1
|
Imperio CM, Chua EF. Lack of effects of online HD-tDCS over the left or right DLPFC in an associative memory and metamemory monitoring task. PLoS One 2024; 19:e0300779. [PMID: 38848375 PMCID: PMC11161112 DOI: 10.1371/journal.pone.0300779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/20/2024] [Indexed: 06/09/2024] Open
Abstract
Neuroimaging studies have shown that activity in the prefrontal cortex correlates with two critical aspects of normal memory functioning: retrieval of episodic memories and subjective "feelings-of-knowing" about our memory. Brain stimulation can be used to test the causal role of the prefrontal cortex in these processes, and whether the role differs for the left versus right prefrontal cortex. We compared the effects of online High-Definition transcranial Direct Current Stimulation (HD-tDCS) over the left or right dorsolateral prefrontal cortex (DLPFC) compared to sham during a proverb-name associative memory and feeling-of-knowing task. There were no significant effects of HD-tDCS on either associative recognition or feeling-of-knowing performance, with Bayesian analyses showing moderate support for the null hypotheses. Despite past work showing effects of HD-tDCS on other memory and feeling-of-knowing tasks, and neuroimaging showing effects with similar tasks, these findings add to the literature of non-significant effects with tDCS. This work highlights the need to better understand factors that determine the effectiveness of tDCS, especially if tDCS is to have a successful future as a clinical intervention.
Collapse
Affiliation(s)
- Casey M Imperio
- The Graduate Center of the City University of New York, New York, New York, United States of America
| | - Elizabeth F Chua
- The Graduate Center of the City University of New York, New York, New York, United States of America
- Brooklyn College of the City University of New York, New York, New York, United States of America
| |
Collapse
|
2
|
Schöne CG, Vibert D, Mast FW. Executive functions in patients with bilateral and unilateral peripheral vestibular dysfunction. J Neurol 2024; 271:3291-3308. [PMID: 38466421 PMCID: PMC11136862 DOI: 10.1007/s00415-024-12267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/13/2024]
Abstract
Previous research suggests that patients with peripheral vestibular dysfunction (PVD) suffer from nonspatial cognitive problems, including executive impairments. However, previous studies that assessed executive functions are conflicting, limited to single executive components, and assessments are confounded by other cognitive functions. We compared performance in a comprehensive executive test battery in a large sample of 83 patients with several conditions of PVD (34 bilateral, 29 chronic unilateral, 20 acute unilateral) to healthy controls who were pairwise matched to patients regarding age, sex, and education. We assessed basic and complex executive functions with validated neuropsychological tests. Patients with bilateral PVD performed worse than controls in verbal initiation and working memory span, while other executive functions were preserved. Patients with chronic unilateral PVD had equal executive performance as controls. Patients with acute unilateral PVD performed worse than controls in the exact same tests as patients with bilateral PVD (verbal initiation, working memory span); however, this effect in patients with acute PVD diminished after correcting for multiple comparisons. Hearing loss and affective disorders did not influence our results. Vestibular related variables (disease duration, symptoms, dizziness handicap, deafferentation degree, and compensation) did not predict verbal initiation or working memory span in patients with bilateral PVD. The results suggest that bilateral PVD not only manifests in difficulties when solving spatial tasks but leads to more general neurocognitive deficits. This understanding is important for multidisciplinary workgroups (e.g., neurotologists, neurologists, audiologists) that are involved in diagnosing and treating patients with PVD. We recommend screening patients with PVD for executive impairments and if indicated providing them with cognitive training or psychoeducational support.
Collapse
Affiliation(s)
- Corina G Schöne
- Department of Psychology, University of Bern, Bern, Switzerland.
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland.
| | - Dominique Vibert
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Fred W Mast
- Department of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Kang J, Lee H, Yu S, Lee M, Kim HJ, Kwon R, Kim S, Fond G, Boyer L, Rahmati M, Koyanagi A, Smith L, Nehs CJ, Kim MS, Sánchez GFL, Dragioti E, Kim T, Yon DK. Effects and safety of transcranial direct current stimulation on multiple health outcomes: an umbrella review of randomized clinical trials. Mol Psychiatry 2024:10.1038/s41380-024-02624-3. [PMID: 38816583 DOI: 10.1038/s41380-024-02624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Transcranial direct current stimulation (tDCS), which delivers a direct current to the brain, emerged as a non-invasive potential therapeutic in treating a range of neurological and neuropsychiatric disorders. However, a comprehensive quantitative evidence synthesis on the effects of tDCS on a broad range of mental illnesses is lacking. Here, we systematically assess the certainty of the effects and safety of tDCS on several health outcomes using an umbrella review of randomized controlled trials (RCTs). The methodological quality of each included original meta-analysis was assessed by the A Measurement Tool for Assessing Systematic Reviews 2 (AMSTAR2), and the certainty of the evidence for each effect was evaluated with Grading of Recommendations, Assessment, Development, and Evaluation (GRADE). We followed an a priori protocol (PROSPERO CRD42023458700). We identified 15 meta-analyses of RCTs (AMSTAR 2; high 3, moderate 3, and low 9) that included 282 original articles, covering 22 unique health endpoints across 22 countries and six continents. From meta-analyses of RCTs supported by very low to high certainty of evidence, it was found that tDCS improved symptoms related to post-stroke, including post-stroke depression scale score (equivalent standardized mean difference [eSMD], 1.61 [95% confidence level, 0.72-2.50]; GRADE=moderate), activities of daily living independence (7.04 [3.41-10.67]; GRADE=high), motor recovery of upper and lower extremity (upper extremity: 0.15 [0.06-0.24], GRADE=high; lower extremity: 0.10 [0.03-0.16], GRADE=high), swallowing performance (GRADE=low), and spasticity (GRADE=moderate). In addition, tDCS had treatment effects on symptoms of several neurological and neuropsychiatric disorders, including obsessive-compulsive disorder (0.81 [0.44-1.18]; GRADE=high), pain in fibromyalgia (GRADE=low), disease of consciousness (GRADE=low), insight score (GRADE=moderate) and working memory (0.34 [0.01-0.67]; GRADE=high) in schizophrenia, migraine-related pain (-1.52 [-2.91 to -0.13]; GRADE=high), attention-deficit/hyperactivity disorder (reduction in overall symptom severity: 0.24 [0.04-0.45], GRADE=low; reduction in inattention: 0.56 [0.02-1.11], GRADE=low; reduction in impulsivity: 0.28 [0.04-0.51], GRADE=low), depression (GRADE=low), cerebellar ataxia (GRADE=low), and pain (GRADE=very low). Importantly, tDCS induced an increased number of reported cases of treatment-emergent mania or hypomania (0.88 [0.62-1.13]; GRADE=moderate). We found varied levels of evidence for the effects of tDCS with multiple neurological and neuropsychiatric conditions, from very low to high certainty of evidence. tDCS was effective for people with stroke, obsessive-compulsive disorder, fibromyalgia, disease of consciousness, schizophrenia, migraine, attention-deficit/hyperactivity disorder, depression, cerebellar ataxia, and pain. Therefore, these findings suggest the benefit of tDCS for several neurological and neuropsychiatric disorders; however, further studies are needed to understand the underlying mechanism and optimize its therapeutic potential.
Collapse
Affiliation(s)
- Jiseung Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Hyeri Lee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Seungyeong Yu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Myeongcheol Lee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Hyeon Jin Kim
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Rosie Kwon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Sunyoung Kim
- Department of Family Medicine, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Guillaume Fond
- Assistance Publique-Hopitaux de Marseille, Research Centre on Health Services and Quality of Life, Aix Marseille University, Marseille, France
| | - Laurent Boyer
- Assistance Publique-Hopitaux de Marseille, Research Centre on Health Services and Quality of Life, Aix Marseille University, Marseille, France
| | - Masoud Rahmati
- Assistance Publique-Hopitaux de Marseille, Research Centre on Health Services and Quality of Life, Aix Marseille University, Marseille, France
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Deu, Barcelona, Spain
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Christa J Nehs
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Min Seo Kim
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Guillermo F López Sánchez
- Division of Preventive Medicine and Public Health, Department of Public Health Sciences, School of Medicine, University of Murcia, Murcia, Spain
| | - Elena Dragioti
- Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Research Laboratory Psychology of Patients, Families, and Health Professionals, Department of Nursing, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea.
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea.
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea.
- Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Jiang S, Jones M, von Bastian CC. TDCS over PPC or DLPFC does not improve visual working memory capacity. COMMUNICATIONS PSYCHOLOGY 2024; 2:20. [PMID: 39242793 PMCID: PMC11332112 DOI: 10.1038/s44271-024-00067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/13/2024] [Indexed: 09/09/2024]
Abstract
Non-invasive brain stimulation has been highlighted as a possible intervention to induce cognitive benefits, including on visual working memory (VWM). However, findings are inconsistent, possibly due to methodological issues. A recent high-profile study by Wang et al.1 reported that anodal transcranial direct current stimulation (tDCS) over posterior parietal cortex (PPC), but not over dorsolateral prefrontal cortex (DLPFC), selectively improved VWM capacity but not precision, especially at a high VWM load. Thus, in the current pre-registered conceptual replication study, we accounted for the key potential methodological issues in the original study and tested an adequate number of participants required to demonstrate the previously reported effects (n = 48 compared to n = 20). Participants underwent counterbalanced PPC, DLPFC and sham stimulation before completing 360 trials of a continuous orientation-reproduction task with a slight variation of task stimuli and setup. We found no evidence for the selective effect of PPC stimulation. Instead, our results showed that tDCS effects were absent regardless of stimulation region and VWM load, which was largely supported by substantial to strong Bayesian evidence. Therefore, our results challenge previously reported benefits of single-session anodal PPC-tDCS on VWM.
Collapse
Affiliation(s)
- Shuangke Jiang
- Department of Psychology and Neuroscience Institute, University of Sheffield, Sheffield, UK.
| | - Myles Jones
- Department of Psychology and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Claudia C von Bastian
- Department of Psychology and Neuroscience Institute, University of Sheffield, Sheffield, UK.
| |
Collapse
|
5
|
Kho SK, Keeble D, Wong HK, Estudillo AJ. Null effect of anodal and cathodal transcranial direct current stimulation (tDCS) on own- and other-race face recognition. Soc Neurosci 2023; 18:393-406. [PMID: 37840302 DOI: 10.1080/17470919.2023.2263924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 10/17/2023]
Abstract
Successful face recognition is important for social interactions and public security. Although some preliminary evidence suggests that anodal and cathodal transcranial direct current stimulation (tDCS) might modulate own- and other-race face identification, respectively, the findings are largely inconsistent. Hence, we examined the effect of both anodal and cathodal tDCS on the recognition of own- and other-race faces. Ninety participants first completed own- and other-race Cambridge Face Memory Test (CFMT) as baseline measurements. Next, they received either anodal tDCS, cathodal tDCS or sham stimulation and finally they completed alternative versions of the own- and other-race CFMT. No difference in performance, in terms of accuracy and reaction time, for own- and other-race face recognition between anodal tDCS, cathodal tDCS and sham stimulation was found. Our findings cast doubt upon the efficacy of tDCS to modulate performance in face identification tasks.
Collapse
Affiliation(s)
- Siew Kei Kho
- Department of Psychology, Bournemouth University, Poole, United Kingdom
- School of Psychology, University of Nottingham Malaysia, Semenyih, Malaysia
| | - David Keeble
- Department of Psychology, Bournemouth University, Poole, United Kingdom
| | - Hoo Keat Wong
- Department of Psychology, Bournemouth University, Poole, United Kingdom
| | | |
Collapse
|
6
|
Cho JY, Van Hoornweder S, Sege CT, Antonucci MU, McTeague LM, Caulfield KA. Template MRI scans reliably approximate individual and group-level tES and TMS electric fields induced in motor and prefrontal circuits. Front Neural Circuits 2023; 17:1214959. [PMID: 37736398 PMCID: PMC10510202 DOI: 10.3389/fncir.2023.1214959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/09/2023] [Indexed: 09/23/2023] Open
Abstract
Background Electric field (E-field) modeling is a valuable method of elucidating the cortical target engagement from transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES), but it is typically dependent on individual MRI scans. In this study, we systematically tested whether E-field models in template MNI-152 and Ernie scans can reliably approximate group-level E-fields induced in N = 195 individuals across 5 diagnoses (healthy, alcohol use disorder, tobacco use disorder, anxiety, depression). Methods We computed 788 E-field models using the CHARM-SimNIBS 4.0.0 pipeline with 4 E-field models per participant (motor and prefrontal targets for TMS and tES). We additionally calculated permutation analyses to determine the point of stability of E-fields to assess whether the 152 brains represented in the MNI-152 template is sufficient. Results Group-level E-fields did not significantly differ between the individual vs. MNI-152 template and Ernie scans for any stimulation modality or location (p > 0.05). However, TMS-induced E-field magnitudes significantly varied by diagnosis; individuals with generalized anxiety had significantly higher prefrontal and motor E-field magnitudes than healthy controls and those with alcohol use disorder and depression (p < 0.001). The point of stability for group-level E-field magnitudes ranged from 42 (motor tES) to 52 participants (prefrontal TMS). Conclusion MNI-152 and Ernie models reliably estimate group-average TMS and tES-induced E-fields transdiagnostically. The MNI-152 template includes sufficient scans to control for interindividual anatomical differences (i.e., above the point of stability). Taken together, using the MNI-152 and Ernie brains to approximate group-level E-fields is a valid and reliable approach.
Collapse
Affiliation(s)
- Jennifer Y. Cho
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Sybren Van Hoornweder
- Faculty of Rehabilitation Sciences, REVAL–Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium
| | - Christopher T. Sege
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Michael U. Antonucci
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States
| | - Lisa M. McTeague
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Kevin A. Caulfield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
7
|
Imperio CM, Chua EF. Differential effects of remotely supervised transcranial direct current stimulation on recognition memory depending on task order. Front Hum Neurosci 2023; 17:1239126. [PMID: 37635805 PMCID: PMC10450219 DOI: 10.3389/fnhum.2023.1239126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Background Prior work has shown positive effects of High Definition transcranial direct current stimulation (HD-tDCS) over the dorsolateral prefrontal cortex (DLPFC) on semantic memory performance and metamemory monitoring accuracy. However, HD-tDCS requires setup by a trained researcher, which is not always feasible. Few studies have used remotely supervised (rs) tDCS in healthy populations, and remote supervision has strong practical benefits. Objective/hypothesis The goal of the current study was to test if previously shown effects of HD-tDCS over the left DLPFC on semantic memory performance and metamemory monitoring accuracy extended to conventional rs-tDCS, which is less focal than HD-tDCS, and to episodic memory and metamemory tasks. Materials and methods A total of 36 healthy participants completed 6 weeks of rs-tDCS sessions, with either active left or right anodal DLPFC stimulation, or sham. Participants completed semantic and episodic memory and metamemory tasks, which each lasted for three consecutive sessions, and session order was counterbalanced across participants. Results Overall, there were no main effects of rs-tDCS on metamemory monitoring accuracy or memory performance for either the semantic or the episodic tasks. However, there were effects of rs-tDCS that depended on the order of completing the episodic and semantic task sessions. When participants completed the semantic task sessions after the episodic task sessions, semantic recognition was greater in the left anodal DLPFC condition. In a parallel effect, when participants completed the episodic task sessions after the semantic task sessions, episodic recognition was greater in the right anodal DLPFC condition. Conclusion Prior experience with tDCS is a factor for effects of rs-tDCS on cognition. Additionally, the current experiment provides evidence for the feasibility of fully remotely supervised tDCS in healthy participants.
Collapse
Affiliation(s)
- Casey M. Imperio
- Department of Psychology, Brooklyn College, Brooklyn, NY, United States
- Department of Psychology, The Graduate Center of the City University of New York, New York, NY, United States
| | - Elizabeth F. Chua
- Department of Psychology, Brooklyn College, Brooklyn, NY, United States
- Department of Psychology, The Graduate Center of the City University of New York, New York, NY, United States
| |
Collapse
|
8
|
Casula A, Milazzo BM, Martino G, Sergi A, Lucifora C, Tomaiuolo F, Quartarone A, Nitsche MA, Vicario CM. Non-Invasive Brain Stimulation for the Modulation of Aggressive Behavior-A Systematic Review of Randomized Sham-Controlled Studies. Life (Basel) 2023; 13:life13051220. [PMID: 37240865 DOI: 10.3390/life13051220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
INTRO Aggressive behavior represents a significant public health issue, with relevant social, political, and security implications. Non-invasive brain stimulation (NIBS) techniques may modulate aggressive behavior through stimulation of the prefrontal cortex. AIMS To review research on the effectiveness of NIBS to alter aggression, discuss the main findings and potential limitations, consider the specifics of the techniques and protocols employed, and discuss clinical implications. METHODS A systematic review of the literature available in the PubMed database was carried out, and 17 randomized sham-controlled studies investigating the effectiveness of NIBS techniques on aggression were included. Exclusion criteria included reviews, meta-analyses, and articles not referring to the subject of interest or not addressing cognitive and emotional modulation aims. CONCLUSIONS The reviewed data provide promising evidence for the beneficial effects of tDCS, conventional rTMS, and cTBS on aggression in healthy adults, forensic, and clinical samples. The specific stimulation target is a key factor for the success of stimulation on aggression modulation. rTMS and cTBS showed opposite effects on aggression compared with tDCS. However, due to the heterogeneity of stimulation protocols, experimental designs, and samples, we cannot exclude other factors that may play a confounding role.
Collapse
Affiliation(s)
- Antony Casula
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università di Messina, 98121 Messina, Italy
| | - Bianca M Milazzo
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università di Messina, 98121 Messina, Italy
| | - Gabriella Martino
- Dipartimento di Medicina e Clinica Sperimentale, Università degli Studi di Messina, A.O.U. "G. Martino", Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Sergi
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Chiara Lucifora
- Dipartimento di Filosofia e Comunicazione, Università di Bologna, 40131 Bologna, Italy
| | - Francesco Tomaiuolo
- Dipartimento di Medicina e Clinica Sperimentale, Università degli Studi di Messina, A.O.U. "G. Martino", Via Consolare Valeria, 98125 Messina, Italy
| | | | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, 44139 Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, 33615 Bielefeld, Germany
| | - Carmelo M Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università di Messina, 98121 Messina, Italy
| |
Collapse
|
9
|
Attention neuroenhancement through tDCS or neurofeedback: a randomized, single-blind, controlled trial. Sci Rep 2022; 12:17613. [PMID: 36266396 PMCID: PMC9584934 DOI: 10.1038/s41598-022-22245-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023] Open
Abstract
Neurofeedback and transcranial Direct Current Stimulation (tDCS) are promising techniques for neuroenhancement of attentional performance. As far as we know no study compared both techniques on attentional performance in healthy participants. We compared tDCS and neurofeedback in a randomized, single-blind, controlled experiment assessing both behavioral (accuracy and time reaction) and electrophysiological (N1, P1, and P3 components) data of participants responding to the Attention Network Task (ANT). Eighty volunteers volunteered for this study. We adopted standard protocols for both techniques, i.e., a Sensorimotor Rhythm (SMR) protocol for neurofeedback and the right DLPFC anodal stimulation for tDCS, applied over nine sessions (two weeks). We did not find significant differences between treatment groups on ANT, neither at the behavioral nor at the electrophysiological levels. However, we found that participants from both neuromodulation groups, irrespective of if active or sham, reported attentional improvements in response to the treatment on a subjective scale. Our study adds another null result to the neuromodulation literature, showing that neurofeedback and tDCS effects are more complex than previously suggested and associated with placebo effect. More studies in neuroenhancement literature are necessary to fully comprehend neuromodulation mechanisms.
Collapse
|
10
|
Caulfield KA, Indahlastari A, Nissim NR, Lopez JW, Fleischmann HH, Woods AJ, George MS. Electric Field Strength From Prefrontal Transcranial Direct Current Stimulation Determines Degree of Working Memory Response: A Potential Application of Reverse-Calculation Modeling? Neuromodulation 2022; 25:578-587. [PMID: 35670064 DOI: 10.1111/ner.13342] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) for working memory is an enticing treatment, but there is mixed evidence to date. OBJECTIVES We tested the effects of electric field strength from uniform 2 mA dosing on working memory change from prestimulation to poststimulation. Second, we statistically evaluated a reverse-calculation method of individualizing tDCS dose and its effect on normalizing electric field at the cortex. MATERIALS AND METHODS We performed electric field modeling on a data set of 28 healthy older adults (15 women, mean age = 73.7, SD = 7.3) who received ten sessions of active 2 mA tDCS (N = 14) or sham tDCS (N = 14) applied over bilateral dorsolateral prefrontal cortices (DLPFC) in a triple-blind design. We evaluated the relationship between electric field strength and working memory change on an N-back task in conditions of above-median, high electric field from active 2 mA (N = 7), below-median, low electric field from active 2 mA (N = 7), and sham (N = 14) at regions of interest (ROI) at the left and right DLPFC. We then determined the individualized reverse-calculation dose to produce the group average electric field and measured the electric field variance between uniform 2 mA doses vs individualized reverse-calculation doses at the same ROIs. RESULTS Working memory improvements from pre- to post-tDCS were significant for the above-median electric field from active 2 mA condition at the left DLPFC (mixed ANOVA, p = 0.013). Furthermore, reverse-calculation modeling significantly reduced electric field variance at both ROIs (Levene's test; p < 0.001). CONCLUSIONS Higher electric fields at the left DLPFC from uniform 2 mA doses appear to drive working memory improvements from tDCS. Individualized doses from reverse-calculation modeling significantly reduce electric field variance at the cortex. Taken together, using reverse-calculation modeling to produce the same, high electric fields at the cortex across participants may produce more effective future tDCS treatments for working memory.
Collapse
Affiliation(s)
- Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA.
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Nicole R Nissim
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - James W Lopez
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Holly H Fleischmann
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Mark S George
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
11
|
Transcranial Direct Current Stimulation (tDCS) over the Intraparietal Sulcus Does Not Influence Working Memory Performance. Psychol Belg 2021; 61:200-211. [PMID: 34277028 PMCID: PMC8269793 DOI: 10.5334/pb.534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mixed results of the impact of transcranial direct current stimulation (tDCS) on working memory have been reported. Contrarily to previous studies who focused mainly on stimulating the dorsolateral prefrontal cortex, we modulated the left intraparietal sulcus (IPS) area which is considered to support attentional control aspects of working memory. Using a within-participant experimental design, participants completed three different conditions: anodal stimulation of the IPS, cathodal stimulation of the IPS, and sham stimulation of the IPS. Both visual and verbal working memory tasks were administered. In the visual task, participants had to memorize a random set of colored figures. In the verbal task, participants had to memorize a string of letters. Working memory load was manipulated in both tasks (six figures/letters vs. two figures/letters). No significant differences in accuracy or reaction time between the anodal, cathodal and sham conditions were found. Bayesian analysis supported evidence for an absence of effect. The results of the present study add to the growing body of contradictory evidence regarding the modulatory effects of single session tDCS on working memory performance.
Collapse
|
12
|
Klaus J, Hartwigsen G. Failure to Improve Verbal Fluency with Transcranial Direct Current Stimulation. Neuroscience 2020; 449:123-133. [DOI: 10.1016/j.neuroscience.2020.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
|
13
|
Zhu R, Luo Y, Wang Z, You X. Modality effects in verbal working memory updating: Transcranial direct current stimulation over human inferior frontal gyrus and posterior parietal cortex. Brain Cogn 2020; 145:105630. [PMID: 33091807 DOI: 10.1016/j.bandc.2020.105630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022]
Abstract
Verbal working memory (VWM) involves visual and auditory verbal information. Neuroimaging studies have shown significant modality effects for VWM in the left posterior parietal cortex (PPC). The left inferior frontal gyrus (IFG) is more sensitive to auditory and phonological information. However, much less is known about the effects of transcranial direct current stimulation (tDCS) over the left PPC and IFG on different sensory modalities of VWM (auditory vs. visual). Therefore, the present study aimed to examine whether tDCS over the left PPC and IFG affects visual and auditory VWM updating performance using a single-blind design. Fifty-one healthy participants were randomly assigned to three tDCS groups (left PPC/left IFG/sham) and were asked to complete both the visual and auditory letter 3-back tasks. Results showed that stimulating the left PPC enhanced the response efficiency of visual, but not auditory, VWM compared with the sham condition. Anodal stimulation to the left IFG improved the response efficiency of both tasks. The present study revealed a modality effect of VWM in the left PPC, while the left IFG had a causal role in VWM updating of different sensory modalities.
Collapse
Affiliation(s)
- Rongjuan Zhu
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Yangmei Luo
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Ziyu Wang
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Xuqun You
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
14
|
Tao L, Zhu M, Cai Q. Neural substrates of Chinese lexical production: The role of domain-general cognitive functions. Neuropsychologia 2020; 138:107354. [DOI: 10.1016/j.neuropsychologia.2020.107354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/27/2019] [Accepted: 01/17/2020] [Indexed: 11/15/2022]
|