1
|
Gunasekaran TI, Reyes-Dumeyer D, Faber KM, Goate A, Boeve B, Cruchaga C, Pericak-Vance M, Haines JL, Rosenberg R, Tsuang D, Mejia DR, Medrano M, Lantigua RA, Sweet RA, Bennett DA, Wilson RS, Alba C, Dalgard C, Foroud T, Vardarajan BN, Mayeux R. Missense and loss-of-function variants at GWAS loci in familial Alzheimer's disease. Alzheimers Dement 2024. [PMID: 39233587 DOI: 10.1002/alz.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/10/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Few rare variants have been identified in genetic loci from genome-wide association studies (GWAS) of Alzheimer's disease (AD), limiting understanding of mechanisms, risk assessment, and genetic counseling. METHODS Using genome sequencing data from 197 families in the National Institute on Aging Alzheimer's Disease Family Based Study and 214 Caribbean Hispanic families, we searched for rare coding variants within known GWAS loci from the largest published study. RESULTS Eighty-six rare missense or loss-of-function (LoF) variants completely segregated in 17.5% of families, but in 91 (22.1%) families Apolipoprotein E (APOE)-𝜀4 was the only variant segregating. However, in 60.3% of families, APOE 𝜀4, missense, and LoF variants were not found within the GWAS loci. DISCUSSION Although APOE 𝜀4and several rare variants were found to segregate in both family datasets, many families had no variant accounting for their disease. This suggests that familial AD may be the result of unidentified rare variants. HIGHLIGHTS Rare coding variants from GWAS loci segregate in familial Alzheimer's disease. Missense or loss of function variants were found segregating in nearly 7% of families. APOE-𝜀4 was the only segregating variant in 29.7% in familial Alzheimer's disease. In Hispanic and non-Hispanic families, different variants were found in segregating genes. No coding variants were found segregating in many Hispanic and non-Hispanic families.
Collapse
Affiliation(s)
- Tamil Iniyan Gunasekaran
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University, New York, New York, USA
| | - Dolly Reyes-Dumeyer
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University, New York, New York, USA
| | - Kelley M Faber
- Department of Medical and Molecular Genetics, National Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD), 410 W. 10th St., HS 4000. Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alison Goate
- Department of Genetics & Genomic Sciences, Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, Icahn Bldg., One Gustave L. Levy Place, New York, New York, USA
| | - Brad Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, Rand Johnson Building, 600 S Euclid Ave., Wohl Hospital Building, St. Louis, Missouri, USA
| | - Margaret Pericak-Vance
- John P Hussman Institute for Human Genomics, Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jonathan L Haines
- Department of Population & Quantitative Health Sciences and Cleveland Institute for Computational Biology. Case Western Reserve University, Cleveland, Ohio, USA
| | - Roger Rosenberg
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Debby Tsuang
- Department of Psychiatry and Behavioral Sciences, University of Washington, GRECC VA Puget Sound, 1660 South Columbian Way, Seattle, Washington, USA
| | - Diones Rivera Mejia
- Los Centros de Diagnóstico y Medicina Avanzada y de Conferencias Médicas y Telemedicina, CEDIMAT, Arturo Logroño, Plaza de la Salud, Dr. Juan Manuel Taveras Rodríguez, C. Pepillo Salcedo esq, Santo Domingo, Dominican Republic
- Universidad Pedro Henríquez Urena, Av. John F. Kennedy Km. 7-1/2 Santo Domingo 1423, Santo Domingo, Dominican Republic
| | - Martin Medrano
- Pontíficia Universidad Católica Madre y Maestra (PUCMM), Autopista Duarte Km 1 1/2, Santiago de los Caballeros, Dominican Republic
| | - Rafael A Lantigua
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University, New York, New York, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, New York, USA
| | - Robert A Sweet
- Departments of Psychiatry and Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750, West Harrison St, Chicago, Illinois, USA
| | - Robert S Wilson
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750, West Harrison St, Chicago, Illinois, USA
| | - Camille Alba
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Clifton Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, National Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD), 410 W. 10th St., HS 4000. Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Badri N Vardarajan
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University, New York, New York, USA
| | - Richard Mayeux
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University, New York, New York, USA
| |
Collapse
|
2
|
Fernandez MV, Liu M, Beric A, Johnson M, Cetin A, Patel M, Budde J, Kohlfeld P, Bergmann K, Lowery J, Flynn A, Brock W, Sanchez Montejo B, Gentsch J, Sykora N, Norton J, Gentsch J, Valdez O, Gorijala P, Sanford J, Sun Y, Wang C, Western D, Timsina J, Mangetti Goncalves T, Do AN, Sung YJ, Zhao G, Morris JC, Moulder K, Holtzman DM, Bateman RJ, Karch C, Hassenstab J, Xiong C, Schindler SE, Balls-Berry JJ, Benzinger TLS, Perrin RJ, Denny A, Snider BJ, Stark SL, Ibanez L, Cruchaga C. Genetic and multi-omic resources for Alzheimer disease and related dementia from the Knight Alzheimer Disease Research Center. Sci Data 2024; 11:768. [PMID: 38997326 PMCID: PMC11245521 DOI: 10.1038/s41597-024-03485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/06/2024] [Indexed: 07/14/2024] Open
Abstract
The Knight-Alzheimer Disease Research Center (Knight-ADRC) at Washington University in St. Louis has pioneered and led worldwide seminal studies that have expanded our clinical, social, pathological, and molecular understanding of Alzheimer Disease. Over more than 40 years, research volunteers have been recruited to participate in cognitive, neuropsychologic, imaging, fluid biomarkers, genomic and multi-omic studies. Tissue and longitudinal data collected to foster, facilitate, and support research on dementia and aging. The Genetics and high throughput -omics core (GHTO) have collected of more than 26,000 biological samples from 6,625 Knight-ADRC participants. Samples available include longitudinal DNA, RNA, non-fasted plasma, cerebrospinal fluid pellets, and peripheral blood mononuclear cells. The GHTO has performed deep molecular profiling (genomic, transcriptomic, epigenomic, proteomic, and metabolomic) from large number of brain (n = 2,117), CSF (n = 2,012) and blood/plasma (n = 8,265) samples with the goal of identifying novel risk and protective variants, identify novel molecular biomarkers and causal and druggable targets. Overall, the resources available at GHTO support the increase of our understanding of Alzheimer Disease.
Collapse
Affiliation(s)
- Maria Victoria Fernandez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Research Center and Memory Clinic, ACE Alzheimer Center, Barcelona, Spain
| | - Menghan Liu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aleksandra Beric
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matt Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Arda Cetin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Maulik Patel
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Pat Kohlfeld
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kristy Bergmann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joseph Lowery
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Allison Flynn
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - William Brock
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brenda Sanchez Montejo
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jen Gentsch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nicholas Sykora
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joanne Norton
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jen Gentsch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Olga Valdez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Priyanka Gorijala
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jessie Sanford
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yichen Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ciyang Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Dan Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Anh N Do
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Guoyan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Pathology and Immunology Department, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Krista Moulder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Dominantly Inherited Alzheimer Disease Network (DIAN), St. Louis, USA
| | - Celeste Karch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Dominantly Inherited Alzheimer Disease Network (DIAN), St. Louis, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Dominantly Inherited Alzheimer Disease Network (DIAN), St. Louis, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Joyce Joy Balls-Berry
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L S Benzinger
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Dominantly Inherited Alzheimer Disease Network (DIAN), St. Louis, USA
- Radiology Department, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Richard J Perrin
- Pathology and Immunology Department, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Dominantly Inherited Alzheimer Disease Network (DIAN), St. Louis, USA
| | - Andrea Denny
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - B Joy Snider
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan L Stark
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Occupational Therapy, Neurology and Social Work, St. Louis, USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Dominantly Inherited Alzheimer Disease Network (DIAN), St. Louis, USA.
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.
- Dominantly Inherited Alzheimer Disease Network (DIAN), St. Louis, USA.
| |
Collapse
|
3
|
Gunasekaran TI, Reyes-Dumeyer D, Faber KM, Goate A, Boeve B, Cruchaga C, Pericak-Vance M, Haines JL, Rosenberg R, Tsuang D, Mejia DR, Medrano M, Lantigua RA, Sweet RA, Bennett DA, Wilson RS, Alba C, Dalgard C, Foroud T, Vardarajan BN, Mayeux R. Missense and Loss of Function Variants at GWAS Loci in Familial Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.12.18.23300145. [PMID: 38196599 PMCID: PMC10775337 DOI: 10.1101/2023.12.18.23300145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND Few rare variants have been identified in genetic loci from genome wide association studies of Alzheimer's disease (AD), limiting understanding of mechanisms and risk assessment, and genetic counseling. METHODS Using genome sequencing data from 197 families in The NIA Alzheimer's Disease Family Based Study, and 214 Caribbean Hispanic families, we searched for rare coding variants within known GWAS loci from the largest published study. RESULTS Eighty-six rare missense or loss of function (LoF) variants completely segregated in 17.5% of families, but in 91 (22.1%) of families APOE-e4 was the only variant segregating. However, in 60.3% of families neither APOE-e4 nor missense or LoF variants were found within the GWAS loci. DISCUSSION Although APOE-ε4 and several rare variants were found to segregate in both family datasets, many families had no variant accounting for their disease. This suggests that familial AD may be the result of unidentified rare variants.
Collapse
|
4
|
Xu Z, Kombe Kombe AJ, Deng S, Zhang H, Wu S, Ruan J, Zhou Y, Jin T. NLRP inflammasomes in health and disease. MOLECULAR BIOMEDICINE 2024; 5:14. [PMID: 38644450 PMCID: PMC11033252 DOI: 10.1186/s43556-024-00179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
NLRP inflammasomes are a group of cytosolic multiprotein oligomer pattern recognition receptors (PRRs) involved in the recognition of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) produced by infected cells. They regulate innate immunity by triggering a protective inflammatory response. However, despite their protective role, aberrant NLPR inflammasome activation and gain-of-function mutations in NLRP sensor proteins are involved in occurrence and enhancement of non-communicating autoimmune, auto-inflammatory, and neurodegenerative diseases. In the last few years, significant advances have been achieved in the understanding of the NLRP inflammasome physiological functions and their molecular mechanisms of activation, as well as therapeutics that target NLRP inflammasome activity in inflammatory diseases. Here, we provide the latest research progress on NLRP inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRP7, NLRP2, NLRP9, NLRP10, and NLRP12 regarding their structural and assembling features, signaling transduction and molecular activation mechanisms. Importantly, we highlight the mechanisms associated with NLRP inflammasome dysregulation involved in numerous human auto-inflammatory, autoimmune, and neurodegenerative diseases. Overall, we summarize the latest discoveries in NLRP biology, their forming inflammasomes, and their role in health and diseases, and provide therapeutic strategies and perspectives for future studies about NLRP inflammasomes.
Collapse
Affiliation(s)
- Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shasha Deng
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Jianbin Ruan
- Department of Immunology, University of Connecticut Health Center, Farmington, 06030, USA.
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Core Facility Center, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Department of Obstetrics and Gynecology, Core Facility Center, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China.
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
5
|
Santhosh Kumar H, Moore J, Steiner AC, Sotirakis E, Schärli B, Isnard-Petit P, Thiam K, Wolfer DP, Böttger EC. Mistranslation-associated perturbations of proteostasis do not promote accumulation of amyloid beta and plaque deposition in aged mouse brain. Cell Mol Life Sci 2023; 80:378. [PMID: 38010524 PMCID: PMC10682081 DOI: 10.1007/s00018-023-05031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
A common perception in age-related neurodegenerative diseases posits that a decline in proteostasis is key to the accumulation of neuropathogenic proteins, such as amyloid beta (Aβ), and the development of sporadic Alzheimer's disease (AD). To experimentally challenge the role of protein homeostasis in the accumulation of Alzheimer's associated protein Aβ and levels of associated Tau phosphorylation, we disturbed proteostasis in single APP knock-in mouse models of AD building upon Rps9 D95N, a recently identified mammalian ram mutation which confers heightened levels of error-prone translation together with an increased propensity for random protein aggregation and which is associated with accelerated aging. We crossed the Rps9 D95N mutation into knock-in mice expressing humanized Aβ with different combinations of pathogenic mutations (wild-type, NL, NL-F, NL-G-F) causing a stepwise and quantifiable allele-dependent increase in the development of Aβ accumulation, levels of phosphorylated Tau, and neuropathology. Surprisingly, the misfolding-prone environment of the Rps9 D95N ram mutation did not affect Aβ accumulation and plaque formation, nor the level of phosphorylated Tau in any of the humanized APP knock-in lines. Our findings indicate that a misfolding-prone environment induced by error-prone translation with its inherent perturbations in protein homeostasis has little impact on the accumulation of pathogenic Aβ, plaque formation and associated phosphorylated Tau.
Collapse
Affiliation(s)
| | - James Moore
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | | | | | - Benjamin Schärli
- Institute of Human Movement Sciences and Sport, D-HEST, ETH Zurich, Zurich, Switzerland
| | | | | | - David P Wolfer
- Institute of Human Movement Sciences and Sport, D-HEST, ETH Zurich, Zurich, Switzerland.
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.
| | - Erik C Böttger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Rajabli F, Kunkle BW. Strategies in Aggregation Tests for Rare Variants. Curr Protoc 2023; 3:e931. [PMID: 37988228 DOI: 10.1002/cpz1.931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Genome-wide association studies (GWAS) successfully identified numerous common variants involved in complex diseases, but only limited heritability was explained by these findings. Advances in high-throughput sequencing technology made it possible to assess the contribution of rare variants in common diseases. However, study of rare variants introduces challenges due to low frequency of rare variants. Well-established common variant methods were underpowered to identify the rare variants in GWAS. To address this challenge, several new methods have been developed to examine the role of rare variants in complex diseases. These approaches are based on testing the aggregate effect of multiple rare variants in a predefined genetic region. Provided here is an overview of statistical approaches and the protocols explaining step-by-step analysis of aggregations tests with the hands-on experience using R scripts in four categories: burden tests, adaptive burden tests, variance-component tests, and combined tests. Also explained are the concepts of rare variants, permutation tests, kernel methods, and genetic variant annotation. At the end we discuss relevant topics of bioinformatics tools for annotation, family-based design of rare-variant analysis, population stratification adjustment, and meta-analysis. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Farid Rajabli
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Brian W Kunkle
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
7
|
Seeker LA, Bestard-Cuche N, Jäkel S, Kazakou NL, Bøstrand SMK, Wagstaff LJ, Cholewa-Waclaw J, Kilpatrick AM, Van Bruggen D, Kabbe M, Baldivia Pohl F, Moslehi Z, Henderson NC, Vallejos CA, La Manno G, Castelo-Branco G, Williams A. Brain matters: unveiling the distinct contributions of region, age, and sex to glia diversity and CNS function. Acta Neuropathol Commun 2023; 11:84. [PMID: 37217978 PMCID: PMC10204264 DOI: 10.1186/s40478-023-01568-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/24/2023] Open
Abstract
The myelinated white matter tracts of the central nervous system (CNS) are essential for fast transmission of electrical impulses and are often differentially affected in human neurodegenerative diseases across CNS region, age and sex. We hypothesize that this selective vulnerability is underpinned by physiological variation in white matter glia. Using single nucleus RNA sequencing of human post-mortem white matter samples from the brain, cerebellum and spinal cord and subsequent tissue-based validation we found substantial glial heterogeneity with tissue region: we identified region-specific oligodendrocyte precursor cells (OPCs) that retain developmental origin markers into adulthood, distinguishing them from mouse OPCs. Region-specific OPCs give rise to similar oligodendrocyte populations, however spinal cord oligodendrocytes exhibit markers such as SKAP2 which are associated with increased myelin production and we found a spinal cord selective population particularly equipped for producing long and thick myelin sheaths based on the expression of genes/proteins such as HCN2. Spinal cord microglia exhibit a more activated phenotype compared to brain microglia, suggesting that the spinal cord is a more pro-inflammatory environment, a difference that intensifies with age. Astrocyte gene expression correlates strongly with CNS region, however, astrocytes do not show a more activated state with region or age. Across all glia, sex differences are subtle but the consistent increased expression of protein-folding genes in male donors hints at pathways that may contribute to sex differences in disease susceptibility. These findings are essential to consider for understanding selective CNS pathologies and developing tailored therapeutic strategies.
Collapse
Affiliation(s)
- Luise A Seeker
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh Bioquarter, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Nadine Bestard-Cuche
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh Bioquarter, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sarah Jäkel
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh Bioquarter, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
- Institute for Stroke and Dementia Research, Klinikum Der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nina-Lydia Kazakou
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh Bioquarter, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sunniva M K Bøstrand
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh Bioquarter, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Laura J Wagstaff
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh Bioquarter, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Justyna Cholewa-Waclaw
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh Bioquarter, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Alastair M Kilpatrick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh Bioquarter, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - David Van Bruggen
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Mukund Kabbe
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Fabio Baldivia Pohl
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Zahra Moslehi
- Laboratory of Neurodevelopmental Systems Biology, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Catalina A Vallejos
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
- The Alan Turing Institute, 96 Euston Road, London, NW1 2DB, UK
| | - Gioele La Manno
- Laboratory of Neurodevelopmental Systems Biology, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Goncalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Stockholm Node, 171 77, Stockholm, Sweden
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh Bioquarter, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
8
|
Ali A, Mir GJ, Ayaz A, Maqbool I, Ahmad SB, Mushtaq S, Khan A, Mir TM, Rehman MU. In silico analysis and molecular docking studies of natural compounds of Withania somnifera against bovine NLRP9. J Mol Model 2023; 29:171. [PMID: 37155030 PMCID: PMC10165590 DOI: 10.1007/s00894-023-05570-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
CONTEXT NLRP9 is a member of nucleotide-binding domain leucine-rich repeat-containing receptors and is found to be associated with many inflammatory diseases. In the current scenario, the identification of promising anti-inflammatory compounds from natural sources by repurposing approach is still relevant for the early prevention and effective management of the disease. METHODS In the present study, we docked bioactives of Ashwagandha (Withanoside IV, Withanoside V, Withanolide A, Withanolide B, and Sitoindoside IX) and two control drugs against bovine NLRP9 protein. ADME/T analysis was used to determine the physiochemical properties of compounds and standard drugs. Molecular modeling was used to evaluate the correctness and quality of protein structures. In silico docking analysis revealed Withanolide B had the highest binding affinity score of -10.5 kcal/mol, whereas, among control drugs, doxycycline hydrochloride was most effective (-10.3 kcal/mol). The results of this study revealed that bioactives of Withania somnifera could be promising inhibitors against bovine NLRP9. In the present study, molecular simulation was used to measure protein conformational changes over time. The Rg value was found to be 34.77A°. RMSD and B-factor were also estimated to provide insights into the flexibility and mobile regions of protein structure. A functional protein network interaction was constructed from information collected from non-curative sources as protein-protein interactions (PPI) that play an important role in determining the function of the target protein and the ability of the drug molecule. Thus, in the present situation, it is important to identify bioactives with the potential to combat inflammatory diseases and provide strength and immunity to the host. However, there is still a need to study in vitro and in vivo to further support these findings.
Collapse
Affiliation(s)
- Aarif Ali
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India
| | - Gh Jeelani Mir
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, J&K, India
| | - Aadil Ayaz
- Department of Microbiology, SKIMS Medical College Bemina, Srinagar, 190018, J&K, India
| | - Illiyas Maqbool
- Department of Microbiology, Government Medical College, Baramulla, 193101, J&K, India
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir (SKUAST-K), Shuhama, Srinagar, 190006, J&K, India
| | - Saima Mushtaq
- Veterinary Microbiology Department, Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, 243122, India
| | - Altaf Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Tahir Maqbool Mir
- National Centre for Natural Products Research, University of Mississippi, Oxford, MS, 38677, USA
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
9
|
Chen W, Coombes BJ, Larson NB. Recent advances and challenges of rare variant association analysis in the biobank sequencing era. Front Genet 2022; 13:1014947. [PMID: 36276986 PMCID: PMC9582646 DOI: 10.3389/fgene.2022.1014947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 12/04/2022] Open
Abstract
Causal variants for rare genetic diseases are often rare in the general population. Rare variants may also contribute to common complex traits and can have much larger per-allele effect sizes than common variants, although power to detect these associations can be limited. Sequencing costs have steadily declined with technological advancements, making it feasible to adopt whole-exome and whole-genome profiling for large biobank-scale sample sizes. These large amounts of sequencing data provide both opportunities and challenges for rare-variant association analysis. Herein, we review the basic concepts of rare-variant analysis methods, the current state-of-the-art methods in utilizing variant annotations or external controls to improve the statistical power, and particular challenges facing rare variant analysis such as accounting for population structure, extremely unbalanced case-control design. We also review recent advances and challenges in rare variant analysis for familial sequencing data and for more complex phenotypes such as survival data. Finally, we discuss other potential directions for further methodology investigation.
Collapse
Affiliation(s)
- Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, United States
- *Correspondence: Wenan Chen, ; Brandon J. Coombes, ; Nicholas B. Larson,
| | - Brandon J. Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Wenan Chen, ; Brandon J. Coombes, ; Nicholas B. Larson,
| | - Nicholas B. Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Wenan Chen, ; Brandon J. Coombes, ; Nicholas B. Larson,
| |
Collapse
|
10
|
Reyes‐Dumeyer D, Faber K, Vardarajan B, Goate A, Renton A, Chao M, Boeve B, Cruchaga C, Pericak‐Vance M, Haines JL, Rosenberg R, Tsuang D, Sweet RA, Bennett DA, Wilson RS, Foroud T, Mayeux R. The National Institute on Aging Late-Onset Alzheimer's Disease Family Based Study: A resource for genetic discovery. Alzheimers Dement 2022; 18:1889-1897. [PMID: 34978149 PMCID: PMC9250549 DOI: 10.1002/alz.12514] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/25/2021] [Accepted: 08/11/2021] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The National Institute on Aging Late-Onset Alzheimer's Disease Family Based Study (NIA-LOAD FBS) was established to study the genetic etiology of Alzheimer's disease (AD). METHODS Recruitment focused on families with two living affected siblings and a third first-degree relative similar in age with or without dementia. Uniform assessments were completed, DNA was obtained, as was neuropathology, when possible. Apolipoprotein E (APOE) genotypes, genome-wide single nucleotide polymorphism (SNP) arrays, and sequencing was completed in most families. RESULTS APOE genotype modified the age-at-onset in many large families. Novel variants and known variants associated with early- and late-onset AD and frontotemporal dementia were identified supporting an international effort to solve AD genetics. DISCUSSION The NIA-LOAD FBS is the largest collection of familial AD worldwide, and data or samples have been included in 123 publications addressing the genetic etiology of AD. Genetic heterogeneity and variability in the age-at-onset provides opportunities to investigate the complexity of familial AD.
Collapse
Affiliation(s)
- Dolly Reyes‐Dumeyer
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University in the City of New YorkNew YorkNew YorkUSA
| | - Kelley Faber
- Department of Medical and Molecular GeneticsNational Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD)Indiana University School of MedicineIndianapolisIndianaUSA
| | - Badri Vardarajan
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University in the City of New YorkNew YorkNew YorkUSA
| | - Alison Goate
- Department of Genetics & Genomic SciencesRonald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Alan Renton
- Department of Genetics & Genomic SciencesRonald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Michael Chao
- Department of Genetics & Genomic SciencesRonald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Brad Boeve
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Carlos Cruchaga
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | - Margaret Pericak‐Vance
- John P. Hussman Institute for Human GenomicsDr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jonathan L. Haines
- Department of Population & Quantitative Health Sciences and Cleveland Institute for Computational BiologyCase Western Reserve UniversityClevelandOhioUSA
| | - Roger Rosenberg
- Department of NeurologyUniversity of Texas Southwestern Medical Center at DallasDallasTexasUSA
| | - Debby Tsuang
- GRECC VA Puget SoundDepartment of Psychiatry and Behavioral SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Robert A. Sweet
- Departments of Psychiatry and NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Robert S. Wilson
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Tatiana Foroud
- Department of Medical and Molecular GeneticsNational Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD)Indiana University School of MedicineIndianapolisIndianaUSA
| | - Richard Mayeux
- Department of NeurologyTaub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University in the City of New YorkNew YorkNew YorkUSA
| |
Collapse
|
11
|
Neupane A, Lenny B, Budde JP, Wang F, Norton J, Morris JC, Cruchaga C, Fernández MV. Replication study of AD-associated rare variants. Alzheimers Dement 2022; 18:858-862. [PMID: 35103389 PMCID: PMC8986593 DOI: 10.1002/alz.12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Achal Neupane
- Department of Psychiatry, Washington University School of Medicine (WUSM), St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, WUSM, St. Louis, Missouri, USA
- Neurogenomics and Informatics Center, WUSM, St. Louis, Missouri, USA
| | - Brian Lenny
- Department of Psychiatry, Washington University School of Medicine (WUSM), St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, WUSM, St. Louis, Missouri, USA
- Neurogenomics and Informatics Center, WUSM, St. Louis, Missouri, USA
| | - John P Budde
- Department of Psychiatry, Washington University School of Medicine (WUSM), St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, WUSM, St. Louis, Missouri, USA
- Neurogenomics and Informatics Center, WUSM, St. Louis, Missouri, USA
| | - Fengxian Wang
- Department of Psychiatry, Washington University School of Medicine (WUSM), St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, WUSM, St. Louis, Missouri, USA
- Neurogenomics and Informatics Center, WUSM, St. Louis, Missouri, USA
| | - Joanne Norton
- Department of Psychiatry, Washington University School of Medicine (WUSM), St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, WUSM, St. Louis, Missouri, USA
- Neurogenomics and Informatics Center, WUSM, St. Louis, Missouri, USA
| | - John C Morris
- Hope Center for Neurological Disorders, WUSM, St. Louis, Missouri, USA
- Knight Alzheimer's Disease Research Center, WUSM, St. Louis, Missouri, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine (WUSM), St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, WUSM, St. Louis, Missouri, USA
- Neurogenomics and Informatics Center, WUSM, St. Louis, Missouri, USA
| | - Maria Victoria Fernández
- Department of Psychiatry, Washington University School of Medicine (WUSM), St. Louis, Missouri, USA
- Hope Center for Neurological Disorders, WUSM, St. Louis, Missouri, USA
- Neurogenomics and Informatics Center, WUSM, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Behl T, Kaur D, Sehgal A, Singh S, Makeen HA, Albratty M, Abdellatif AAH, Dachani SR, Bungau S. Exploring the potential role of rab5 protein in endo-lysosomal impairment in Alzheimer's disease. Biomed Pharmacother 2022; 148:112773. [PMID: 35245734 DOI: 10.1016/j.biopha.2022.112773] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 02/27/2022] [Indexed: 11/02/2022] Open
Abstract
Growing evidence suggests that neuronal dysfunction in the endo-lysosomal and autophagic processes contributes to the onset and progression of neurodegenerative diseases such as Alzheimer's disease (AD). Since they are the primary cellular systems involved in the production and clearance of aggregated amyloid plaques, endo-lysosomal or autophagic equilibrium must be maintained throughout life. As a result, variations in the autophagic and endo-lysosomal torrent, as a measure of degenerative function in these sections or pathways, may have a direct impact on disease-related processes, such as Aß clearance from the brain and interneuronal deposition of Aß and tau aggregates, thus disrupting synaptic plasticity. The discovery of several chromosomal factors for Alzheimer's disease that are clinically linked to regulation of the endocytic pathway, including protein aggregation and removal, supports the theory that the endo-lysosomal/autophagic torrent is more susceptible to impairment, especially as people age, thus catalysing the onset of disease. Although the role of endo-lysosomal/autophagic dysfunction in neurodegeneration has progressed in recent years, the field remains underdeveloped. Because of its possible therapeutic implications in Alzheimer's disease, further study is needed to explain the possibilities for effective autophagy regulation.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | - Dapinder Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy, Department, College of Pharmacy, Jazan University, P.O. Box-114, Jazan 45142, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Sudharshan Reddy Dachani
- Department of Pharmacy Practice & Pharmacology, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| |
Collapse
|
13
|
Genetic profiles of familial late-onset Alzheimer's disease in China: The Shanghai FLOAD study. Genes Dis 2021; 9:1639-1649. [PMID: 36157508 PMCID: PMC9485165 DOI: 10.1016/j.gendis.2021.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
Compared with early-onset familial AD (FAD), the heritability of most familial late-onset Alzheimer's disease (FLOAD) cases still remains unclear. However, there are few reported genetic profiles of FLOAD to date. In the present study, targeted sequencing of selected candidate genes was conducted for each of 90 probands with FLOAD and 101 unrelated matched normal controls among Chinese Han population. Results show a significantly lower rate of mutation in APP and PSENs, and APOE ε4 genetic risk is higher for FLOAD. Among the Chinese FLOAD population, the most frequent variant was CR1 rs116806486 [5.6%, 95% CI (1.8%, 12.5%)], followed by coding variants of TREM2 (4.4%, 95%CI (1.2%, 10.9%)) and novel mutations of ACE [3.3%, 95%CI (0.7%, 9.4%)]. Next, we found that novel pathogenic mutations in ACE including frame-shift and nonsense mutations were in association with FLOAD regardless of APOE ε4 status. Evidence from the Alzheimer's disease Neuroimaging Initiative (ADNI) database also supported this finding in different ethnicities. Results of in vitro analysis suggest that frame-shift and nonsense mutations in ACE may be involved in LOAD through decreased ACE protein levels without affecting direct processing of APP.
Collapse
|
14
|
Kirola L, Budde JP, Wang F, Norton J, Morris JC, Cruchaga C, Fernández MV. Lack of evidence supporting a role for DPP6 sequence variants in Alzheimer's disease in the European American population. Acta Neuropathol 2021; 141:623-624. [PMID: 33591372 PMCID: PMC7952336 DOI: 10.1007/s00401-021-02271-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/29/2023]
Affiliation(s)
- Laxmi Kirola
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA.,Hope Center for Neurological Disorders, WUSM, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA
| | - John P Budde
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA.,Hope Center for Neurological Disorders, WUSM, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA.,NeuroGenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO, USA
| | - Fengxian Wang
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA.,Hope Center for Neurological Disorders, WUSM, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA.,NeuroGenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO, USA
| | - Joanne Norton
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA.,Hope Center for Neurological Disorders, WUSM, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA.,NeuroGenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO, USA
| | - John C Morris
- Hope Center for Neurological Disorders, WUSM, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA.,Knight Alzheimer Disease Research Center, WUSM, 4488 Forest Park Ave, St. Louis, MO, 63108, USA
| | | | - Carlos Cruchaga
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA.,Hope Center for Neurological Disorders, WUSM, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA.,NeuroGenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO, USA
| | - Maria Victoria Fernández
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO, 63110, USA. .,Hope Center for Neurological Disorders, WUSM, 660 S. Euclid Ave. B8111, St. Louis, MO, 63110, USA. .,NeuroGenomics and Informatics Center, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO, USA.
| |
Collapse
|
15
|
Mullins B, Chen J. NLRP9 in innate immunity and inflammation. Immunology 2020; 162:262-267. [PMID: 33283292 DOI: 10.1111/imm.13290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022] Open
Abstract
The nucleotide-binding domain leucine-rich repeat containing receptors (NLRs) are a family of evolutionarily conserved proteins. Several members of NLRs, notably NLRP1, NLRP3 and NLRC4, are able to form cytosolic oligomeric signalling platforms termed inflammasomes to mediate immune response towards pathogens, damage and stress. However, the functions of many NLRs still remain elusive. In the past few years, a couple of less-characterized NLR members are emerging as important signalling molecules with fundamental functions in host defence and inflammation. Among them, NLRP9 is an NLR originally proposed to be expressed and function solely in the reproductive system. Recent evidence has suggested that NLRP9 is also capable of initiating inflammasome formation in the intestine to restrict replication and damage brought by rotavirus infection. Here, we highlight the latest progress in characterization of the role of NLRP9 in infectious and inflammatory diseases, as well as the newest crystallographic and biochemical studies on NLRP9. Finally, we discuss some important questions remained to be answered regarding the molecular and cellular mechanisms governing NLRP9's function in innate immunity and inflammation.
Collapse
Affiliation(s)
- Breanne Mullins
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Jueqi Chen
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Jiang Y, Chiu CY, Yan Q, Chen W, Gorin MB, Conley YP, Lakhal-Chaieb ML, Cook RJ, Amos CI, Wilson AF, Bailey-Wilson JE, McMahon FJ, Vazquez AI, Yuan A, Zhong X, Xiong M, Weeks DE, Fan R. Gene-Based Association Testing of Dichotomous Traits With Generalized Functional Linear Mixed Models Using Extended Pedigrees: Applications to Age-Related Macular Degeneration. J Am Stat Assoc 2020; 116:531-545. [PMID: 34321704 PMCID: PMC8315575 DOI: 10.1080/01621459.2020.1799809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
Genetics plays a role in age-related macular degeneration (AMD), a common cause of blindness in the elderly. There is a need for powerful methods for carrying out region-based association tests between a dichotomous trait like AMD and genetic variants on family data. Here, we apply our new generalized functional linear mixed models (GFLMM) developed to test for gene-based association in a set of AMD families. Using common and rare variants, we observe significant association with two known AMD genes: CFH and ARMS2. Using rare variants, we find suggestive signals in four genes: ASAH1, CLEC6A, TMEM63C, and SGSM1. Intriguingly, ASAH1 is down-regulated in AMD aqueous humor, and ASAH1 deficiency leads to retinal inflammation and increased vulnerability to oxidative stress. These findings were made possible by our GFLMM which model the effect of a major gene as a fixed mean, the polygenic contributions as a random variation, and the correlation of pedigree members by kinship coefficients. Simulations indicate that the GFLMM likelihood ratio tests (LRTs) accurately control the Type I error rates. The LRTs have similar or higher power than existing retrospective kernel and burden statistics. Our GFLMM-based statistics provide a new tool for conducting family-based genetic studies of complex diseases. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Collapse
Affiliation(s)
- Yingda Jiang
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Chi-Yang Chiu
- Division of Biostatistics, Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, NIH, Baltimore, MD
| | - Qi Yan
- Division of Pulmonary Medicine, Allergy and Immunology, Children’s Hospital of Pittsburgh at The University of Pittsburgh, Pittsburgh, PA
| | - Wei Chen
- Division of Pulmonary Medicine, Allergy and Immunology, Children’s Hospital of Pittsburgh at The University of Pittsburgh, Pittsburgh, PA
| | - Michael B. Gorin
- Department of Ophthalmology, David Geffen School of Medicine, UCLA Stein Eye Institute, Los Angeles, CA
| | - Yvette P. Conley
- Department of Health Promotion and Development, University of Pittsburgh, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | | | - Richard J. Cook
- Department of Statistics and Actuarial Science, Waterloo, ON, Canada
| | | | - Alexander F. Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, NIH, Baltimore, MD
| | - Joan E. Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, NIH, Baltimore, MD
| | - Francis J. McMahon
- Human Genetics Branch and Genetic Basis of Mood and Anxiety Disorders Section, National Institute of Mental Health, NIH, Bethesda, MD
| | - Ana I. Vazquez
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
| | - Ao Yuan
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington, DC
| | - Xiaogang Zhong
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington, DC
| | - Momiao Xiong
- Human Genetics Center, University of Texas, Houston, TX
| | - Daniel E. Weeks
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Ruzong Fan
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, NIH, Baltimore, MD
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
17
|
Marleaux M, Anand K, Latz E, Geyer M. Crystal structure of the human NLRP9 pyrin domain suggests a distinct mode of inflammasome assembly. FEBS Lett 2020; 594:2383-2395. [PMID: 32542665 DOI: 10.1002/1873-3468.13865] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/17/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
Abstract
Inflammasomes are cytosolic multimeric signaling complexes of the innate immune system that induce activation of caspases. The NOD-like receptor NLRP9 recruits the adaptor protein ASC to form an ASC-dependent inflammasome to limit rotaviral replication in intestinal epithelial cells, but only little is known about the molecular mechanisms regulating and driving its assembly. Here, we present the crystal structure of the human NLRP9 pyrin domain (PYD). We show that NLRP9PYD is not able to self-polymerize nor to nucleate ASC specks in HEK293T cells. A comparison with filament-forming PYDs revealed that NLRP9PYD adopts a conformation compatible with filament formation, but several charge inversions of interfacing residues might cause repulsive effects that prohibit self-oligomerization. These results propose that inflammasome assembly of NLRP9 might differ largely from what we know of other inflammasomes.
Collapse
Affiliation(s)
- Michael Marleaux
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Kanchan Anand
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
18
|
Zhang Z, Tang J, He X, Di R, Chu M. Mutations in NLRP5 and NLRP9 are Associated with Litter Size in Small Tail Han Sheep. Animals (Basel) 2020; 10:ani10040689. [PMID: 32326631 PMCID: PMC7222816 DOI: 10.3390/ani10040689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/02/2020] [Accepted: 04/12/2020] [Indexed: 01/06/2023] Open
Abstract
Previous studies showed that the NLR family pyrin domain-containing 5 (NLRP5) and NLRP9 genes are two important reproductive genes; however, their effects on sheep litter size are unknown. Therefore, in this study, we first genotyped seven sheep breeds via the MassARRAY® SNP system at the loci g.60495375A > G, g.60495363G > A, and g.60499690C > A in NLRP5, and g.59030623T > C and g.59043397A > C in NLRP9. Our results revealed that each locus in most sheep breeds contained three genotypes. Then, we conducted population genetic analysis of single nucleotide polymorphisms in NLRP5 and NLRP9, and we found that the polymorphism information content value in all sheep breeds ranged from 0 to 0.36, and most sheep breeds were under Hardy-Weinberg equilibrium (p > 0.05). Furthermore, association analysis in Small Tail Han sheep indicated that two loci, g.60495363G > A in NLRP5 and g.59030623T > C in NLRP9, were highly associated with litter size. The mutation in g.60495363G > A may decrease interactions of NLRP5 with proteins, such as GDF9, whereas the mutation in g.59030623T > C may enhance the combining capacity of NLRP9 with these proteins; consequently, these mutations may influence the ovulation rate and even litter size. The findings of our study provide valuable genetic markers that can be used to improve the breeding of sheep and even other mammals.
Collapse
Affiliation(s)
- Zhuangbiao Zhang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Jishun Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
- Correspondence: ; Tel.: +86-010-6281-9850
| |
Collapse
|
19
|
Olive C, Ibanez L, Farias FHG, Wang F, Budde JP, Norton JB, Gentsch J, Morris JC, Li Z, Dube U, Del-Aguila J, Bergmann K, Bradley J, Benitez BA, Harari O, Fagan A, Ances B, Cruchaga C, Fernandez MV. Examination of the Effect of Rare Variants in TREM2, ABI3, and PLCG2 in LOAD Through Multiple Phenotypes. J Alzheimers Dis 2020; 77:1469-1482. [PMID: 32894242 PMCID: PMC7927150 DOI: 10.3233/jad-200019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Rare variants in PLCG2 (p.P522R), ABI3 (p.S209F), and TREM2 (p.R47H, p.R62H) have been associated with late onset Alzheimer's disease (LOAD) risk in Caucasians. After the initial report, several studies have found positive results in cohorts of different ethnic background and with different phenotype. OBJECTIVE In this study, we aim to evaluate the association of rare coding variants in PLCG2, ABI3, and TREM2 with LOAD risk and their effect at different time points of the disease. METHODS We used a European American cohort to assess the association of the variants prior onset (using CSF Aβ42, tau, and pTau levels, and amyloid imaging as endophenotypes) and after onset (measured as rate of memory decline). RESULTS We confirm the association with LOAD risk of TREM2 p.R47H, p.R62H and ABI3 p.S209F variants, and the protective effect of PLCG2 p.P522R. In addition, ABI3 and TREM2 gene-sets showed significant association with LOAD risk. TREM2 p.R47H and PLCG2 p.P522R variants were also statistically associated with increase of amyloid imaging and AD progression, respectively. We did not observe any association of ABI3 p.S209F with any of the other AD endophenotypes. CONCLUSION The results of this study highlight the importance of including biomarkers and alternative phenotypes to better understand the role of novel candidate genes with the disease.
Collapse
Affiliation(s)
- Claudia Olive
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Laura Ibanez
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Fabiana H. Geraldo Farias
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Fengxian Wang
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - John P. Budde
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Joanne B. Norton
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jen Gentsch
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John C. Morris
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Zeran Li
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Umber Dube
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Jorge Del-Aguila
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristy Bergmann
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Bradley
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruno A. Benitez
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Oscar Harari
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Beau Ances
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carlos Cruchaga
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Maria Victoria Fernandez
- Neurogenomics and Informatics Center, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
20
|
Van Acker ZP, Bretou M, Annaert W. Endo-lysosomal dysregulations and late-onset Alzheimer's disease: impact of genetic risk factors. Mol Neurodegener 2019; 14:20. [PMID: 31159836 PMCID: PMC6547588 DOI: 10.1186/s13024-019-0323-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence supports that cellular dysregulations in the degradative routes contribute to the initiation and progression of neurodegenerative diseases, including Alzheimer's disease. Autophagy and endolysosomal homeostasis need to be maintained throughout life as they are major cellular mechanisms involved in both the production of toxic amyloid peptides and the clearance of misfolded or aggregated proteins. As such, alterations in endolysosomal and autophagic flux, as a measure of degradation activity in these routes or compartments, may directly impact as well on disease-related mechanisms such as amyloid-β clearance through the blood-brain-barrier and the interneuronal spreading of amyloid-β and/or Tau seeds, affecting synaptic function, plasticity and metabolism. The emerging of several genetic risk factors for late-onset Alzheimer's disease that are functionally related to endocytic transport regulation, including cholesterol metabolism and clearance, supports the notion that in particular the autophagy/lysosomal flux might become more vulnerable during ageing thereby contributing to disease onset. In this review we discuss our current knowledge of the risk genes APOE4, BIN1, CD2AP, PICALM, PLD3 and TREM2 and their impact on endolysosomal (dys)regulations in the light of late-onset Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Zoë P. Van Acker
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, Gasthuisberg, O&N4, Rm. 7.159, Herestraat 49, B-3000 Leuven, Belgium
| | - Marine Bretou
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, Gasthuisberg, O&N4, Rm. 7.159, Herestraat 49, B-3000 Leuven, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, Gasthuisberg, O&N4, Rm. 7.159, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
21
|
Del-Aguila JL, Benitez BA, Li Z, Dube U, Mihindukulasuriya KA, Budde JP, Farias FHG, Fernández MV, Ibanez L, Jiang S, Perrin RJ, Cairns NJ, Morris JC, Harari O, Cruchaga C. TREM2 brain transcript-specific studies in AD and TREM2 mutation carriers. Mol Neurodegener 2019; 14:18. [PMID: 31068200 PMCID: PMC6505298 DOI: 10.1186/s13024-019-0319-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Low frequency coding variants in TREM2 are associated with Alzheimer disease (AD) risk and cerebrospinal fluid (CSF) TREM2 protein levels are different between AD cases and controls. Similarly, TREM2 risk variant carriers also exhibit differential CSF TREM2 levels. TREM2 has three different alternative transcripts, but most of the functional studies only model the longest transcript. No studies have analyzed TREM2 expression levels or alternative splicing in brains from AD and cognitively normal individuals. We wanted to determine whether there was differential expression of TREM2 in sporadic-AD cases versus AD-TREM2 carriers vs sex- and aged-matched normal controls; and if this differential expression was due to a particular TREM2 transcript. METHODS We analyzed RNA-Seq data from parietal lobe brain tissue from AD cases with TREM2 variants (n = 33), AD cases (n = 195) and healthy controls (n = 118), from three independent datasets using Kallisto and the R package tximport to determine the read count for each transcript and quantified transcript abundance as transcripts per million. RESULTS The three TREM2 transcripts were expressed in brain cortex in the three datasets. We demonstrate for the first time that the transcript that lacks the transmembrane domain and encodes a soluble form of TREM2 (sTREM2) has an expression level around 60% of the canonical transcript, suggesting that around 25% of the sTREM2 protein levels could be explained by this transcript. We did not observe a difference in the overall TREM2 expression level between cases and controls. However, the isoform which lacks the 5' exon, but includes the transmembrane domain, was significantly lower in TREM2- p.R62H carriers than in AD cases (p = 0.007). CONCLUSION Using bulk RNA-Seq data from three different cohorts, we were able to quantify the expression level of the three TREM2 transcripts, demonstrating: (1) all three transcripts of them are highly expressed in the human cortex, (2) that up to 25% of the sTREM2 may be due to the expression of a specific isoform and not TREM2 cleavage; and (3) that TREM2 risk variants do not affect expression levels, suggesting that the effect of the TREM2 variants on CSF levels occurs at post-transcriptional level.
Collapse
Affiliation(s)
- Jorge L. Del-Aguila
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Bruno A. Benitez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Zeran Li
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Umber Dube
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Kathie A. Mihindukulasuriya
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
| | - John P. Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Fabiana H. G. Farias
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Maria Victoria Fernández
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Shan Jiang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
| | - Richard J. Perrin
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
| | - Nigel J. Cairns
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO USA
| | - John C. Morris
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO USA
| |
Collapse
|