1
|
Kubarova A, Go HJ, Oh HY, Park S, Oh HM, Park NG. Isolation and characterization of NGFFYamide neuropeptide from Patiria pectinifera pyloric caeca extract. Peptides 2024; 180:171282. [PMID: 39134260 DOI: 10.1016/j.peptides.2024.171282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Neuropeptides are small molecules that mediate intercellular signaling and regulate physiological processes. Starfish possess various myoactive neuropeptides, including starfish myorelaxant peptide (SMP) and a calcitonin-type peptide with apical muscle relaxing properties. In this study, we report the purification of a neuropeptide from starfish (Patiria pectinifera) pyloric caeca extract using high-performance liquid chromatography (HPLC) and an in vitro bioassay to screen for fractions and peptides with relaxing effects on P. pectinifera apical muscle preparations. A series of HPLC steps using reversed-phase and cation-exchange columns yielded a purified peptide with muscle-relaxing effects. The purified peptide's structure was determined by LC-MS and Edman degradation, revealing a pentapeptide with an amidated C-terminus (NGFFYamide) and a molecular mass of 646.2930 Da. This is the first report of NGFFYamide purification from P. pectinifera through biochemical methods. The nucleotide sequence encoding the NGFFYamide precursor was determined, showing the presence of a conserved neurophysin domain in the C-terminal region. RT-qPCR results confirmed high expression in radial nerves cord, consistent with previous findings on NG peptides in echinoderms. In vitro pharmacological studies on muscle preparations from P. pectinifera and Asterias amurensis revealed differential relaxing activity of NGFFYamide on apical muscles, while its effects on tube foot preparations were similar in both species. NGFFYamide also induced potent contraction in P. pectinifera cardiac stomach. Comparison of three NG peptides (NGFFYamide, NGFFFamide, and NGIWYamide) on P. pectinifera cardiac stomach revealed varying potency, suggesting class-specific receptor interactions. Tachyphylaxis was observed in P. pectinifera apical muscle but not in A. amurensis, warranting further investigation. Based on these results, it is plausible that NGFFYamide could be involved in regulating locomotion and feeding behavior in P. pectinifera, consistent with findings in Asterias rubens.
Collapse
Affiliation(s)
- Anastasia Kubarova
- Institute of Marine Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Hye-Jin Go
- Institute of Marine Living Modified Organisms, Pukyong National University, Busan 48513, Republic of Korea
| | - Hye Young Oh
- Institute of Marine Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Soohyun Park
- School of Marine and Fisheries Life Science (Major in Biotechnology), Pukyong National University, Busan 48513, Republic of Korea
| | - Hyun-Myoung Oh
- Institute of Liberal Arts Education, Pukyong National University, Busan 48547, Republic of Korea
| | - Nam Gyu Park
- Institute of Marine Life Science, Pukyong National University, Busan 48513, Republic of Korea; Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Piñon Gonzalez VM, Feng Y, Egertová M, Elphick MR. Neuropeptide expression and action in the reproductive system of the starfish Asterias rubens. J Comp Neurol 2024; 532:e25585. [PMID: 38289190 DOI: 10.1002/cne.25585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Reproductive processes are regulated by a variety of neuropeptides in vertebrates and invertebrates. In starfish (phylum Echinodermata), relaxin-like gonad-stimulating peptide triggers oocyte maturation and spawning. However, little is known about other neuropeptides as potential regulators of reproduction in starfish. To address this issue, here, we used histology and immunohistochemistry to analyze the reproductive system of the starfish Asterias rubens at four stages of the seasonal reproductive cycle in male and female animals, investigating the expression of eight neuropeptides: the corticotropin-releasing hormone-type neuropeptide ArCRH, the calcitonin-type neuropeptide ArCT, the pedal peptide-type neuropeptides ArPPLN1b and ArPPLN2h, the vasopressin/ocytocin-type neuropeptide asterotocin, the gonadotropin-releasing hormone-type neuropeptide ArGnRH, and the somatostatin/allatostatin-C-type neuropeptides ArSS1 and ArSS2. The expression of five neuropeptides, ArCRH, ArCT, ArPPLN1b, ArPPLN2h, and asterotocin, was detected in the gonoducts and/or gonads. For example, extensive ArPPLN2h expression was revealed in the coelomic epithelial layer of the gonads throughout the seasonal reproductive cycle in both males and females. However, seasonal and/or sexual differences in the patterns of neuropeptide expression were also observed. Informed by these findings, the in vitro pharmacological effects of neuropeptides on gonad preparations from male and female starfish were investigated. This revealed that ArSS1 causes gonadal contraction and that ArPPLN2h causes gonadal relaxation, with both neuropeptides being more effective on ovaries than testes. Collectively, these findings indicate that multiple neuropeptide signaling systems are involved in the regulation of reproductive function in starfish, with some neuropeptides exerting excitatory or inhibitory effects on gonad contractility that may be physiologically relevant when gametes are expelled during spawning.
Collapse
Affiliation(s)
| | - Yuling Feng
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| | - Michaela Egertová
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| | - Maurice R Elphick
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
3
|
Liu H, Chen M. Morphology and Chemical Messenger Regulation of Echinoderm Muscles. BIOLOGY 2023; 12:1349. [PMID: 37887059 PMCID: PMC10603993 DOI: 10.3390/biology12101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
The muscular systems of echinoderms play important roles in various physiological and behavioral processes, including feeding, reproduction, movement, respiration, and excretion. Like vertebrates, echinoderm muscle systems can be subdivided into two major divisions, somatic and visceral musculature. The former usually has a myoepithelial organization, while the latter contains muscle bundles formed by the aggregation of myocytes. Neurons and their processes are also detected between these myoepithelial cells and myocytes, which are capable of releasing a variety of neurotransmitters and neuropeptides to regulate muscle activity. Although many studies have reported the pharmacological effects of these chemical messengers on various muscles of echinoderms, there has been limited research on their receptors and their signaling pathways. The muscle physiology of echinoderms is similar to that of chordates, both of which have the deuterostome mode of development. Studies of muscle regulation in echinoderms can provide new insights into the evolution of myoregulatory systems in deuterostomes.
Collapse
Affiliation(s)
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China;
| |
Collapse
|
4
|
Feng Y, Piñon Gonzalez VM, Lin M, Egertová M, Mita M, Elphick MR. Localization of relaxin-like gonad-stimulating peptide expression in starfish reveals the gonoducts as a source for its role as a regulator of spawning. J Comp Neurol 2023; 531:1299-1316. [PMID: 37212624 PMCID: PMC10952978 DOI: 10.1002/cne.25496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023]
Abstract
Oocyte maturation and gamete release (spawning) in starfish are triggered by relaxin-like gonad-stimulating peptide (RGP), a neuropeptide that was first isolated from the radial nerve cords of these animals. Hitherto, it has generally been assumed that the radial nerve cords are the source of RGP that triggers spawning physiologically. To investigate other sources of RGP, here we report the first comprehensive anatomical analysis of its expression, using both in situ hybridization and immunohistochemistry to map RGP precursor transcripts and RGP, respectively, in the starfish Asterias rubens. Cells expressing RGP precursor transcripts were revealed in the ectoneural epithelium of the radial nerve cords and circumoral nerve ring, arm tips, tube feet, cardiac stomach, pyloric stomach, and, most notably, gonoducts. Using specific antibodies to A. rubens RGP, immunostaining was revealed in cells and/or fibers in the ectoneural region of the radial nerve cords and circumoral nerve ring, tube feet, terminal tentacle and other arm tip-associated structures, body wall, peristomial membrane, esophagus, cardiac stomach, pyloric stomach, pyloric caeca, and gonoducts. Our discovery that RGP is expressed in the gonoducts of A. rubens proximal to its gonadotropic site of action in the gonads is important because it provides a new perspective on how RGP may act as a gonadotropin in starfish. Thus, we hypothesize that it is the release of RGP from the gonoducts that triggers gamete maturation and spawning in starfish, while RGP produced in other parts of the body may regulate other physiological/behavioral processes.
Collapse
Affiliation(s)
- Yuling Feng
- School of Biological & Behavioural SciencesQueen Mary University of LondonLondonUK
| | | | - Ming Lin
- School of Biological & Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Michaela Egertová
- School of Biological & Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Masatoshi Mita
- Department of BiochemistryShowa University School of MedicineTokyoJapan
| | - Maurice R. Elphick
- School of Biological & Behavioural SciencesQueen Mary University of LondonLondonUK
| |
Collapse
|
5
|
Structure and proteomic analysis of the crown-of-thorns starfish (Acanthaster sp.) radial nerve cord. Sci Rep 2023; 13:3349. [PMID: 36849815 PMCID: PMC9971248 DOI: 10.1038/s41598-023-30425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/22/2023] [Indexed: 03/01/2023] Open
Abstract
The nervous system of the Asteroidea (starfish or seastar) consists of radial nerve cords (RNCs) that interconnect with a ring nerve. Despite its relative simplicity, it facilitates the movement of multiple arms and numerous tube feet, as well as regeneration of damaged limbs. Here, we investigated the RNC ultrastructure and its molecular components within the of Pacific crown-of-thorns starfish (COTS; Acanthaster sp.), a well-known coral predator that in high-density outbreaks has major ecological impacts on coral reefs. We describe the presence of an array of unique small bulbous bulbs (40-100 μm diameter) that project from the ectoneural region of the adult RNC. Each comprise large secretory-like cells and prominent cilia. In contrast, juvenile COTS and its congener Acanthaster brevispinus lack these features, both of which are non-corallivorous. Proteomic analysis of the RNC (and isolated neural bulbs) provides the first comprehensive echinoderm protein database for neural tissue, including numerous secreted proteins associated with signalling, transport and defence. The neural bulbs contained several neuropeptides (e.g., bombyxin-type, starfish myorelaxant peptide, secretogranin 7B2-like, Ap15a-like, and ApNp35) and Deleted in Malignant Brain Tumor 1-like proteins. In summary, this study provides a new insight into the novel traits of COTS, a major pest on coral reefs, and a proteomics resource that can be used to develop (bio)control strategies and understand molecular mechanisms of regeneration.
Collapse
|
6
|
Guo X, Zhang L, Xiao K. Effect of Kisspeptin-Type Neuropeptide on Locomotor Behavior and Muscle Physiology in the Sea Cucumber Apostichopus japonicus. Animals (Basel) 2023; 13:ani13040705. [PMID: 36830492 PMCID: PMC9951865 DOI: 10.3390/ani13040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 02/19/2023] Open
Abstract
Kisspeptins are neuropeptides encoded by the kiss1 gene, and little is known about them outside the vertebrate lineage. Two kisspeptin-type neuropeptides (KPs) have been discovered in Apostichopus japonicus (AjK1 and AjK2), an edible sea cucumber, and have been linked to reproductive and metabolic regulation. In this study, we evaluated how KPs affected locomotor behavior in one control group and two treatment groups (AjK1 and AjK2). We discovered that AjK1 had a significant dose effect, primarily by shortening the stride length and duration of movement to reduce the sea cucumber movement distance, whereas AjK2 had little inhibitory effect at the same dose. The levels of phosphatidylethanolamine (PE), phosphatidylcholine (PC), uridine, glycine, and L-serine in the longitudinal muscle of A. japonicus treated with AjK1 differed significantly from those of the control, which may explain the observed changes in locomotor behavior. Treatment with AjK2 induced changes in aspartate levels. Our results imply that AjK1 is more likely than AjK2 to have a role in the regulation of A. japonicus locomotion.
Collapse
Affiliation(s)
- Xueying Guo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| | - Kang Xiao
- Beijing Yanshan Earth Critical Zone National Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
7
|
Cai W, Egertová M, Zampronio CG, Jones AM, Elphick MR. Molecular Identification and Cellular Localization of a Corticotropin-Releasing Hormone-Type Neuropeptide in an Echinoderm. Neuroendocrinology 2023; 113:231-250. [PMID: 33965952 DOI: 10.1159/000517087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/30/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Corticotropin-releasing hormone (CRH) mediates physiological responses to stressors in mammals by triggering pituitary secretion of adrenocorticotropic hormone, which stimulates adrenal release of cortisol. CRH belongs to a family of related neuropeptides that include sauvagine, urotensin-I, and urocortins in vertebrates and the diuretic hormone DH44 in insects, indicating that the evolutionary origin of this neuropeptide family can be traced to the common ancestor of the Bilateria. However, little is known about CRH-type neuropeptides in deuterostome invertebrates. METHODS Here, we used mass spectrometry, mRNA in situ hybridization, and immunohistochemistry to investigate the structure and expression of a CRH-type neuropeptide (ArCRH) in the starfish Asterias rubens (phylum Echinodermata). RESULTS ArCRH is a 40-residue peptide with N-terminal pyroglutamylation and C-terminal amidation, and it has a widespread pattern of expression in A. rubens. In the central nervous system comprising the circumoral nerve ring and 5 radial nerve cords, ArCRH-expressing cells and fibres were revealed in both the ectoneural region and the hyponeural region, which contains the cell bodies of motoneurons. Accordingly, ArCRH immunoreactivity was detected in innervation of the ampulla and podium of locomotory organs (tube feet), and ArCRH is the first neuropeptide to be identified as a marker for nerve fibres located in the muscle layer of these organs. ArCRH immunoreactivity was also revealed in protractile organs that mediate gas exchange (papulae), the apical muscle, and the digestive system. CONCLUSIONS Our findings provide the first insights into CRH-type neuropeptide expression and function in the unique context of the pentaradially symmetrical body plan of an echinoderm.
Collapse
Affiliation(s)
- Weigang Cai
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Michaela Egertová
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, UK
| | - Alexandra M Jones
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, UK
| | - Maurice R Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
8
|
Tinoco AB, Egertová M, Elphick MR. Immunohistochemical localisation of vasopressin/oxytocin-type, corazonin-type and luqin-type neuropeptide expression in the starfish Asterias rubens using antibodies to the C-terminal region of precursor proteins. Cell Tissue Res 2023; 391:441-456. [PMID: 36653662 PMCID: PMC9974683 DOI: 10.1007/s00441-023-03738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
Neuropeptides derived from larger precursor proteins are secreted as signalling molecules by neurons and regulate diverse physiological and behavioural processes in animals. Recently, we reported the discovery of ArCRZ (HNTFTMGGQNRWKAG-NH2) and ArLQ (EEKTRFPKFMRW-NH2)-novel neuropeptides in the starfish Asterias rubens that are orthologs of arthropod corazonins and molluscan luqins, respectively. However, our efforts to generate antibodies to ArCRZ and ArLQ have been unsuccessful, precluding immunohistochemical analysis of their expression. Here, we investigated an alternative experimental approach for neuropeptide immunohistochemistry by generating antibodies to peptides corresponding to the C-terminal region of the precursor proteins. As proof of principle, we generated antibodies to the C-terminal region of the precursor of the vasopressin/oxytocin-type neuropeptide asterotocin and show that these reveal immunostaining in A. rubens that is very similar to that observed with asterotocin antibodies. Furthermore, antibodies to the C-terminal region of the ArCRZ precursor (ArCRZP) and the ArLQ precursor (ArLQP) produced patterns of immunostaining consistent, respectively, with the distribution of ArCRZP and ArLQP transcripts revealed by mRNA in situ hybridisation. Detailed immunohistochemical analysis revealed widespread expression of ArCRZP and ArLQP in A. rubens, including the central nervous system, digestive system and the body wall and its associated appendages (e.g. tube feet), providing a neuroanatomical framework for investigation and interpretation of the pharmacological actions of ArCRZ and ArLQ in A. rubens. Furthermore, our findings provide a basis for use of antibodies to the C-terminal region of neuropeptide precursor proteins in other species where the production of antibodies to the bioactive neuropeptides is unsuccessful.
Collapse
Affiliation(s)
- Ana B Tinoco
- School of Biological & Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Michaela Egertová
- School of Biological & Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Maurice R Elphick
- School of Biological & Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
9
|
Aleotti A, Wilkie IC, Yañez-Guerra LA, Gattoni G, Rahman TA, Wademan RF, Ahmad Z, Ivanova DA, Semmens DC, Delroisse J, Cai W, Odekunle E, Egertová M, Ferrario C, Sugni M, Bonasoro F, Elphick MR. Discovery and functional characterization of neuropeptides in crinoid echinoderms. Front Neurosci 2022; 16:1006594. [PMID: 36583101 PMCID: PMC9793003 DOI: 10.3389/fnins.2022.1006594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
Neuropeptides are one of the largest and most diverse families of signaling molecules in animals and, accordingly, they regulate many physiological processes and behaviors. Genome and transcriptome sequencing has enabled the identification of genes encoding neuropeptide precursor proteins in species from a growing variety of taxa, including bilaterian and non-bilaterian animals. Of particular interest are deuterostome invertebrates such as the phylum Echinodermata, which occupies a phylogenetic position that has facilitated reconstruction of the evolution of neuropeptide signaling systems in Bilateria. However, our knowledge of neuropeptide signaling in echinoderms is largely based on bioinformatic and experimental analysis of eleutherozoans-Asterozoa (starfish and brittle stars) and Echinozoa (sea urchins and sea cucumbers). Little is known about neuropeptide signaling in crinoids (feather stars and sea lilies), which are a sister clade to the Eleutherozoa. Therefore, we have analyzed transcriptome/genome sequence data from three feather star species, Anneissia japonica, Antedon mediterranea, and Florometra serratissima, to produce the first comprehensive identification of neuropeptide precursors in crinoids. These include representatives of bilaterian neuropeptide precursor families and several predicted crinoid neuropeptide precursors. Using A. mediterranea as an experimental model, we have investigated the expression of selected neuropeptides in larvae (doliolaria), post-metamorphic pentacrinoids and adults, providing new insights into the cellular architecture of crinoid nervous systems. Thus, using mRNA in situ hybridization F-type SALMFamide precursor transcripts were revealed in a previously undescribed population of peptidergic cells located dorso-laterally in doliolaria. Furthermore, using immunohistochemistry a calcitonin-type neuropeptide was revealed in the aboral nerve center, circumoral nerve ring and oral tube feet in pentacrinoids and in the ectoneural and entoneural compartments of the nervous system in adults. Moreover, functional analysis of a vasopressin/oxytocin-type neuropeptide (crinotocin), which is expressed in the brachial nerve of the arms in A. mediterranea, revealed that this peptide causes a dose-dependent change in the mechanical behavior of arm preparations in vitro-the first reported biological action of a neuropeptide in a crinoid. In conclusion, our findings provide new perspectives on neuropeptide signaling in echinoderms and the foundations for further exploration of neuropeptide expression/function in crinoids as a sister clade to eleutherozoan echinoderms.
Collapse
Affiliation(s)
- Alessandra Aleotti
- Department of Environmental Science and Policy, University of Milan, Milan, Italy,School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Iain C. Wilkie
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Luis A. Yañez-Guerra
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Giacomo Gattoni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy,School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Tahshin A. Rahman
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Richard F. Wademan
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Zakaryya Ahmad
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Deyana A. Ivanova
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Dean C. Semmens
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Jérôme Delroisse
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Weigang Cai
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Esther Odekunle
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Michaela Egertová
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Francesco Bonasoro
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Maurice R. Elphick
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom,*Correspondence: Maurice R. Elphick,
| |
Collapse
|
10
|
Sekiguchi T. Evolution of calcitonin/calcitonin gene-related peptide family in chordates: Identification of CT/CGRP family peptides in cartilaginous fish genome. Gen Comp Endocrinol 2022; 328:114123. [PMID: 36075341 DOI: 10.1016/j.ygcen.2022.114123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/04/2022]
Abstract
The calcitonin (CT)/CT gene-related peptide (CGRP) family is a peptide gene family that is widely found in bilaterians. CT, CGRP, adrenomedullin (AM), amylin (AMY), and CT receptor-stimulating peptide (CRSP) are members of the CT/CGRP family. In mammals, CT is involved in calcium homeostasis, while CGRP and AM primarily function in vasodilation. AMY and CRSP are associated with anorectic effects. Diversification of the molecular features and physiological functions of the CT/CGRP family in vertebrate lineages have been extensively reported. However, the origin and diversification mechanisms of the vertebrate CT/CGRP family of peptides remain unclear. In this review, the molecular characteristics of CT/CGRP family peptides and their receptors, along with their major physiological functions in mammals and teleosts, are introduced. Furthermore, novel candidates of the CT/CGRP family in cartilaginous fish are presented based on genomic information. The CT/CGRP family peptides and receptors in urochordates and cephalochordates, which are closely related to vertebrates, are also described. Finally, a putative evolutionary scenario of the CT/CGRP family peptides and receptors in chordates is discussed.
Collapse
Affiliation(s)
- Toshio Sekiguchi
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan.
| |
Collapse
|
11
|
Escudero Castelán N, Semmens DC, Guerra LAY, Zandawala M, Dos Reis M, Slade SE, Scrivens JH, Zampronio CG, Jones AM, Mirabeau O, Elphick MR. Receptor deorphanization in an echinoderm reveals kisspeptin evolution and relationship with SALMFamide neuropeptides. BMC Biol 2022; 20:187. [PMID: 36002813 PMCID: PMC9400282 DOI: 10.1186/s12915-022-01387-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kisspeptins are neuropeptides that regulate reproductive maturation in mammals via G-protein-coupled receptor-mediated stimulation of gonadotropin-releasing hormone secretion from the hypothalamus. Phylogenetic analysis of kisspeptin-type receptors indicates that this neuropeptide signaling system originated in a common ancestor of the Bilateria, but little is known about kisspeptin signaling in invertebrates. RESULTS Contrasting with the occurrence of a single kisspeptin receptor in mammalian species, here, we report the discovery of an expanded family of eleven kisspeptin-type receptors in a deuterostome invertebrate - the starfish Asterias rubens (phylum Echinodermata). Furthermore, neuropeptides derived from four precursor proteins were identified as ligands for six of these receptors. One or more kisspeptin-like neuropeptides derived from two precursor proteins (ArKPP1, ArKPP2) act as ligands for four A. rubens kisspeptin-type receptors (ArKPR1,3,8,9). Furthermore, a family of neuropeptides that act as muscle relaxants in echinoderms (SALMFamides) are ligands for two A. rubens kisspeptin-type receptors (ArKPR6,7). The SALMFamide neuropeptide S1 (or ArS1.4) and a 'cocktail' of the seven neuropeptides derived from the S1 precursor protein (ArS1.1-ArS1.7) act as ligands for ArKPR7. The SALMFamide neuropeptide S2 (or ArS2.3) and a 'cocktail' of the eight neuropeptides derived from the S2 precursor protein (ArS2.1-ArS2.8) act as ligands for ArKPR6. CONCLUSIONS Our findings reveal a remarkable diversity of neuropeptides that act as ligands for kisspeptin-type receptors in starfish and provide important new insights into the evolution of kisspeptin signaling. Furthermore, the discovery of the hitherto unknown relationship of kisspeptins with SALMFamides, neuropeptides that were discovered in starfish prior to the identification of kisspeptins in mammals, presents a radical change in perspective for research on kisspeptin signaling.
Collapse
Affiliation(s)
- Nayeli Escudero Castelán
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
| | - Dean C Semmens
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
- Present address: Institute of Medical and Biomedical Education, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Luis Alfonso Yañez Guerra
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
- Present Address: Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Meet Zandawala
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
- Present Address: Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Mario Dos Reis
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK
| | - Susan E Slade
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Present address: Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, UK
| | - James H Scrivens
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Present address: School of Science, Engineering & Design, Stephenson Street, Teesside University, Middlesbrough, TS1 3BX, TS1 3BA, Tees Valley, UK
| | | | - Alexandra M Jones
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Olivier Mirabeau
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015, Paris, France
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Behavioural Sciences, London, E1 4NS, UK.
| |
Collapse
|
12
|
Somatostatin-type and allatostatin-C-type neuropeptides are paralogous and have opposing myoregulatory roles in an echinoderm. Proc Natl Acad Sci U S A 2022; 119:2113589119. [PMID: 35145030 PMCID: PMC8851493 DOI: 10.1073/pnas.2113589119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/25/2022] Open
Abstract
Somatostatin (SS) and allatostatin-C (ASTC) are related neuropeptide hormones that act as inhibitory regulators of physiological processes in chordates (e.g., humans) and protostome invertebrates (e.g., insects), respectively. We have discovered that echinoderms (e.g., starfish) uniquely have both SS-type and ASTC-type neuropeptides, which act as inhibitory and excitatory regulators of muscle activity, respectively. Our findings suggest that SS-type and ASTC-type neuropeptides evolved by duplication of a common ancestral encoding gene. Then, one of the neuropeptides was lost in protostomes and chordates, probably because of their functional redundancy as inhibitory regulators. Conversely, the unique retention of both neuropeptide types in echinoderms may be explained by evolution of an excitatory role for ASTC-type neuropeptides mediated by yet-to-be-determined signaling mechanisms. Somatostatin (SS) and allatostatin-C (ASTC) are inhibitory neuropeptides in chordates and protostomes, respectively, which hitherto were identified as orthologs. However, echinoderms have two SS/ASTC-type neuropeptides (SS1 and SS2), and here, our analysis of sequence data indicates that SS1 is an ortholog of ASTC and SS2 is an ortholog of SS. The occurrence of both SS-type and ASTC-type neuropeptides in echinoderms provides a unique context to compare their physiological roles. Investigation of the expression and actions of the ASTC-type neuropeptide ArSS1 in the starfish Asterias rubens revealed that it causes muscle contraction (myoexcitation), contrasting with myoinhibitory effects of the SS-type neuropeptide ArSS2. Our findings suggest that SS-type and ASTC-type neuropeptides are paralogous and originated by gene duplication in a common ancestor of the Bilateria, with only one type being retained in chordates (SS) and protostomes (ASTC) but with both types being retained in echinoderms. Loss of ASTC-type and SS-type neuropeptides in chordates and protostomes, respectively, may have been due to their functional redundancy as inhibitory regulators of physiological processes. Conversely, the retention of both neuropeptide types in echinoderms may be a consequence of the evolution of a myoexcitatory role for ASTC-type neuropeptides mediated by as yet unknown signaling mechanisms.
Collapse
|
13
|
Carter HF, Thompson JR, Elphick MR, Oliveri P. The Development and Neuronal Complexity of Bipinnaria Larvae of the Sea Star Asterias rubens. Integr Comp Biol 2021; 61:337-351. [PMID: 34048552 PMCID: PMC8427176 DOI: 10.1093/icb/icab103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Free-swimming planktonic larvae are a key stage in the development of many marine phyla, and studies of these organisms have contributed to our understanding of major genetic and evolutionary processes. Although transitory, these larvae often attain a remarkable degree of tissue complexity, with well-defined musculature and nervous systems. Among the best studied are larvae belonging to the phylum Echinodermata, but with work largely focused on the pluteus larvae of sea urchins (class Echinoidea). The greatest diversity of larval strategies among echinoderms is found in the class Asteroidea (sea stars), organisms that are rapidly emerging as experimental systems for genetic and developmental studies. However, the bipinnaria larvae of sea stars have only been studied in detail in a small number of species and although they have been relatively well described neuro-anatomically, they are poorly understood neurochemically. Here, we have analyzed embryonic development and bipinnaria larval anatomy in the common North Atlantic sea star Asterias rubens, using a variety of staining methods in combination with confocal microscopy. Importantly, the chemical complexity of the nervous system of bipinnaria larvae was revealed through use of a diverse set of antibodies, with identification of at least three centers of differing neurochemical signature within the previously described nervous system: the anterior apical organ, oral region, and ciliary bands. Furthermore, the anatomy of the musculature and sites of cell division in bipinnaria larvae was analyzed. Comparisons of developmental progression and molecular anatomy across the Echinodermata provided a basis for hypotheses on the shared evolutionary and developmental processes that have shaped this group of animals. We conclude that bipinnaria larvae appear to be remarkably conserved across ∼200 million years of evolutionary time and may represent a strong evolutionary and/or developmental constraint on species utilizing this larval strategy.
Collapse
Affiliation(s)
- Hugh F Carter
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK
| | - Jeffrey R Thompson
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- UCL Centre for Life’s Origins and Evolution (CLOE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- UCL Centre for Life’s Origins and Evolution (CLOE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
14
|
Tinoco AB, Barreiro-Iglesias A, Yañez Guerra LA, Delroisse J, Zhang Y, Gunner EF, Zampronio CG, Jones AM, Egertová M, Elphick MR. Ancient role of sulfakinin/cholecystokinin-type signalling in inhibitory regulation of feeding processes revealed in an echinoderm. eLife 2021; 10:e65667. [PMID: 34488941 PMCID: PMC8428848 DOI: 10.7554/elife.65667] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/18/2021] [Indexed: 01/04/2023] Open
Abstract
Sulfakinin (SK)/cholecystokinin (CCK)-type neuropeptides regulate feeding and digestion in protostomes (e.g. insects) and chordates. Here, we characterised SK/CCK-type signalling for the first time in a non-chordate deuterostome - the starfish Asterias rubens (phylum Echinodermata). In this species, two neuropeptides (ArSK/CCK1, ArSK/CCK2) derived from the precursor protein ArSK/CCKP act as ligands for an SK/CCK-type receptor (ArSK/CCKR) and these peptides/proteins are expressed in the nervous system, digestive system, tube feet, and body wall. Furthermore, ArSK/CCK1 and ArSK/CCK2 cause dose-dependent contraction of cardiac stomach, tube foot, and apical muscle preparations in vitro, and injection of these neuropeptides in vivo triggers cardiac stomach retraction and inhibition of the onset of feeding in A. rubens. Thus, an evolutionarily ancient role of SK/CCK-type neuropeptides as inhibitory regulators of feeding-related processes in the Bilateria has been conserved in the unusual and unique context of the extra-oral feeding behaviour and pentaradial body plan of an echinoderm.
Collapse
Affiliation(s)
- Ana B Tinoco
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| | - Antón Barreiro-Iglesias
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| | | | - Jérôme Delroisse
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| | - Ya Zhang
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| | - Elizabeth F Gunner
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics, Research Technology Platform, University of WarwickCoventryUnited Kingdom
| | - Alexandra M Jones
- School of Life Sciences and Proteomics, Research Technology Platform, University of WarwickCoventryUnited Kingdom
| | - Michaela Egertová
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Behavioural SciencesLondonUnited Kingdom
| |
Collapse
|
15
|
Hasan MM, Alam MA, Shoombuatong W, Deng HW, Manavalan B, Kurata H. NeuroPred-FRL: an interpretable prediction model for identifying neuropeptide using feature representation learning. Brief Bioinform 2021; 22:6272801. [PMID: 33975333 DOI: 10.1093/bib/bbab167] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Neuropeptides (NPs) are the most versatile neurotransmitters in the immune systems that regulate various central anxious hormones. An efficient and effective bioinformatics tool for rapid and accurate large-scale identification of NPs is critical in immunoinformatics, which is indispensable for basic research and drug development. Although a few NP prediction tools have been developed, it is mandatory to improve their NPs' prediction performances. In this study, we have developed a machine learning-based meta-predictor called NeuroPred-FRL by employing the feature representation learning approach. First, we generated 66 optimal baseline models by employing 11 different encodings, six different classifiers and a two-step feature selection approach. The predicted probability scores of NPs based on the 66 baseline models were combined to be deemed as the input feature vector. Second, in order to enhance the feature representation ability, we applied the two-step feature selection approach to optimize the 66-D probability feature vector and then inputted the optimal one into a random forest classifier for the final meta-model (NeuroPred-FRL) construction. Benchmarking experiments based on both cross-validation and independent tests indicate that the NeuroPred-FRL achieves a superior prediction performance of NPs compared with the other state-of-the-art predictors. We believe that the proposed NeuroPred-FRL can serve as a powerful tool for large-scale identification of NPs, facilitating the characterization of their functional mechanisms and expediting their applications in clinical therapy. Moreover, we interpreted some model mechanisms of NeuroPred-FRL by leveraging the robust SHapley Additive exPlanation algorithm.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Md Ashad Alam
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112 USA
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112 USA
| | | | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| |
Collapse
|
16
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
17
|
Zhang Y, Yañez Guerra LA, Egertová M, Zampronio CG, Jones AM, Elphick MR. Molecular and functional characterization of somatostatin-type signalling in a deuterostome invertebrate. Open Biol 2020; 10:200172. [PMID: 32898470 PMCID: PMC7536072 DOI: 10.1098/rsob.200172] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Somatostatin (SS) and allatostatin-C (ASTC) are structurally and evolutionarily related neuropeptides that act as inhibitory regulators of physiological processes in mammals and insects, respectively. Here, we report the first molecular and functional characterization of SS/ASTC-type signalling in a deuterostome invertebrate—the starfish Asterias rubens (phylum Echinodermata). Two SS/ASTC-type precursors were identified in A. rubens (ArSSP1 and ArSSP2) and the structures of neuropeptides derived from these proteins (ArSS1 and ArSS2) were analysed using mass spectrometry. Pharmacological characterization of three cloned A. rubens SS/ASTC-type receptors (ArSSR1–3) revealed that ArSS2, but not ArSS1, acts as a ligand for all three receptors. Analysis of ArSS2 expression in A. rubens using mRNA in situ hybridization and immunohistochemistry revealed stained cells/fibres in the central nervous system, the digestive system (e.g. cardiac stomach) and the body wall and its appendages (e.g. tube feet). Furthermore, in vitro pharmacological tests revealed that ArSS2 causes dose-dependent relaxation of tube foot and cardiac stomach preparations, while injection of ArSS2 in vivo causes partial eversion of the cardiac stomach. Our findings provide new insights into the molecular evolution of SS/ASTC-type signalling in the animal kingdom and reveal an ancient role of SS-type neuropeptides as inhibitory regulators of muscle contractility.
Collapse
Affiliation(s)
- Ya Zhang
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | | | - Michaela Egertová
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry CV4 7AL, UK
| | - Alexandra M Jones
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry CV4 7AL, UK
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
18
|
Odekunle EA, Semmens DC, Martynyuk N, Tinoco AB, Garewal AK, Patel RR, Blowes LM, Zandawala M, Delroisse J, Slade SE, Scrivens JH, Egertová M, Elphick MR. Ancient role of vasopressin/oxytocin-type neuropeptides as regulators of feeding revealed in an echinoderm. BMC Biol 2019; 17:60. [PMID: 31362737 PMCID: PMC6668147 DOI: 10.1186/s12915-019-0680-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Vasopressin/oxytocin (VP/OT)-type neuropeptides are well known for their roles as regulators of diuresis, reproductive physiology and social behaviour. However, our knowledge of their functions is largely based on findings from studies on vertebrates and selected protostomian invertebrates. Little is known about the roles of VP/OT-type neuropeptides in deuterostomian invertebrates, which are more closely related to vertebrates than protostomes. RESULTS Here, we have identified and functionally characterised a VP/OT-type signalling system comprising the neuropeptide asterotocin and its cognate G-protein coupled receptor in the starfish (sea star) Asterias rubens, a deuterostomian invertebrate belonging to the phylum Echinodermata. Analysis of the distribution of asterotocin and the asterotocin receptor in A. rubens using mRNA in situ hybridisation and immunohistochemistry revealed expression in the central nervous system (radial nerve cords and circumoral nerve ring), the digestive system (including the cardiac stomach) and the body wall and associated appendages. Informed by the anatomy of asterotocin signalling, in vitro pharmacological experiments revealed that asterotocin acts as a muscle relaxant in starfish, contrasting with the myotropic actions of VP/OT-type neuropeptides in vertebrates. Furthermore, in vivo injection of asterotocin had a striking effect on starfish behaviour-triggering fictive feeding where eversion of the cardiac stomach and changes in body posture resemble the unusual extra-oral feeding behaviour of starfish. CONCLUSIONS We provide a comprehensive characterisation of VP/OT-type signalling in an echinoderm, including a detailed anatomical analysis of the expression of both the VP/OT-type neuropeptide asterotocin and its cognate receptor. Our discovery that asterotocin triggers fictive feeding in starfish provides important new evidence of an evolutionarily ancient role of VP/OT-type neuropeptides as regulators of feeding in animals.
Collapse
Affiliation(s)
- Esther A. Odekunle
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Dean C. Semmens
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Nataly Martynyuk
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
- Department of Clinical Neurosciences, MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ UK
| | - Ana B. Tinoco
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Abdullah K. Garewal
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Radhika R. Patel
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Liisa M. Blowes
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Meet Zandawala
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
- Department of Neuroscience, Brown University, Providence, USA
| | - Jérôme Delroisse
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
- Research Institute for Biosciences, Biology of Marine Organisms and Biomimetics, University of Mons (UMONS), 7000 Mons, Belgium
| | - Susan E. Slade
- Waters/Warwick Centre for BioMedical Mass Spectrometry and Proteomics, School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX UK
| | - James H. Scrivens
- Waters/Warwick Centre for BioMedical Mass Spectrometry and Proteomics, School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
- School of Science, Engineering & Design, Teesside University, Stephenson Street, Tees Valley, TS1 3BA UK
| | - Michaela Egertová
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Maurice R. Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| |
Collapse
|
19
|
Chen M, Talarovicova A, Zheng Y, Storey KB, Elphick MR. Neuropeptide precursors and neuropeptides in the sea cucumber Apostichopus japonicus: a genomic, transcriptomic and proteomic analysis. Sci Rep 2019; 9:8829. [PMID: 31222106 PMCID: PMC6586643 DOI: 10.1038/s41598-019-45271-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
The sea cucumber Apostichopus japonicus is a foodstuff with very high economic value in China, Japan and other countries in south-east Asia. It is at the heart of a multibillion-dollar industry and to meet demand for this product, aquaculture methods and facilities have been established. However, there are challenges associated with optimization of reproduction, feeding and growth in non-natural environments. Therefore, we need to learn more about the biology of A. japonicus, including processes such as aestivation, evisceration, regeneration and albinism. One of the major classes of molecules that regulate physiology and behaviour in animals are neuropeptides, and a few bioactive peptides have already been identified in A. japonicus. To facilitate more comprehensive investigations of neuropeptide function in A. japonicus, here we have analysed genomic and transcriptomic sequence data and proteomic data to identify neuropeptide precursors and neuropeptides in this species. We identified 44 transcripts encoding neuropeptide precursors or putative neuropeptide precursors, and in some instances neuropeptides derived from these precursors were confirmed by mass spectrometry. Furthermore, analysis of genomic sequence data enabled identification of the location of neuropeptide precursor genes on genomic scaffolds and linkage groups (chromosomes) and determination of gene structure. Many of the precursors identified contain homologs of neuropeptides that have been identified in other bilaterian animals. Precursors of neuropeptides that have thus far only been identified in echinoderms were identified, including L- and F-type SALMFamides, AN peptides and others. Precursors of several peptides that act as modulators of neuromuscular activity in A. japonicus were also identified. The discovery of a large repertoire of neuropeptide precursors and neuropeptides provides a basis for experimental studies that investigate the physiological roles of neuropeptide signaling systems in A. japonicus. Looking ahead, some of these neuropeptides may have effects that could be harnessed to enable improvements in the aquaculture of this economically important species.
Collapse
Affiliation(s)
- Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR, China.
| | - Alzbeta Talarovicova
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR, China
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Maurice R Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
20
|
García-Arrarás JE, Lefebre-Rivera M, Qi-Huang S. Enteroendocrine cells in the Echinodermata. Cell Tissue Res 2019; 377:459-467. [PMID: 31222501 DOI: 10.1007/s00441-019-03053-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/24/2019] [Indexed: 12/24/2022]
Abstract
Enteroendocrine cells are endocrine-like cells found in the luminal epithelia of the digestive tract. These cells have been described in most animal phyla. In echinoderms, the cells have been described mainly in organisms of the class Asteroidea (sea stars) and Holothuroidea (sea cucumbers). Here, we describe what is known about the enteroendocrine cells of the Echinodermata, including the cell types, their distribution in the digestive tract, their neuropeptide content and their regeneration and compare them to what has been found in other animal species, mainly in vertebrates. We also discuss the newly described view of enteroendocrine cells as chemical sensors of the intestinal lumen and provide some histological evidence that similar functions might be found within the echinoderms. Finally, we describe the temporal regeneration of the enteroendocrine cells in the holothurian intestine.
Collapse
|
21
|
Satake H, Matsubara S, Shiraishi A, Yamamoto T, Osugi T, Sakai T, Kawada T. Peptide receptors and immune-related proteins expressed in the digestive system of a urochordate, Ciona intestinalis. Cell Tissue Res 2019; 377:293-308. [PMID: 31079207 DOI: 10.1007/s00441-019-03024-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
The digestive system is responsible for nutrient intake and defense against pathogenic microbes. Thus, identification of regulatory factors for digestive functions and immune systems is a key step to the verification of the life cycle, homeostasis, survival strategy and evolutionary aspects of an organism. Over the past decade, there have been increasing reports on neuropeptides, their receptors, variable region-containing chitin-binding proteins (VCBPs) and Toll-like receptors (TLRs) in the ascidian, Ciona intestinalis. Mass spectrometry-based peptidomes and genome database-searching detected not only Ciona orthologs or prototypes of vertebrate peptides and their receptors, including cholecystokinin, gonadotropin-releasing hormones, tachykinin, calcitonin and vasopressin but also Ciona-specific neuropeptides including Ci-LFs and Ci-YFVs. The species-specific regulation of GnRHergic signaling including unique signaling control via heterodimerization among multiple GnRH receptors has also been revealed. These findings shed light on the remarkable significance of ascidians in investigations of the evolution and diversification of the peptidergic systems in chordates. In the defensive systems of C. intestinalis, VCBPs and TLRs have been shown to play major roles in the recognition of exogenous microbes in the innate immune system. These findings indicate both common and species-specific functions of the innate immunity-related molecules between C. intestinalis and vertebrates. In this review article, we present recent advances in molecular and functional features and evolutionary aspects of major neuropeptides, their receptors, VCBPs and TLRs in C. intestinalis.
Collapse
Affiliation(s)
- Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan.
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Tatsuya Yamamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Tsubasa Sakai
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| |
Collapse
|
22
|
Kim MA, Markkandan K, Han NY, Park JM, Lee JS, Lee H, Sohn YC. Neural Ganglia Transcriptome and Peptidome Associated with Sexual Maturation in Female Pacific Abalone ( Haliotis discus hannai). Genes (Basel) 2019; 10:genes10040268. [PMID: 30987054 PMCID: PMC6523705 DOI: 10.3390/genes10040268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/13/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022] Open
Abstract
Genetic information of reproduction and growth is essential for sustainable molluscan fisheries and aquaculture management. However, there is limited knowledge regarding the reproductive activity of the commercially important Pacific abalone Haliotisdiscushannai. We performed de novo transcriptome sequencing of the ganglia in sexually immature and mature female Pacific abalone to better understand the sexual maturation process and the underlying molecular mechanisms. Of the ~305 million high-quality clean reads, 76,684 transcripts were de novo-assembled with an average length of 741 bp, 28.54% of which were annotated and classified according to Gene Ontology terms. There were 256 differentially expressed genes between the immature and mature abalone. Tandem mass spectrometry analysis, as compared to the predicted-peptide database of abalone ganglia transcriptome unigenes, identified 42 neuropeptide precursors, including 29 validated by peptidomic analyses. Label-free quantification revealed differential occurrences of 18 neuropeptide families between immature and mature abalone, including achatin, FMRFamide, crustacean cardioactive peptide, and pedal peptide A and B that were significantly more frequent at the mature stage. These results represent the first significant contribution to both maturation-related transcriptomic and peptidomic resources of the Pacific abalone ganglia and provide insight into the roles of various neuropeptides in reproductive regulation in marine gastropods.
Collapse
Affiliation(s)
- Mi Ae Kim
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung 25457, Korea.
- The East Coast Research Institute of Life Science, Gangneung-Wonju National University, Gangneung 25457, Korea.
| | | | - Na-Young Han
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
| | - Jong-Moon Park
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
| | - Jung Sick Lee
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Korea.
| | - Hookeun Lee
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
| | - Young Chang Sohn
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung 25457, Korea.
| |
Collapse
|
23
|
Schwartz J, Réalis-Doyelle E, Dubos MP, Lefranc B, Leprince J, Favrel P. Characterization of an evolutionarily conserved calcitonin signaling system in a lophotrochozoan, the Pacific oyster (Crassostrea gigas). J Exp Biol 2019; 222:jeb.201319. [DOI: 10.1242/jeb.201319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022]
Abstract
In Protostoma, the diuretic hormone 31 (DH31) signaling system was long considered as the orthologue of the chordate calcitonin (CT) signaling system. Using the Pacific oyster (Crassostrea gigas) transcriptomic database GigaTON (http://ngspipelines-sigenae.toulouse.inra.fr/), we characterized seven G-protein-coupled receptors (GPCRs) named Cragi-CTR1/7 and phylogenetically related to chordate CT receptors (CTRs) and to protostome DH31 receptors. Two CT Precursors (Cragi-CTP1 and Cragi-CTP2) containing two CT-type peptides and encoded by two distinct genes with a similar organization were also characterized. These oyster neuropeptides (Cragi-CT1/2) exhibit the two N-terminal paired cysteine residues and except CTP2 derived peptide (Cragi-CTP2dp) the C-terminal proline-amide motif typical of deuterostome CT-type peptides. All mature Cragi-CTs but Cragi-CTP2dp were detected in visceral ganglion (VG) extracts using mass spectrometry. Cell-based assays revealed that the formerly characterized oyster receptors Cg-CTR and Cragi-CTR2 were specifically activated by Cragi-CT1b and Cragi-CT2, respectively. This activation does not require the co-expression of receptor activity-modifying proteins (RAMPs). Thus, the oyster CT signaling appears functionally more closely related to the vertebrate CT/CTR signaling than to the (Calcitonin Gene Related Peptide) CGRP/CLR signaling. Gene expression profiles in different adult tissues and in oysters acclimated to brackish water suggest the potential implication of both Cg-CT-R/Cragi-CT1b and Cragi-CTR2/Cragi-CT2 in water and ionic regulations, though with apparently opposite effects. The present study represents the first comprehensive characterization of a functional CT-type signaling system in a protostome and provides evidence for its evolutionarily ancient origin and its early role in osmotic homeostasis.
Collapse
Affiliation(s)
- Julie Schwartz
- Normandie Université, UNICAEN, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, 14032 CAEN, Cedex 5, France
| | - Emilie Réalis-Doyelle
- Normandie Université, UNICAEN, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, 14032 CAEN, Cedex 5, France
| | - Marie-Pierre Dubos
- Normandie Université, UNICAEN, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, 14032 CAEN, Cedex 5, France
| | - Benjamin Lefranc
- Normandie Université, UNIROUEN, INSERM, U1239, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, F-76000 Rouen, France
| | - Jérôme Leprince
- Normandie Université, UNIROUEN, INSERM, U1239, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, F-76000 Rouen, France
| | - Pascal Favrel
- Normandie Université, UNICAEN, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, 14032 CAEN, Cedex 5, France
| |
Collapse
|
24
|
Neuropeptides, Peptide Hormones, and Their Receptors of a Tunicate, Ciona intestinalis. Results Probl Cell Differ 2019; 68:107-125. [PMID: 31598854 DOI: 10.1007/978-3-030-23459-1_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The critical phylogenetic position of the ascidian, Ciona intestinalis, as the closest relative of vertebrates, suggested its potential applicability as a model organism in a wide variety of biological events including the nervous, neuroendocrine, and endocrine regulation. To date, approximately 40 neuropeptides and/or peptide hormones and several cognate receptors have been identified. These peptides are categorized into two types: (1) orthologs of vertebrate peptides, such as cholecystokinin, GnRH, tachykinin, vasopressin, and calcitonin, and (2) novel family peptides such as LF peptides and YFL/V peptides. Ciona GnRH receptors (Ci-GnRHR) were found to be multiplicated in the Ciona-specific lineages and to form unique heterodimers between Ci-GnRHR1 and R4 and between Ci-GnRHR2 and R4, leading to fine-tuning of the generation of second messengers. Furthermore, Ciona tachykinin was shown to regulate a novel protease-associated follicle growth pathway. These findings will pave the way for the exploration of both conserved and diversified endocrine, neuroendocrine, and nervous systems in the evolutionary lineage of invertebrate deuterostomes and/or chordates. In this chapter, we provide an overview of primary sequences, functions, and evolutionary aspects of neuropeptides, peptide hormones, and their receptors in C. intestinalis.
Collapse
|
25
|
Tinoco AB, Semmens DC, Patching EC, Gunner EF, Egertová M, Elphick MR. Characterization of NGFFYamide Signaling in Starfish Reveals Roles in Regulation of Feeding Behavior and Locomotory Systems. Front Endocrinol (Lausanne) 2018; 9:507. [PMID: 30283399 PMCID: PMC6156427 DOI: 10.3389/fendo.2018.00507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Neuropeptides in deuterostomian invertebrates that have an Asn-Gly motif (NG peptides) have been identified as orthologs of vertebrate neuropeptide-S (NPS)-type peptides and protostomian crustacean cardioactive peptide (CCAP)-type neuropeptides. To obtain new insights into the physiological roles of NG peptides in deuterostomian invertebrates, here we have characterized the NG peptide signaling system in an echinoderm-the starfish Asterias rubens. The neuropeptide NGFFYamide was identified as the ligand for an A. rubens NPS/CCAP-type receptor, providing further confirmation that NG peptides are orthologs of NPS/CCAP-type neuropeptides. Using mRNA in situ hybridization, cells expressing the NGFFYamide precursor transcript were revealed in the radial nerve cords, circumoral nerve ring, coelomic epithelium, apical muscle, body wall, stomach, and tube feet of A. rubens, indicating that NGFFYamide may have a variety of physiological roles in starfish. One of the most remarkable aspects of starfish biology is their feeding behavior, where the stomach is everted out of the mouth over the soft tissue of prey. Previously, we reported that NGFFYamide triggers retraction of the everted stomach in A. rubens and here we show that in vivo injection of NGFFYamide causes a significant delay in the onset of feeding on prey. To investigate roles in regulating other aspects of starfish physiology, we examined the in vitro effects of NGFFYamide and found that it causes relaxation of acetylcholine-contracted apical muscle preparations and induction of tonic and phasic contraction of tube feet. Furthermore, analysis of the effects of in vivo injection of NGFFYamide on starfish locomotor activity revealed that it causes a significant reduction in mean velocity and distance traveled. Interestingly, experimental studies on mammals have revealed that NPS is an anxiolytic that suppresses appetite and induces hyperactivity in mammals. Our characterization of the actions of NGFFYamide in starfish indicates that NPS/NG peptide/CCAP-type signaling is an evolutionarily ancient regulator of feeding and locomotion.
Collapse
|