1
|
Geers L, Dormal V, Bonato M, Vandermeeren Y, Masson N, Andres M. Modulation of initial leftward bias in visual search by parietal tDCS. PLoS One 2024; 19:e0315715. [PMID: 39739719 DOI: 10.1371/journal.pone.0315715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 11/30/2024] [Indexed: 01/02/2025] Open
Abstract
Transcranial direct current stimulation (tDCS) has the potential to modulate spatial attention by enhancing the activity in one hemisphere relative to the other. This study aims to inform neurorehabilitation strategies for spatial attention disorders by investigating the impact of tDCS on the performance of healthy participants. Unlike prior research that focused on visual detection, we extended the investigation to visual search and visual imagery using computerized neuropsychological tests. Forty-eight participants had to actively search for targets in space (visual search) and notice differences between two mental images (visual imagery). Anodal stimulation was administered over the left parietal cortex for half of the participants and over the right parietal cortex for the other half. The results showed that tDCS modulated spatial attention in visual search but not in visual imagery. In the sham condition, visual search was characterized by a leftward bias in the selection of the first target and a left asymmetry in the overall spatial distribution of cancelled targets. Parietal tDCS modulated the initial leftward bias, enhancing it (more lateral) during right anodal stimulation and reducing it (more central) during left anodal stimulation. However, this effect was not reflected in the spatial distribution of the cancelled targets. The overall visual search performance marginally improved during right anodal stimulation, as evidenced by a greater percentage of cancelled targets compared to sham. Finally, the results revealed no left-right asymmetries in the visual imagery task, either after sham or anodal stimulation. The specific effect of parietal tDCS on the initiation of visual search offers a new perspective for targeted neurorehabilitation strategies and provides further insight into the different sensitivity of visual search measures classically used in brain-lesioned patients.
Collapse
Affiliation(s)
- Laurie Geers
- Psychological Science Research Institute, UCLouvain, Louvain-la-Neuve, Belgium
- UCLouvain, Institute of Neuroscience (IoNS), NEUR Division, UCLouvain, Louvain-la-Neuve, Belgium
| | - Valérie Dormal
- Psychological Science Research Institute, UCLouvain, Louvain-la-Neuve, Belgium
- UCLouvain, Institute of Neuroscience (IoNS), NEUR Division, UCLouvain, Louvain-la-Neuve, Belgium
| | - Mario Bonato
- Department of General Psychology, University of Padova, Padua, Italy
| | - Yves Vandermeeren
- UCLouvain, Institute of Neuroscience (IoNS), NEUR Division, UCLouvain, Louvain-la-Neuve, Belgium
- CHU UCL Namur-Godinne Neurology Department, Stroke Unit & Neuromodulation Unit, UCLouvain, Louvain-la-Neuve, Belgium
| | - Nicolas Masson
- Psychological Science Research Institute, UCLouvain, Louvain-la-Neuve, Belgium
- UCLouvain, Institute of Neuroscience (IoNS), NEUR Division, UCLouvain, Louvain-la-Neuve, Belgium
| | - Michael Andres
- Psychological Science Research Institute, UCLouvain, Louvain-la-Neuve, Belgium
- UCLouvain, Institute of Neuroscience (IoNS), NEUR Division, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Kho SK, Keeble D, Wong HK, Estudillo AJ. Null effect of anodal and cathodal transcranial direct current stimulation (tDCS) on own- and other-race face recognition. Soc Neurosci 2023; 18:393-406. [PMID: 37840302 DOI: 10.1080/17470919.2023.2263924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 10/17/2023]
Abstract
Successful face recognition is important for social interactions and public security. Although some preliminary evidence suggests that anodal and cathodal transcranial direct current stimulation (tDCS) might modulate own- and other-race face identification, respectively, the findings are largely inconsistent. Hence, we examined the effect of both anodal and cathodal tDCS on the recognition of own- and other-race faces. Ninety participants first completed own- and other-race Cambridge Face Memory Test (CFMT) as baseline measurements. Next, they received either anodal tDCS, cathodal tDCS or sham stimulation and finally they completed alternative versions of the own- and other-race CFMT. No difference in performance, in terms of accuracy and reaction time, for own- and other-race face recognition between anodal tDCS, cathodal tDCS and sham stimulation was found. Our findings cast doubt upon the efficacy of tDCS to modulate performance in face identification tasks.
Collapse
Affiliation(s)
- Siew Kei Kho
- Department of Psychology, Bournemouth University, Poole, United Kingdom
- School of Psychology, University of Nottingham Malaysia, Semenyih, Malaysia
| | - David Keeble
- Department of Psychology, Bournemouth University, Poole, United Kingdom
| | - Hoo Keat Wong
- Department of Psychology, Bournemouth University, Poole, United Kingdom
| | | |
Collapse
|
3
|
Kho SK, Keeble DRT, Wong HK, Estudillo AJ. Investigating the role of the fusiform face area and occipital face area using multifocal transcranial direct current stimulation. Neuropsychologia 2023; 189:108663. [PMID: 37611740 DOI: 10.1016/j.neuropsychologia.2023.108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
The functional role of the occipital face area (OFA) and the fusiform face area (FFA) in face recognition is inconclusive to date. While some research has shown that the OFA and FFA are involved in early (i.e., featural processing) and late (i.e., holistic processing) stages of face recognition respectively, other research suggests that both regions are involved in both early and late stages of face recognition. Thus, the current study aims to further examine the role of the OFA and the FFA using multifocal transcranial direct current stimulation (tDCS). In Experiment 1, we used computer-generated faces. Thirty-five participants completed whole face and facial features (i.e., eyes, nose, mouth) recognition tasks after OFA and FFA stimulation in a within-subject design. No difference was found in recognition performance after either OFA or FFA stimulation. In Experiment 2 with 60 participants, we used real faces, provided stimulation following a between-subjects design and included a sham control group. Results showed that FFA stimulation led to enhanced efficiency of facial features recognition. Additionally, no effect of OFA stimulation was found for either facial feature or whole face recognition. These results suggest the involvement of FFA in the recognition of facial features.
Collapse
Affiliation(s)
- Siew Kei Kho
- Department of Psychology, Bournemouth University, UK; School of Psychology, University of Nottingham, Malaysia.
| | | | - Hoo Keat Wong
- School of Psychology, University of Nottingham, Malaysia
| | - Alejandro J Estudillo
- Department of Psychology, Bournemouth University, UK; School of Psychology, University of Nottingham, Malaysia.
| |
Collapse
|
4
|
da Costa Leal L, da Penha Sobral AIG, Sobral MFF, Nogueira RMTL. Effects of transcranial direct current stimulation on visuospatial attention in air traffic controllers. Exp Brain Res 2022; 240:2481-2490. [PMID: 35972521 DOI: 10.1007/s00221-022-06431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/27/2022] [Indexed: 11/04/2022]
Abstract
Visuospatial attention is a cognitive skill essential to the performance of air traffic control activities. We evaluated the effect of an anodic session of transcranial low-intensity direct current stimulation (tDCS) right parietal associated with cognitive training of visuospatial attention of 21 air traffic controllers. Within-subject designs were used, with all volunteers undergoing two tDCS sessions; an experimental (2 mA anodic) and control (sham) performed concomitantly with the cognitive training (2-Back). Visuospatial performance was measured using the Attention Network Test for Interactions and Vigilance pre- and post-intervention. The results indicate that after an active parietal tDCS session, the ATCOs showed faster responses, but not more accurate, for visuospatial attention in its aspects of orientation and reorientation. This result was significant when comparing baseline and post-tests in the active tDCS group. Comparing the post-tests between the tDCS active and sham groups, it is possible to infer a trend of improvement in the results based on faster and more accurate responses, which suggests a possible refinement of the ATCO's attentional orientation. However, this population may eventually have reached a plateau in the performance of this skill. From the analysis of the results we arrive at the following hypotheses: (I) the increase in cortical excitability mediated by anodic tDCS frequently recorded may not be accompanied by improvements in behavioural measures; (II) the interaction between anodic tDCS with another event of increased excitability-execution of a cognitive task, may have hindered the occurrence of neuroplasticity; (III) the air traffic control activity may be associated with a high level of attention, which may have contributed to a ceiling effect for the development of this skill; (IV) online assessments may be more relevant to identify acute effects; (V) repeated sessions may be more efficient to find cumulative effects; (VI) the analysis of interactions between attentional networks can contribute to the study of visuospatial attention; (VII) tDCS protocols aimed at ATCO need to consider the specifics of this audience, such as circadian rhythm and sleep and fatigue conditions.
Collapse
Affiliation(s)
- Luciana da Costa Leal
- Programa de Pós-Graduação Em Psicologia Cognitiva, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235-Cidade Universitária, Recife, PE, Brazil
| | - Ana Iza Gomes da Penha Sobral
- Programa de Pós-Graduação Em Psicologia Cognitiva, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235-Cidade Universitária, Recife, PE, Brazil.
| | - Marcos Felipe Falcão Sobral
- Programa de Pós-Graduação Em Administração E Desenvolvimento Rural, Universidade Federal Rural de Pernambuco, Avenida Dom Manoel de Medeiros, s/n -Dois Irmãos, Recife, PE, Brazil
| | - Renata Maria Toscano Lyra Nogueira
- Programa de Pós-Graduação Em Psicologia Cognitiva, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235-Cidade Universitária, Recife, PE, Brazil
| |
Collapse
|
5
|
Moretti J, Marinovic W, Harvey AR, Rodger J, Visser TAW. Offline Parietal Intermittent Theta Burst Stimulation or Alpha Frequency Transcranial Alternating Current Stimulation Has No Effect on Visuospatial or Temporal Attention. Front Neurosci 2022; 16:903977. [PMID: 35774555 PMCID: PMC9237453 DOI: 10.3389/fnins.2022.903977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Non-invasive brain stimulation is a growing field with potentially wide-ranging clinical and basic science applications due to its ability to transiently and safely change brain excitability. In this study we include two types of stimulation: repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS). Single session stimulations with either technique have previously been reported to induce changes in attention. To better understand and compare the effectiveness of each technique and the basis of their effects on cognition we assessed changes to both temporal and visuospatial attention using an attentional blink task and a line bisection task following offline stimulation with an intermittent theta burst (iTBS) rTMS protocol or 10 Hz tACS. Additionally, we included a novel rTMS stimulation technique, low-intensity (LI-)rTMS, also using an iTBS protocol, which uses stimulation intensities an order of magnitude below conventional rTMS. Animal models show that low-intensity rTMS modulates cortical excitability despite sub-action potential threshold stimulation. Stimulation was delivered in healthy participants over the right posterior parietal cortex (rPPC) using a within-subjects design (n = 24). Analyses showed no evidence for an effect of any stimulation technique on spatial biases in the line bisection task or on magnitude of the attentional blink. Our results suggests that rTMS and LI-rTMS using iTBS protocol and 10 Hz tACS over rPPC do not modulate performance in tasks assessing visuospatial or temporal attention.
Collapse
Affiliation(s)
- Jessica Moretti
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Welber Marinovic
- School of Population Health, Curtin University, Perth, WA, Australia
| | - Alan R. Harvey
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, Perth, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Troy A. W. Visser
- School of Psychological Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
6
|
Fava de Lima F, Silva CR, Kohn AF. Transcutaneous spinal direct current stimulation (tsDCS) does not affect postural sway of young and healthy subjects during quiet upright standing. PLoS One 2022; 17:e0267718. [PMID: 35482798 PMCID: PMC9049532 DOI: 10.1371/journal.pone.0267718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Transcutaneous spinal direct current stimulation (tsDCS) is an effective non-invasive spinal cord electrical stimulation technique to induce neuromodulation of local and distal neural circuits of the central nervous system (CNS). Applied to the spinal cord lumbosacral region, tsDCS changes electrophysiological responses of the motor, proprioceptive and nociceptive pathways, alters the performance of some lower limb motor tasks and can even modulate the behavior of supramedullary neuronal networks. In this study an experimental protocol was conducted to verify if tsDCS (5 mA, 20 minutes) of two different polarizations, applied over the lumbosacral region (tenth thoracic vertebrae (T10)), can induce changes in postural sway oscillations of young healthy individuals during quiet standing. A novel initialization of the electrical stimulation was developed to improve subject blinding to the different stimulus conditions including the sham trials. Measures of postural sway, both global and structural, were computed before, during and following the DC stimulation period. The results indicated that, for the adopted conditions, tsDCS did not induce statistically significant changes in postural sway of young healthy individuals during quiet standing.
Collapse
Affiliation(s)
- Felipe Fava de Lima
- Biomedical Engineering Laboratory, Escola Politécnica, University of São Paulo, São Paulo, Brazil
- * E-mail:
| | - Cristiano Rocha Silva
- Biomedical Engineering Laboratory, Escola Politécnica, University of São Paulo, São Paulo, Brazil
| | - Andre Fabio Kohn
- Biomedical Engineering Laboratory, Escola Politécnica, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Herrera-Melendez AL, Bajbouj M, Aust S. Application of Transcranial Direct Current Stimulation in Psychiatry. Neuropsychobiology 2021; 79:372-383. [PMID: 31340213 DOI: 10.1159/000501227] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/28/2019] [Indexed: 11/19/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a neuromodulation technique, which noninvasively alters cortical excitability via weak polarizing currents between two electrodes placed on the scalp. Since it is comparably easy to handle, cheap to use and relatively well tolerated, tDCS has gained increasing interest in recent years. Based on well-known behavioral effects, a number of clinical studies have been performed in populations including patients with major depressive disorder followed by schizophrenia and substance use disorders, in sum with heterogeneous results with respect to efficacy. Nevertheless, the potential of tDCS must not be underestimated since it could be further improved by systematically investigating the various stimulation parameters to eventually increase clinical efficacy. The present article briefly explains the underlying physiology of tDCS, summarizes typical stimulation protocols and then reviews clinical efficacy for various psychiatric disorders as well as prevalent adverse effects. Future developments include combined and more complex interactions of tDCS with pharmacological or psychotherapeutic interventions. In particular, using computational models to individualize stimulation protocols, considering state dependency and applying closed-loop technologies will pave the way for tDCS-based personalized interventions as well as the development of home treatment settings promoting the role of tDCS as an effective treatment option for patients with mental health problems.
Collapse
Affiliation(s)
- Ana-Lucia Herrera-Melendez
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,
| | - Malek Bajbouj
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sabine Aust
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
8
|
Learmonth G, Benwell CSY, Märker G, Dascalu D, Checketts M, Santosh C, Barber M, Walters M, Muir KW, Harvey M. Non-invasive brain stimulation in Stroke patients (NIBS): A prospective randomized open blinded end-point (PROBE) feasibility trial using transcranial direct current stimulation (tDCS) in post-stroke hemispatial neglect. Neuropsychol Rehabil 2020; 31:1163-1189. [PMID: 32498606 PMCID: PMC8372288 DOI: 10.1080/09602011.2020.1767161] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Up to 80% of people who experience a right-hemisphere stroke suffer from hemispatial neglect. This syndrome is debilitating and impedes rehabilitation. We carried out a clinical feasibility trial of transcranial direct current stimulation (tDCS) and a behavioural rehabilitation programme, alone or in combination, in patients with neglect. Patients >4 weeks post right hemisphere stroke were randomized to 10 sessions of tDCS, 10 sessions of a behavioural intervention, combined intervention, or a control task. Primary outcomes were recruitment and retention rates, with secondary outcomes effect sizes on measures of neglect and quality of life, assessed directly after the interventions, and at 6 months follow up. Of 288 confirmed stroke cases referred (representing 7% of confirmed strokes), we randomized 8% (0.6% of stroke cases overall). The largest number of exclusions (91/288 (34%)) were due to medical comorbidities that prevented patients from undergoing 10 intervention sessions. We recruited 24 patients over 29 months, with 87% completing immediate post-intervention and 67% 6 month evaluations. We established poor feasibility of a clinical trial requiring repeated hospital-based tDCS within a UK hospital healthcare setting, either with or without behavioural training, over a sustained time period. Future trials should consider intensity, duration and location of tDCS neglect interventions.Trial registration: ClinicalTrials.gov identifier: NCT02401724.
Collapse
Affiliation(s)
- Gemma Learmonth
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,School of Psychology, University of Glasgow, Glasgow, UK
| | - Christopher S Y Benwell
- School of Psychology, University of Glasgow, Glasgow, UK.,Division of Psychology, School of Social Sciences, University of Dundee, Dundee, UK
| | - Gesine Märker
- School of Psychology, University of Glasgow, Glasgow, UK
| | - Diana Dascalu
- School of Psychology, University of Glasgow, Glasgow, UK
| | - Matthew Checketts
- School of Psychology, University of Glasgow, Glasgow, UK.,Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | | | - Mark Barber
- University Hospital Monklands, Lanarkshire, UK
| | - Matthew Walters
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Keith W Muir
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Monika Harvey
- School of Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
Kostova R, Cecere R, Thut G, Uhlhaas PJ. Targeting cognition in schizophrenia through transcranial direct current stimulation: A systematic review and perspective. Schizophr Res 2020; 220:300-310. [PMID: 32204971 DOI: 10.1016/j.schres.2020.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/03/2023]
Abstract
Cognitive deficits are a fundamental feature of schizophrenia for which currently no effective treatments exist. This paper examines the possibility to use transcranial direct current stimulation (tDCS) to target cognitive deficits in schizophrenia as evidence from studies in healthy participants suggests that tDCS may improve cognitive functions and associated neural processes. We carried out a systematic review with the following search terms: 'tDCS', 'electric brain stimulation', 'schizophrenia', 'cognitive', 'cognition' until March 2019. 659 records were identified initially, 612 of which were excluded after abstract screening. The remaining 47 articles were assessed for eligibility based on our criteria and 26 studies were excluded. In addition, we compared several variables, such as online vs. offline-stimulation protocols, stimulation type and intensity on mediating positive vs. negative study outcomes. The majority of studies (n = 21) identified significant behavioural and neural effects on a range of cognitive functions (versus n = 11 with null results), including working memory, attention and social cognition. However, we could not identify tDCS parameters (electrode montage, stimulation protocol, type and intensity) that clearly mediated effects on cognitive deficits. There is preliminary evidence for the possibility that tDCS may improve cognitive deficits in schizophrenia. We discuss the rationale and strength of evidence for using tDCS for targeting cognitive deficits in schizophrenia as well as methodological issues and potential mechanisms of action.
Collapse
Affiliation(s)
- R Kostova
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - R Cecere
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - G Thut
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK; Department of Child and Adolescent Psychiatry, Charite Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Boayue NM, Csifcsák G, Aslaksen P, Turi Z, Antal A, Groot J, Hawkins GE, Forstmann B, Opitz A, Thielscher A, Mittner M. Increasing propensity to mind‐wander by transcranial direct current stimulation? A registered report. Eur J Neurosci 2020; 51:755-780. [DOI: 10.1111/ejn.14347] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022]
Affiliation(s)
| | - Gábor Csifcsák
- Department of PsychologyUniversity of Tromsø Tromsø Norway
| | - Per Aslaksen
- Department of PsychologyUniversity of Tromsø Tromsø Norway
| | - Zsolt Turi
- Department of Clinical NeurophysiologyUniversity Medical Center Göttingen Göttingen Germany
| | - Andrea Antal
- Department of Clinical NeurophysiologyUniversity Medical Center Göttingen Göttingen Germany
| | - Josephine Groot
- Department of PsychologyUniversity of Tromsø Tromsø Norway
- Integrative Model‐based Cognitive Neuroscience Research UnitUniversity of Amsterdam Amsterdam The Netherlands
| | - Guy E. Hawkins
- School of PsychologyUniversity of Newcastle Newcastle New South Wales Australia
| | - Birte Forstmann
- Integrative Model‐based Cognitive Neuroscience Research UnitUniversity of Amsterdam Amsterdam The Netherlands
| | - Alexander Opitz
- Department of Biomedical EngineeringUniversity of Minnesota Minneapolis MN
| | - Axel Thielscher
- Danish Research Centre for Magnetic ResonanceCentre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital Hvidovre Denmark
- Department of Electrical EngineeringTechnical University of Denmark Lyngby Denmark
| | | |
Collapse
|
11
|
Distinct Montages of Slow Oscillatory Transcranial Direct Current Stimulation (so-tDCS) Constitute Different Mechanisms during Quiet Wakefulness. Brain Sci 2019; 9:brainsci9110324. [PMID: 31739576 PMCID: PMC6896026 DOI: 10.3390/brainsci9110324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Slow oscillatory- (so-) tDCS has been applied in many sleep studies aimed to modulate brain rhythms of slow wave sleep and memory consolidation. Yet, so-tDCS may also modify coupled oscillatory networks. Efficacy of weak electric brain stimulation is however variable and dependent upon the brain state at the time of stimulation (subject and/or task-related) as well as on stimulation parameters (e.g., electrode placement and applied current. Anodal so-tDCS was applied during wakefulness with eyes-closed to examine efficacy when deviating from the dominant brain rhythm. Additionally, montages of different electrodes size and applied current strength were used. During a period of quiet wakefulness bilateral frontolateral stimulation (F3, F4; return electrodes at ipsilateral mastoids) was applied to two groups: ‘Group small’ (n = 16, f:8; small electrodes: 0.50 cm2; maximal current per electrode pair: 0.26 mA) and ‘Group Large’ (n = 16, f:8; 35 cm2; 0.35 mA). Anodal so-tDCS (0.75 Hz) was applied in five blocks of 5 min epochs with 1 min stimulation-free epochs between the blocks. A finger sequence tapping task (FSTT) was used to induce comparable cortical activity across sessions and subject groups. So-tDCS resulted in a suppression of alpha power over the parietal cortex. Interestingly, in Group Small alpha suppression occurred over the standard band (8–12 Hz), whereas for Group Large power of individual alpha frequency was suppressed. Group Small also revealed a decrease in FSTT performance at retest after stimulation. It is essential to include concordant measures of behavioral and brain activity to help understand variability and poor reproducibility in oscillatory-tDCS studies.
Collapse
|
12
|
Greinacher R, Buhôt L, Möller L, Learmonth G. The time course of ineffective sham-blinding during low-intensity (1 mA) transcranial direct current stimulation. Eur J Neurosci 2019; 50:3380-3388. [PMID: 31228880 PMCID: PMC6899874 DOI: 10.1111/ejn.14497] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 11/27/2022]
Abstract
Studies using transcranial direct current stimulation (tDCS) typically compare an active protocol relative to a shorter sham (placebo) protocol. Both protocols are presumed to be perceptually identical on the scalp, and thus represent an effective method of delivering double-blinded experimental designs. However, participants often show above-chance accuracy when asked which condition involved active/sham retrospectively. We assessed the time course of sham-blinding during active and sham tDCS. We predicted that participants would be aware that the current is switched on for longer in the active versus sham protocol. Thirty-two adults were tested in a preregistered, double-blinded, within-subjects design. A forced-choice reaction time task was undertaken before, during and after active (10 min 1 mA) and sham (20 s 1 mA) tDCS. The anode was placed over the left primary motor cortex (C3) to target the right hand, and the cathode on the right forehead. Two probe questions were asked every 30 s: "Is the stimulation on?" and "How sure are you?". Distinct periods of non-overlapping confidence intervals were identified between conditions, totalling 5 min (57.1% of the total difference in stimulation time). These began immediately after sham ramp-down and lasted until the active protocol had ended. We therefore show a failure of placebo control during 1 mA tDCS. These results highlight the need to develop more effective methods of sham-blinding during transcranial electrical stimulation protocols, even when delivered at low-intensity current strengths.
Collapse
Affiliation(s)
- Robert Greinacher
- School of PsychologyUniversity of GlasgowGlasgowUK
- Quality and Usability LabTechnische Universität BerlinBerlinGermany
| | | | - Lisa Möller
- School of PsychologyUniversity of GlasgowGlasgowUK
- Department of NeurologyUniversity of LübeckLübeckGermany
| | - Gemma Learmonth
- School of PsychologyUniversity of GlasgowGlasgowUK
- Centre for Cognitive NeuroimagingInstitute of Neuroscience and PsychologyUniversity of GlasgowGlasgowUK
| |
Collapse
|
13
|
Fertonani A, Pirulli C, Bollini A, Miniussi C, Bortoletto M. Age-related changes in cortical connectivity influence the neuromodulatory effects of transcranial electrical stimulation. Neurobiol Aging 2019; 82:77-87. [DOI: 10.1016/j.neurobiolaging.2019.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022]
|