivery in treatment of retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Mingjun Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Liuxueying Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Huifeng Rong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Kaijing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Meifang Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jingyi Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Araujo VG, Dias MS, Hauswirth WW, Linden R, Petrs-Silva H. rAAV-compatible human mini promoters enhance transgene expression in rat retinal ganglion cells. Exp Eye Res 2024; 239:109758. [PMID: 38123011 DOI: 10.1016/j.exer.2023.109758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Recombinant adeno-associated viral vectors (rAAV) are the safest and most effective gene delivery platform to drive the treatment of many inherited eye disorders in well-characterized animal models. The use in rAAV of ubiquitous promoters derived from viral sequences such as CMV/CBA (chicken β-actin promoter with cytomegalovirus enhancer) can lead to unwanted side effects such as pro-inflammatory immune responses and retinal cytotoxicity, thus reducing therapy efficacy. Thus, an advance in gene therapy is the availability of small promoters, that potentiate and direct gene expression to the cell type of interest, with higher safety and efficacy. In this study, we used six human mini-promoters packaged in rAAV2 quadruple mutant (Y-F) to test for transduction of the rat retina after intravitreal injection. After four weeks, immunohistochemical analysis detected GFP-labeled cells in the ganglion cell layer (GCL) for all constructs tested. Among them, Ple25sh1, Ple25sh2 and Ple53 promoted a widespread reporter-transgene expression in the GCL, with an increased number of GFP-expressing retinal ganglion cells when compared with the CMV/CBA vector. Moreover, Ple53 provided the strongest levels of GFP fluorescence in both cell soma and axons of retinal ganglion cells (RGCs) without any detectable adverse effects in retina function. Remarkably, a nearly 50-fold reduction in the number of intravitreally injected vector particles containing Ple53 promoter, still attained levels of transgene expression similar to CMV/CBA. Thus, the tested MiniPs show great potential for protocols of retinal gene therapy in therapeutic applications for retinal degenerations, especially those involving RGC-related disorders such as glaucoma.
Collapse
Affiliation(s)
- Victor G Araujo
- Laboratory of Gene Therapy and Viral Vector, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana S Dias
- Laboratory of Gene Therapy and Viral Vector, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - William W Hauswirth
- Retinal Gene Therapy Group, Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Rafael Linden
- Laboratory of Neurogenesis, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hilda Petrs-Silva
- Laboratory of Gene Therapy and Viral Vector, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Leray A, Lalys PA, Varin J, Bouzelha M, Bourdon A, Alvarez-Dorta D, Pavageau K, Depienne S, Marchand M, Mellet A, Demilly J, Ducloyer JB, Girard T, Fraysse B, Ledevin M, Guilbaud M, Gouin SG, Ayuso E, Adjali O, Larcher T, Cronin T, Le Guiner C, Deniaud D, Mével M. Novel chemical tyrosine functionalization of adeno-associated virus improves gene transfer efficiency in liver and retina. Biomed Pharmacother 2024; 171:116148. [PMID: 38232661 DOI: 10.1016/j.biopha.2024.116148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
Decades of biological and clinical research have led to important advances in recombinant adeno-associated viruses rAAV-based gene therapy gene therapy. However, several challenges must be overcome to fully exploit the potential of rAAV vectors. Innovative approaches to modify viral genome and capsid elements have been used to overcome issues such as unwanted immune responses and off-targeting. While often successful, genetic modification of capsids can drastically reduce vector yield and often fails to produce vectors with properties that translate across different animal species, such as rodents, non-human primates, and humans. Here, we describe a chemical bioconjugation strategy to modify tyrosine residues on AAV capsids using specific ligands, thereby circumventing the need to genetically engineer the capsid sequence. Aromatic electrophilic substitution of the phenol ring of tyrosine residues on AAV capsids improved the in vivo transduction efficiency of rAAV2 vectors in both liver and retinal targets. This tyrosine bioconjugation strategy represents an innovative technology for the engineering of rAAV vectors for human gene therapy.
Collapse
Affiliation(s)
- Aurélien Leray
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | | | - Juliette Varin
- Nantes Université, TaRGeT, Translational Research for Gene Therapies, CHU Nantes, INSERM, UMR 1089, F-44000 Nantes, France
| | - Mohammed Bouzelha
- Nantes Université, TaRGeT, Translational Research for Gene Therapies, CHU Nantes, INSERM, UMR 1089, F-44000 Nantes, France
| | - Audrey Bourdon
- Nantes Université, TaRGeT, Translational Research for Gene Therapies, CHU Nantes, INSERM, UMR 1089, F-44000 Nantes, France
| | | | - Karine Pavageau
- Nantes Université, TaRGeT, Translational Research for Gene Therapies, CHU Nantes, INSERM, UMR 1089, F-44000 Nantes, France
| | | | - Maia Marchand
- Nantes Université, TaRGeT, Translational Research for Gene Therapies, CHU Nantes, INSERM, UMR 1089, F-44000 Nantes, France
| | - Anthony Mellet
- Nantes Université, TaRGeT, Translational Research for Gene Therapies, CHU Nantes, INSERM, UMR 1089, F-44000 Nantes, France
| | - Joanna Demilly
- Nantes Université, TaRGeT, Translational Research for Gene Therapies, CHU Nantes, INSERM, UMR 1089, F-44000 Nantes, France
| | - Jean-Baptiste Ducloyer
- Nantes Université, TaRGeT, Translational Research for Gene Therapies, CHU Nantes, INSERM, UMR 1089, F-44000 Nantes, France
| | - Tiphaine Girard
- Nantes Université, TaRGeT, Translational Research for Gene Therapies, CHU Nantes, INSERM, UMR 1089, F-44000 Nantes, France
| | - Bodvaël Fraysse
- Nantes Université, TaRGeT, Translational Research for Gene Therapies, CHU Nantes, INSERM, UMR 1089, F-44000 Nantes, France
| | | | - Mickaël Guilbaud
- Nantes Université, TaRGeT, Translational Research for Gene Therapies, CHU Nantes, INSERM, UMR 1089, F-44000 Nantes, France
| | | | - Eduard Ayuso
- Nantes Université, TaRGeT, Translational Research for Gene Therapies, CHU Nantes, INSERM, UMR 1089, F-44000 Nantes, France
| | - Oumeya Adjali
- Nantes Université, TaRGeT, Translational Research for Gene Therapies, CHU Nantes, INSERM, UMR 1089, F-44000 Nantes, France
| | | | - Thérèse Cronin
- Nantes Université, TaRGeT, Translational Research for Gene Therapies, CHU Nantes, INSERM, UMR 1089, F-44000 Nantes, France
| | - Caroline Le Guiner
- Nantes Université, TaRGeT, Translational Research for Gene Therapies, CHU Nantes, INSERM, UMR 1089, F-44000 Nantes, France
| | - David Deniaud
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Mathieu Mével
- Nantes Université, TaRGeT, Translational Research for Gene Therapies, CHU Nantes, INSERM, UMR 1089, F-44000 Nantes, France.
| |
Collapse
|
4
|
Camacho DK, Go CC, Chaqour B, Shindler KS, Ross AG. Emerging Gene Therapy Technologies for Retinal Ganglion Cell Neuroprotection. J Neuroophthalmol 2023; 43:330-340. [PMID: 37440418 PMCID: PMC10527513 DOI: 10.1097/wno.0000000000001955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
ABSTRACT Optic neuropathies encompass a breadth of diseases that ultimately result in dysfunction and/or loss of retinal ganglion cells (RGCs). Although visual impairment from optic neuropathies is common, there is a lack of effective clinical treatments. Addressing a critical need for novel interventions, preclinical studies have been generating a growing body of evidence that identify promising new drug-based and cell-based therapies. Gene therapy is another emerging therapeutic field that offers the potential of specifically and robustly increasing long-term RGC survival in optic neuropathies. Gene therapy offers additional benefits of driving improvements following a single treatment administration, and it can be designed to target a variety of pathways that may be involved in individual optic neuropathies or across multiple etiologies. This review explores the history of gene therapy, the fundamentals of its application, and the emerging development of gene therapy technology as it relates to treatment of optic neuropathies.
Collapse
Affiliation(s)
- David K. Camacho
- F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Cammille C. Go
- F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Brahim Chaqour
- F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kenneth S. Shindler
- F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Departments of Ophthalmology and Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ahmara G. Ross
- F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Departments of Ophthalmology and Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
5
|
Nieuwenhuis B, Laperrousaz E, Tribble JR, Verhaagen J, Fawcett JW, Martin KR, Williams PA, Osborne A. Improving adeno-associated viral (AAV) vector-mediated transgene expression in retinal ganglion cells: comparison of five promoters. Gene Ther 2023:10.1038/s41434-022-00380-z. [PMID: 36635457 DOI: 10.1038/s41434-022-00380-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Recombinant adeno-associated viral vectors (AAVs) are an effective system for gene transfer. AAV serotype 2 (AAV2) is commonly used to deliver transgenes to retinal ganglion cells (RGCs) via intravitreal injection. The AAV serotype however is not the only factor contributing to the effectiveness of gene therapies. Promoters influence the strength and cell-selectivity of transgene expression. This study compares five promoters designed to maximise AAV2 cargo space for gene delivery: chicken β-actin (CBA), cytomegalovirus (CMV), short CMV early enhancer/chicken β-actin/short β-globulin intron (sCAG), mouse phosphoglycerate kinase (PGK), and human synapsin (SYN). The promoters driving enhanced green fluorescent protein (eGFP) were examined in adult C57BL/6J mice eyes and tissues of the visual system. eGFP expression was strongest in the retina, optic nerves and brain when driven by the sCAG and SYN promoters. CBA, CMV, and PGK had moderate expression by comparison. The SYN promoter had almost exclusive transgene expression in RGCs. The PGK promoter had predominant expression in both RGCs and AII amacrine cells. The ubiquitous CBA, CMV, and sCAG promoters expressed eGFP in a variety of cell types across multiple retinal layers including Müller glia and astrocytes. We also found that these promoters could transduce human retina ex vivo, although expression was predominantly in glial cells due to low RGC viability. Taken together, this promoter comparison study contributes to optimising AAV-mediated transduction in the retina, and could be valuable for research in ocular disorders, particularly those with large or complex genetic cargos.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Elise Laperrousaz
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands.,Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Centre of Reconstructive Neuroscience, Institute of Experimental Medicine, Prague, Czech Republic
| | - Keith R Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Ikarovec Ltd, The Norwich Research Park Innovation Centre, Norwich, UK.
| |
Collapse
|
6
|
Nieuwenhuis B, Osborne A. Intravitreal Injection of AAV for the Transduction of Mouse Retinal Ganglion Cells. Methods Mol Biol 2023; 2708:155-174. [PMID: 37558970 DOI: 10.1007/978-1-0716-3409-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The injection of therapies into the eye is common practice, both clinically and pre-clinically. The most straightforward delivery route is via an intravitreal injection, which introduces the treatment into the largest cavity at the posterior of the eye. This technique is frequently used to deliver gene therapies, including those containing recombinant adeno-associated viral vectors (AAVs), to the back of the eye to enable inner retinal targeting. This chapter provides detailed methodology on how to successfully perform an intravitreal injection in mice. The chapter covers vector preparation considerations, advice on how to minimize vector loss in the injection device, and ways to reduce vector reflux from the eye when administering a therapy. Finally, a protocol is provided on common retinal histology processing techniques to assess vector-mediated expression in retinal ganglion cells. It is hoped that this chapter will enable researchers to carry out effective and consistent intravitreal injections that transduce the inner retinal surface while avoiding common pitfalls.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Ikarovec Ltd, The Norwich Research Park Innovation Centre, Norwich, UK.
| |
Collapse
|
7
|
Palfi A, Chadderton N, Millington-Ward S, Post I, Humphries P, Kenna PF, Farrar GJ. AAV-PHP.eB transduces both the inner and outer retina with high efficacy in mice. Mol Ther Methods Clin Dev 2022; 25:236-249. [PMID: 35474956 PMCID: PMC9018541 DOI: 10.1016/j.omtm.2022.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/27/2022] [Indexed: 12/18/2022]
Abstract
Recombinant adeno-associated virus (AAV) vectors are one of the main gene delivery vehicles used in retinal gene therapy approaches; however, there is a need to further improve the efficacy, tropism, and safety of these vectors. In this study, using a CMV-EGFP expression cassette, we characterize the retinal utility of AAV-PHP.eB, a serotype recently developed by in vivo directed evolution, which can cross the blood-brain barrier and target neurons with high efficacy in mice. Systemic and intravitreal delivery of AAV-PHP.eB resulted in the high transduction efficacy of retinal ganglion and horizontal cells, with systemic delivery providing pan-retinal coverage of the mouse retina. Subretinal delivery transduced photoreceptors and retinal pigment epithelium cells robustly. EGFP expression (number of transduced cells and mRNA levels) were similar when the retinas were transduced systemically or intravitreally with AAV-PHP.eB or intravitreally with AAV2/2. Notably, in photoreceptors, EGFP fluorescence intensities and mRNA levels were 50–70 times higher, when subretinal injections with AAV-PHP.eB were compared to AAV2/8. Our results demonstrate the pan-retinal transduction of ganglion cells and extremely efficient transduction of photoreceptor and retinal pigment epithelium cells as the most valuable features of AAV-PHP.eB in the mouse retina.
Collapse
Affiliation(s)
- Arpad Palfi
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| | - Naomi Chadderton
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| | - Sophia Millington-Ward
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| | - Iris Post
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| | - Pete Humphries
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| | - Paul F Kenna
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland.,The Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51, Dublin, Ireland
| | - G Jane Farrar
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| |
Collapse
|
8
|
Rudnick ND, Kim LA, Comander J. Adeno-associated Viral Vectors in the Retina: Delivering Gene Therapy to the Right Destination. Int Ophthalmol Clin 2022; 62:215-229. [PMID: 35325920 DOI: 10.1097/iio.0000000000000416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
9
|
Cui S, Ganjawala TH, Abrams GW, Pan ZH. Effect of Proteasome Inhibitors on the AAV-Mediated Transduction Efficiency in Retinal Bipolar Cells. Curr Gene Ther 2021; 19:404-412. [PMID: 32072884 DOI: 10.2174/1566523220666200211111326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adeno-associated Virus (AAV) vectors are the most promising vehicles for therapeutic gene delivery to the retina. To develop a practical gene delivery tool, achieving high AAV transduction efficiency in specific cell types is often required. AAV-mediated targeted expression in retinal bipolar cells is needed in certain applications such as optogenetic therapy, however, the transduction efficiency driven by endogenous cell-specific promoters is usually low. Methods that can improve AAV transduction efficiency in bipolar cells need to be developed. OBJECTIVE The study aimed to examine the effect of proteasome inhibitors on AAV-mediated transduction efficiency in retinal bipolar cells. METHODS Quantitative analysis of fluorescent reporter protein expression was performed to assess the effect of two proteasome inhibitors, doxorubicin and MG132, on AAV-mediated transduction efficiency in retinal bipolar cells in mice. RESULTS Our results showed that doxorubicin can increase the AAV transduction efficiency in retinal bipolar cells in a dose-dependent manner. We also observed doxorubicin-mediated cytotoxicity in retinal neurons, but the cytotoxicity could be mitigated by the coapplication of dexrazoxane. Three months after the coapplication of doxorubicin (300 μM) and dexrazoxane, the AAV transduction efficiency in retinal bipolar cells increased by 33.8% and no cytotoxicity was observed in all the layers of the retina. CONCLUSION Doxorubicin could enhance the AAV transduction efficiency in retinal bipolar cells in vivo. The potential long-term cytotoxicity caused by doxorubicin to retinal neurons could be partially mitigated by dexrazoxane. The coapplication of doxorubicin and dexrazoxane may serve as a potential adjuvant regimen for improving AAV transduction efficiency in retinal bipolar cells.
Collapse
Affiliation(s)
- Shengjie Cui
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, 48201, United States
| | - Tushar H Ganjawala
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, 48201, United States
| | - Gary W Abrams
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, 48201, United States
| | - Zhuo-Hua Pan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, 48201, United States
| |
Collapse
|
10
|
Fuller-Carter PI, Basiri H, Harvey AR, Carvalho LS. Focused Update on AAV-Based Gene Therapy Clinical Trials for Inherited Retinal Degeneration. BioDrugs 2021; 34:763-781. [PMID: 33136237 DOI: 10.1007/s40259-020-00453-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inherited retinal diseases (IRDs) comprise a clinically and genetically heterogeneous group of disorders that can ultimately result in photoreceptor dysfunction/death and vision loss. With over 270 genes known to be involved in IRDs, translation of treatment strategies into clinical applications has been historically difficult. However, in recent years there have been significant advances in basic research findings as well as translational studies, culminating in an increasing number of clinical trials with the ultimate goal of reducing vision loss and associated morbidities. The recent approval of Luxturna® (voretigene neparvovec-rzyl) for Leber congenital amaurosis type 2 (LCA2) prompts a review of the current clinical trials for IRDs, with a particular focus on the importance of adeno-associated virus (AAV)-based gene therapies. The present article reviews the current state of AAV use in gene therapy clinical trials for IRDs, with a brief background on AAV and the reasons behind its dominance in ocular gene therapy. It will also discuss pre-clinical progress in AAV-based therapies aimed at treating other ocular conditions that can have hereditable links, and what alternative technologies are progressing in the same therapeutic space.
Collapse
Affiliation(s)
- Paula I Fuller-Carter
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Hamed Basiri
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
11
|
Komáromy AM, Koehl KL, Park SA. Looking into the future: Gene and cell therapies for glaucoma. Vet Ophthalmol 2021; 24 Suppl 1:16-33. [PMID: 33411993 PMCID: PMC7979454 DOI: 10.1111/vop.12858] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Glaucoma is a complex group of optic neuropathies that affects both humans and animals. Intraocular pressure (IOP) elevation is a major risk factor that results in the loss of retinal ganglion cells (RGCs) and their axons. Currently, lowering IOP by medical and surgical methods is the only approved treatment for primary glaucoma, but there is no cure, and vision loss often progresses despite therapy. Recent technologic advances provide us with a better understanding of disease mechanisms and risk factors; this will permit earlier diagnosis of glaucoma and initiation of therapy sooner and more effectively. Gene and cell therapies are well suited to target these mechanisms specifically with the potential to achieve a lasting therapeutic effect. Much progress has been made in laboratory settings to develop these novel therapies for the eye. Gene and cell therapies have already been translated into clinical application for some inherited retinal dystrophies and age-related macular degeneration (AMD). Except for the intravitreal application of ciliary neurotrophic factor (CNTF) by encapsulated cell technology for RGC neuroprotection, there has been no other clinical translation of gene and cell therapies for glaucoma so far. Possible application of gene and cell therapies consists of long-term IOP control via increased aqueous humor drainage, including inhibition of fibrosis following filtration surgery, RGC neuroprotection and neuroregeneration, modification of ocular biomechanics for improved IOP tolerance, and inhibition of inflammation and neovascularization to prevent the development of some forms of secondary glaucoma.
Collapse
Affiliation(s)
- András M. Komáromy
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Kristin L. Koehl
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Shin Ae Park
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
12
|
Kim US, Mahroo OA, Mollon JD, Yu-Wai-Man P. Retinal Ganglion Cells-Diversity of Cell Types and Clinical Relevance. Front Neurol 2021; 12:661938. [PMID: 34093409 PMCID: PMC8175861 DOI: 10.3389/fneur.2021.661938] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
Retinal ganglion cells (RGCs) are the bridging neurons that connect the retinal input to the visual processing centres within the central nervous system. There is a remarkable diversity of RGCs and the various subtypes have unique morphological features, distinct functions, and characteristic pathways linking the inner retina to the relevant brain areas. A number of psychophysical and electrophysiological tests have been refined to investigate this large and varied population of RGCs. Technological advances, such as high-resolution optical coherence tomography imaging, have provided additional tools to define the pattern of RGC involvement and the chronological sequence of events in both inherited and acquired optic neuropathies. The mechanistic insights gained from these studies, in particular the selective vulnerability and relative resilience of particular RGC subtypes, are of fundamental importance as they are directly relevant to the development of targeted therapies for these invariably progressive blinding diseases. This review provides a comprehensive description of the various types of RGCs, the developments in proposed methods of classification, and the current gaps in our knowledge of how these RGCs are differentially affected depending on the underlying aetiology. The synthesis of the current body of knowledge on the diversity of RGCs and the pathways that are potentially amenable to therapeutic modulation will hopefully lead to much needed effective treatments for patients with optic neuropathies.
Collapse
Affiliation(s)
- Ungsoo Samuel Kim
- Kim's Eye Hospital, Seoul, South Korea
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- *Correspondence: Ungsoo Samuel Kim
| | - Omar A. Mahroo
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Section of Ophthalmology, King's College London, St. Thomas' Hospital Campus, London, United Kingdom
| | - John D. Mollon
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
13
|
McClements ME, Staurenghi F, MacLaren RE, Cehajic-Kapetanovic J. Optogenetic Gene Therapy for the Degenerate Retina: Recent Advances. Front Neurosci 2020; 14:570909. [PMID: 33262683 PMCID: PMC7686539 DOI: 10.3389/fnins.2020.570909] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
The degeneration of light-detecting rod and cone photoreceptors in the human retina leads to severe visual impairment and ultimately legal blindness in millions of people worldwide. Multiple therapeutic options at different stages of degeneration are being explored but the majority of ongoing clinical trials involve adeno-associated viral (AAV) vector-based gene supplementation strategies for select forms of inherited retinal disease. Over 300 genes are associated with inherited retinal degenerations and only a small proportion of these will be suitable for gene replacement therapy. However, while the origins of disease may vary, there are considerable similarities in the physiological changes that occur in the retina. When early therapeutic intervention is not possible and patients suffer loss of photoreceptor cells but maintain remaining layers of cells in the neural retina, there is an opportunity for a universal gene therapy approach that can be applied regardless of the genetic origin of disease. Optogenetic therapy offers such a strategy by aiming to restore vision though the provision of light-sensitive molecules to surviving cell types of the retina that enable light perception through the residual neurons. Here we review the recent progress in attempts to restore visual function to the degenerate retina using optogenetic therapy. We focus on multiple pre-clinical models used in optogenetic strategies, discuss their strengths and limitations, and highlight considerations including vector and transgene designs that have advanced the field into two ongoing clinical trials.
Collapse
Affiliation(s)
- Michelle E. McClements
- Nuffield Laboratory Ophthalmology, Department of Clinical Neurosciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Federica Staurenghi
- Nuffield Laboratory Ophthalmology, Department of Clinical Neurosciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Robert E. MacLaren
- Nuffield Laboratory Ophthalmology, Department of Clinical Neurosciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory Ophthalmology, Department of Clinical Neurosciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
14
|
Millington-Ward S, Chadderton N, Berkeley M, Finnegan LK, Hanlon KS, Carrigan M, Humphries P, Kenna PF, Palfi A, Farrar GJ. Novel 199 base pair NEFH promoter drives expression in retinal ganglion cells. Sci Rep 2020; 10:16515. [PMID: 33020509 PMCID: PMC7536420 DOI: 10.1038/s41598-020-73257-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/08/2020] [Indexed: 01/13/2023] Open
Abstract
Retinal ganglion cells (RGCs) are known to be involved in several ocular disorders, including glaucoma and Leber hereditary optic neuropathy (LHON), and hence represent target cells for gene therapies directed towards these diseases. Restricting gene therapeutics to the target cell type in many situations may be preferable compared to ubiquitous transgene expression, stimulating researchers to identify RGC-specific promoters, particularly promoter sequences that may also be appropriate in size to fit readily into recombinant adeno associated viral (AAV) vectors, the vector of choice for many ocular gene therapies. In the current study we analysed EGFP expression driven by various sequences of the putative human NEFH promoter in order to define sequences required for preferential expression in RGCs. EGFP expression profiles from four different potential NEFH promoter constructs were compared in vivo in mice using retinal histology and mRNA expression analysis. Notably, two efficient promoter sequences, one comprising just 199 bp, are presented in the study.
Collapse
Affiliation(s)
| | - Naomi Chadderton
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Megan Berkeley
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Laura K Finnegan
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Killian S Hanlon
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Matthew Carrigan
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Peter Humphries
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Paul F Kenna
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland.,The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - Arpad Palfi
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - G Jane Farrar
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
15
|
Buck TM, Wijnholds J. Recombinant Adeno-Associated Viral Vectors (rAAV)-Vector Elements in Ocular Gene Therapy Clinical Trials and Transgene Expression and Bioactivity Assays. Int J Mol Sci 2020; 21:E4197. [PMID: 32545533 PMCID: PMC7352801 DOI: 10.3390/ijms21124197] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Inherited retinal dystrophies and optic neuropathies cause chronic disabling loss of visual function. The development of recombinant adeno-associated viral vectors (rAAV) gene therapies in all disease fields have been promising, but the translation to the clinic has been slow. The safety and efficacy profiles of rAAV are linked to the dose of applied vectors. DNA changes in the rAAV gene cassette affect potency, the expression pattern (cell-specificity), and the production yield. Here, we present a library of rAAV vectors and elements that provide a workflow to design novel vectors. We first performed a meta-analysis on recombinant rAAV elements in clinical trials (2007-2020) for ocular gene therapies. We analyzed 33 unique rAAV gene cassettes used in 57 ocular clinical trials. The rAAV gene therapy vectors used six unique capsid variants, 16 different promoters, and six unique polyadenylation sequences. Further, we compiled a list of promoters, enhancers, and other sequences used in current rAAV gene cassettes in preclinical studies. Then, we give an update on pro-viral plasmid backbones used to produce the gene therapy vectors, inverted terminal repeats, production yield, and rAAV safety considerations. Finally, we assess rAAV transgene and bioactivity assays applied to cells or organoids in vitro, explants ex vivo, and clinical studies.
Collapse
Affiliation(s)
- Thilo M. Buck
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
- Netherlands Institute of Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
16
|
Fu X, Liu Q, Li C, Li Y, Wang L. Cardiac Fibrosis and Cardiac Fibroblast Lineage-Tracing: Recent Advances. Front Physiol 2020; 11:416. [PMID: 32435205 PMCID: PMC7218116 DOI: 10.3389/fphys.2020.00416] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/06/2020] [Indexed: 01/18/2023] Open
Abstract
Cardiac fibrosis is a common pathological change associated with cardiac injuries and diseases. Even though the accumulation of collagens and other extracellular matrix (ECM) proteins may have some protective effects in certain situations, prolonged fibrosis usually negatively affects cardiac function and often leads to deleterious consequences. While the development of cardiac fibrosis involves several cell types, the major source of ECM proteins is cardiac fibroblast. The high plasticity of cardiac fibroblasts enables them to quickly change their behaviors in response to injury and transition between several differentiation states. However, the study of cardiac fibroblasts in vivo was very difficult due to the lack of specific research tools. The development of cardiac fibroblast lineage-tracing mouse lines has greatly promoted cardiac fibrosis research. In this article, we review the recent cardiac fibroblast lineage-tracing studies exploring the origin of cardiac fibroblasts and their complicated roles in cardiac fibrosis, and briefly discuss the translational potential of basic cardiac fibroblast researches.
Collapse
Affiliation(s)
- Xing Fu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Qianglin Liu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Chaoyang Li
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Yuxia Li
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Leshan Wang
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
17
|
Jüttner J, Szabo A, Gross-Scherf B, Morikawa RK, Rompani SB, Hantz P, Szikra T, Esposti F, Cowan CS, Bharioke A, Patino-Alvarez CP, Keles Ö, Kusnyerik A, Azoulay T, Hartl D, Krebs AR, Schübeler D, Hajdu RI, Lukats A, Nemeth J, Nagy ZZ, Wu KC, Wu RH, Xiang L, Fang XL, Jin ZB, Goldblum D, Hasler PW, Scholl HPN, Krol J, Roska B. Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nat Neurosci 2019; 22:1345-1356. [PMID: 31285614 DOI: 10.1038/s41593-019-0431-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/17/2019] [Indexed: 01/20/2023]
Abstract
Targeting genes to specific neuronal or glial cell types is valuable for both understanding and repairing brain circuits. Adeno-associated viruses (AAVs) are frequently used for gene delivery, but targeting expression to specific cell types is an unsolved problem. We created a library of 230 AAVs, each with a different synthetic promoter designed using four independent strategies. We show that a number of these AAVs specifically target expression to neuronal and glial cell types in the mouse and non-human primate retina in vivo and in the human retina in vitro. We demonstrate applications for recording and stimulation, as well as the intersectional and combinatorial labeling of cell types. These resources and approaches allow economic, fast and efficient cell-type targeting in a variety of species, both for fundamental science and for gene therapy.
Collapse
Affiliation(s)
- Josephine Jüttner
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Arnold Szabo
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Brigitte Gross-Scherf
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Rei K Morikawa
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Santiago B Rompani
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Monterotondo, Italy
| | - Peter Hantz
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Tamas Szikra
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Federico Esposti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Division of Neuroscience, San Raffaele Research Institute, Università Vita-Salute San Raffaele, Milan, Italy
| | - Cameron S Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Arjun Bharioke
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Claudia P Patino-Alvarez
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Özkan Keles
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Akos Kusnyerik
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | | | - Dominik Hartl
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Arnaud R Krebs
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Rozina I Hajdu
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Akos Lukats
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Janos Nemeth
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zoltan Z Nagy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Kun-Chao Wu
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - Rong-Han Wu
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - Lue Xiang
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - Xiao-Long Fang
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - Zi-Bing Jin
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, National International Joint Research Center for Regenerative Medicine and Neurogenetics, Wenzhou, China
| | - David Goldblum
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Pascal W Hasler
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jacek Krol
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
18
|
Teotia P, Van Hook MJ, Fischer D, Ahmad I. Human retinal ganglion cell axon regeneration by recapitulating developmental mechanisms: effects of recruitment of the mTOR pathway. Development 2019; 146:dev178012. [PMID: 31273087 PMCID: PMC6633601 DOI: 10.1242/dev.178012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022]
Abstract
The poor axon regeneration in the central nervous system (CNS) often leads to permanent functional deficit following disease or injury. For example, degeneration of retinal ganglion cell (RGC) axons in glaucoma leads to irreversible loss of vision. Here, we have tested the hypothesis that the mTOR pathway regulates the development of human RGCs and that its recruitment after injury facilitates axon regeneration. We observed that the mTOR pathway is active during RGC differentiation, and using the induced pluripotent stem cell model of neurogenesis show that it facilitates the differentiation, function and neuritogenesis of human RGCs. Using a microfluidic model, we demonstrate that recruitment of the mTOR pathway facilitates human RGC axon regeneration after axotomy, providing evidence that the recapitulation of developmental mechanism(s) might be a viable approach for facilitating axon regeneration in the diseased or injured human CNS, thus helping to reduce and/or recover loss of function.
Collapse
Affiliation(s)
- Pooja Teotia
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew J Van Hook
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dietmar Fischer
- Department of Cell Physiology, Ruhr University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany
- Division of Experimental Neurology, Medical Faculty, Heinrich Heine University, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Iqbal Ahmad
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
19
|
McDougald DS, Duong TT, Palozola KC, Marsh A, Papp TE, Mills JA, Zhou S, Bennett J. CRISPR Activation Enhances In Vitro Potency of AAV Vectors Driven by Tissue-Specific Promoters. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:380-389. [PMID: 31024980 PMCID: PMC6477656 DOI: 10.1016/j.omtm.2019.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/21/2019] [Indexed: 12/28/2022]
Abstract
Validation of gene transfer vectors containing tissue-specific promoters in cell-based functional assays poses a formidable challenge for gene therapy product development. Here, we describe a novel approach based on CRISPR/dCas9 transcriptional activation to achieve robust transgene expression from transgene cassettes containing tissue or cell type-specific promoters after infection with AAV vectors in cell-based systems. Guide RNA sequences targeting two promoters that are highly active within mammalian photoreceptors were screened in a novel promoter activation assay. Using this screen, we generated and characterized stable cell lines that co-express dCas9.VPR and top-performing guide RNA candidates. These cells exhibit potent activation of proviral plasmids after transfection or after infection with AAV vectors delivering transgene cassettes carrying photoreceptor-specific promoters. In addition, we interrogated mechanisms to optimize this platform through the addition of multiple guide RNA sequences and co-expression of the universal adeno-associated virus receptor (AAVR). Collectively, this investigation identifies a rapid and broadly applicable strategy to enhance in vitro expression and to evaluate potency of AAV vectors that rely upon cell or tissue-specific regulatory elements.
Collapse
Affiliation(s)
- Devin S McDougald
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thu T Duong
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine C Palozola
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anson Marsh
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tyler E Papp
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A Mills
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shangzhen Zhou
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Factors governing the transduction efficiency of adeno-associated virus in the retinal ganglion cells following intravitreal injection. Gene Ther 2019; 26:109-120. [PMID: 30692605 DOI: 10.1038/s41434-019-0060-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 02/08/2023]
Abstract
Efficient transduction of the retinal ganglion cells (RGCs) is a prerequisite to maximize therapeutic outcomes in any form of gene therapy for optic neuropathies. Whereas subretinal injection of adeno-associated virus 2 (AAV2) has been well-characterized, the serotype, viral load, and promoter combinations that govern RGC transduction efficiency following intravitreal injection remains poorly understood. We evaluated the transduction efficiency of seven AAV2 serotypes (AAV2/1, AAV2/2, AAV2/4, AAV2/5, AAV2/6, AAV2/8, and AAV2/9) for the RGCs at 4 weeks following intravitreal injection in C57BL/6J mice. Intravitreal injection of 1 × 109 vg of AAV2/2 with eGFP driven by the CMV promoter attained a higher transduction efficiency for the RGCs (60.0 ± 4.2%) compared with the six other AAV2 serotypes with eGFP driven by the same promoter injected at the same viral load ( < 3.0%). Reporter driven by the CAG promoter had a lower transduction efficiency (up to 42.0 ± 5.8%) compared with that driven by the CMV reporter (60.0 ± 4.2%, p ≤ 0.024). There was a viral dose-dependent transduction effect of AAV2/2-CMV-eGFP and the transduction efficiency was 40.2 ± 3.9%, 16.6 ± 4.2%, and 2.6 ± 0.2% when the viral load decreased to 5 × 108 vg, 1 × 108 vg, and 1 × 107 vg, respectively. Optimizing viral serotype, viral load, and promoter construct of AAV2 is important to maximize transgene expression in RGC-targeted gene therapy.
Collapse
|
21
|
Loss of Shp2 Rescues BDNF/TrkB Signaling and Contributes to Improved Retinal Ganglion Cell Neuroprotection. Mol Ther 2018; 27:424-441. [PMID: 30341011 DOI: 10.1016/j.ymthe.2018.09.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is characterized by the loss of retinal ganglion cells (RGC), and accordingly the preservation of RGCs and their axons has recently attracted significant attention to improve therapeutic outcomes in the disease. Here, we report that Src homology region 2-containing protein tyrosine phosphatase 2 (Shp2) undergoes activation in the RGCs, in animal model of glaucoma as well as in the human glaucoma tissues and that Shp2 dephosphorylates tropomyosin receptor kinase B (TrkB) receptor, leading to reduced BDNF/TrkB neuroprotective survival signaling. This was elucidated by specifically modulating Shp2 expression in the RGCs in vivo, using adeno-associated virus serotype 2 (AAV2) constructs. Shp2 upregulation promoted endoplasmic reticulum (ER) stress and apoptosis, along with functional and structural deficits in the inner retina. In contrast, loss of Shp2 decelerated the loss of RGCs, preserved their function, and suppressed ER stress and apoptosis in glaucoma. This report constitutes the first identification of Shp2-mediated TrkB regulatory mechanisms in the RGCs that can become a potential therapeutic target in both glaucoma and other neurodegenerative disorders.
Collapse
|
22
|
Simpson EM, Korecki AJ, Fornes O, McGill TJ, Cueva-Vargas JL, Agostinone J, Farkas RA, Hickmott JW, Lam SL, Mathelier A, Renner LM, Stoddard J, Zhou M, Di Polo A, Neuringer M, Wasserman WW. New MiniPromoter Ple345 (NEFL) Drives Strong and Specific Expression in Retinal Ganglion Cells of Mouse and Primate Retina. Hum Gene Ther 2018; 30:257-272. [PMID: 30062914 PMCID: PMC6437624 DOI: 10.1089/hum.2018.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Retinal gene therapy is leading the neurological gene therapy field, with 32 ongoing clinical trials of recombinant adeno-associated virus (rAAV)–based therapies. Importantly, over 50% of those trials are using restricted promoters from human genes. Promoters that restrict expression have demonstrated increased efficacy and can limit the therapeutic to the target cells thereby reducing unwanted off-target effects. Retinal ganglion cells are a critical target in ocular gene therapy; they are involved in common diseases such as glaucoma, rare diseases such as Leber's hereditary optic neuropathy, and in revolutionary optogenetic treatments. Here, we used computational biology and mined the human genome for the best genes from which to develop a novel minimal promoter element(s) designed for expression in restricted cell types (MiniPromoter) to improve the safety and efficacy of retinal ganglion cell gene therapy. Gene selection included the use of the first available droplet-based single-cell RNA sequencing (Drop-seq) dataset, and promoter design was bioinformatically driven and informed by a wide range of genomics datasets. We tested seven promoter designs from four genes in rAAV for specificity and quantified expression strength in retinal ganglion cells in mouse, and then the single best in nonhuman primate retina. Thus, we developed a new human-DNA MiniPromoter, Ple345 (NEFL), which in combination with intravitreal delivery in rAAV9 showed specific and robust expression in the retinal ganglion cells of the nonhuman-primate rhesus macaque retina. In mouse, we also developed MiniPromoters expressing in retinal ganglion cells, the hippocampus of the brain, a pan neuronal pattern in the brain, and peripheral nerves. As single-cell transcriptomics such as Drop-seq become available for other cell types, many new opportunities for additional novel restricted MiniPromoters will present.
Collapse
Affiliation(s)
- Elizabeth M Simpson
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,2 Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,3 Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,4 Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea J Korecki
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oriol Fornes
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,2 Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Trevor J McGill
- 5 Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon.,6 Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Jorge Luis Cueva-Vargas
- 7 Department of Neuroscience and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Jessica Agostinone
- 7 Department of Neuroscience and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Rachelle A Farkas
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jack W Hickmott
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,2 Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Siu Ling Lam
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony Mathelier
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,2 Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren M Renner
- 5 Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon
| | - Jonathan Stoddard
- 5 Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon
| | - Michelle Zhou
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adriana Di Polo
- 7 Department of Neuroscience and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Martha Neuringer
- 5 Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon.,6 Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Wyeth W Wasserman
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,2 Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Progress in Gene Therapy to Prevent Retinal Ganglion Cell Loss in Glaucoma and Leber's Hereditary Optic Neuropathy. Neural Plast 2018; 2018:7108948. [PMID: 29853847 PMCID: PMC5954906 DOI: 10.1155/2018/7108948] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/04/2018] [Indexed: 12/24/2022] Open
Abstract
The eye is at the forefront of the application of gene therapy techniques to medicine. In the United States, a gene therapy treatment for Leber's congenital amaurosis, a rare inherited retinal disease, recently became the first gene therapy to be approved by the FDA for the treatment of disease caused by mutations in a specific gene. Phase III clinical trials of gene therapy for other single-gene defect diseases of the retina and optic nerve are also currently underway. However, for optic nerve diseases not caused by single-gene defects, gene therapy strategies are likely to focus on slowing or preventing neuronal death through the expression of neuroprotective agents. In addition to these strategies, there has also been recent interest in the potential use of precise genome editing techniques to treat ocular disease. This review focuses on recent developments in gene therapy techniques for the treatment of glaucoma and Leber's hereditary optic neuropathy (LHON). We discuss recent successes in clinical trials for the treatment of LHON using gene supplementation therapy, promising neuroprotective strategies that have been employed in animal models of glaucoma and the potential use of genome editing techniques in treating optic nerve disease.
Collapse
|