1
|
Brown R, Rabeling A, Goolam M. Progress and potential of brain organoids in epilepsy research. Stem Cell Res Ther 2024; 15:361. [PMID: 39396038 PMCID: PMC11470583 DOI: 10.1186/s13287-024-03944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024] Open
Abstract
Epilepsies are disorders of the brain characterised by an imbalance in electrical activity, linked to a disruption in the excitation and inhibition of neurons. Progress in the epilepsy research field has been hindered by the lack of an appropriate model, with traditionally used 2D primary cell culture assays and animal models having a number of limitations which inhibit their ability to recapitulate the developing brain and the mechanisms behind epileptogenesis. As a result, the mechanisms behind the pathogenesis of epilepsy are largely unknown. Brain organoids are 3D aggregates of neural tissue formed in vitro and have been shown to recapitulate the gene expression patterns of the brain during development, and can successfully model a range of epilepsies and drug responses. They thus present themselves as a novel tool to advance studies into epileptogenesis. In this review, we discuss the formation of brain organoids, their recent application in studying genetic epilepsies, hyperexcitability dynamics and oxygen glucose deprivation as a hyperexcitability agent, their use as an epilepsy drug testing and development platform, as well as the limitations of their use in epilepsy research and how these can be mitigated.
Collapse
Affiliation(s)
- Rachel Brown
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| | - Alexa Rabeling
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| | - Mubeen Goolam
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.
- UCT Neuroscience Institute, Cape Town, South Africa.
| |
Collapse
|
2
|
Boddeti U, Langbein J, McAfee D, Altshuler M, Bachani M, Zaveri HP, Spencer D, Zaghloul KA, Ksendzovsky A. Modeling seizure networks in neuron-glia cultures using microelectrode arrays. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1441345. [PMID: 39290793 PMCID: PMC11405204 DOI: 10.3389/fnetp.2024.1441345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024]
Abstract
Epilepsy is a common neurological disorder, affecting over 65 million people worldwide. Unfortunately, despite resective surgery, over 30 % of patients with drug-resistant epilepsy continue to experience seizures. Retrospective studies considering connectivity using intracranial electrocorticography (ECoG) obtained during neuromonitoring have shown that treatment failure is likely driven by failure to consider critical components of the seizure network, an idea first formally introduced in 2002. However, current studies only capture snapshots in time, precluding the ability to consider seizure network development. Over the past few years, multiwell microelectrode arrays have been increasingly used to study neuronal networks in vitro. As such, we sought to develop a novel in vitro MEA seizure model to allow for study of seizure networks. Specifically, we used 4-aminopyridine (4-AP) to capture hyperexcitable activity, and then show increased network changes after 2 days of chronic treatment. We characterize network changes using functional connectivity measures and a novel technique using dimensionality reduction. We find that 4-AP successfully captures persistently elevated mean firing rate and significant changes in underlying connectivity patterns. We believe this affords a robust in vitro seizure model from which longitudinal network changes can be studied, laying groundwork for future studies exploring seizure network development.
Collapse
Affiliation(s)
- Ujwal Boddeti
- Surgical Neurology Branch, NINDS, National Institutes of Health, Baltimore, MD, United States
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jenna Langbein
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Darrian McAfee
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcelle Altshuler
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Muzna Bachani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Hitten P Zaveri
- Department of Neurology, Yale University, New Haven, CT, United States
| | - Dennis Spencer
- Department of Neurosurgery, Yale University, New Haven, CT, United States
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, Baltimore, MD, United States
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Vinogradov A, Kapucu EF, Narkilahti S. Exploring Kainic Acid-Induced Alterations in Circular Tripartite Networks with Advanced Analysis Tools. eNeuro 2024; 11:ENEURO.0035-24.2024. [PMID: 39079743 PMCID: PMC11289587 DOI: 10.1523/eneuro.0035-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/26/2024] [Accepted: 06/10/2024] [Indexed: 08/02/2024] Open
Abstract
Brain activity implies the orchestrated functioning of interconnected brain regions. Typical in vitro models aim to mimic the brain using single human pluripotent stem cell-derived neuronal networks. However, the field is constantly evolving to model brain functions more accurately through the use of new paradigms, e.g., brain-on-a-chip models with compartmentalized structures and integrated sensors. These methods create novel data requiring more complex analysis approaches. The previously introduced circular tripartite network concept models the connectivity between spatially diverse neuronal structures. The model consists of a microfluidic device allowing axonal connectivity between separated neuronal networks with an embedded microelectrode array to record both local and global electrophysiological activity patterns in the closed circuitry. The existing tools are suboptimal for the analysis of the data produced with this model. Here, we introduce advanced tools for synchronization and functional connectivity assessment. We used our custom-designed analysis to assess the interrelations between the kainic acid (KA)-exposed proximal compartment and its nonexposed distal neighbors before and after KA. Novel multilevel circuitry bursting patterns were detected and analyzed in parallel with the inter- and intracompartmental functional connectivity. The effect of KA on the proximal compartment was captured, and the spread of this effect to the nonexposed distal compartments was revealed. KA induced divergent changes in bursting behaviors, which may be explained by distinct baseline activity and varied intra- and intercompartmental connectivity strengths. The circular tripartite network concept combined with our developed analysis advances importantly both face and construct validity in modeling human epilepsy in vitro.
Collapse
Affiliation(s)
- Andrey Vinogradov
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Emre Fikret Kapucu
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Susanna Narkilahti
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| |
Collapse
|
4
|
Rogal J, Zamproni LN, Nikolakopoulou P, Ygberg S, Wedell A, Wredenberg A, Herland A. Human In Vitro Models of Neuroenergetics and Neurometabolic Disturbances: Current Advances and Clinical Perspectives. Stem Cells Transl Med 2024; 13:505-514. [PMID: 38588471 PMCID: PMC11165162 DOI: 10.1093/stcltm/szae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024] Open
Abstract
Neurological conditions conquer the world; they are the leading cause of disability and the second leading cause of death worldwide, and they appear all around the world in every age group, gender, nationality, and socioeconomic class. Despite the growing evidence of an immense impact of perturbations in neuroenergetics on overall brain function, only little is known about the underlying mechanisms. Especially human insights are sparse, owing to a shortage of physiologically relevant model systems. With this perspective, we aim to explore the key steps and considerations involved in developing an advanced human in vitro model for studying neuroenergetics. We discuss biological and technological strategies to meet the requirements of a predictive model, aiming at providing a guide and inspiration for future in vitro models of neuroenergetics.
Collapse
Affiliation(s)
- Julia Rogal
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
- Division of Nanobiotechnology, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology at Science for Life Laboratory, 17165 Solna, Sweden
- Center for the Advancement of Integrated Medical and Engineering Sciences (AIMES), Karolinska Institute and KTH Royal Institute of Technology, 17177 Stockholm, Sweden
| | - Laura Nicoleti Zamproni
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| | - Polyxeni Nikolakopoulou
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
- Center for the Advancement of Integrated Medical and Engineering Sciences (AIMES), Karolinska Institute and KTH Royal Institute of Technology, 17177 Stockholm, Sweden
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sofia Ygberg
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17177 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
- Neuropediatric Unit, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Anna Wedell
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17177 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, 17177 Stockholm, Sweden
| | - Anna Wredenberg
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 17177 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Anna Herland
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
- Division of Nanobiotechnology, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology at Science for Life Laboratory, 17165 Solna, Sweden
- Center for the Advancement of Integrated Medical and Engineering Sciences (AIMES), Karolinska Institute and KTH Royal Institute of Technology, 17177 Stockholm, Sweden
| |
Collapse
|
5
|
Rockley K, Roberts R, Jennings H, Jones K, Davis M, Levesque P, Morton M. An integrated approach for early in vitro seizure prediction utilizing hiPSC neurons and human ion channel assays. Toxicol Sci 2023; 196:126-140. [PMID: 37632788 DOI: 10.1093/toxsci/kfad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023] Open
Abstract
Seizure liability remains a significant cause of attrition throughout drug development. Advances in stem cell biology coupled with an increased understanding of the role of ion channels in seizure offer an opportunity for a new paradigm in screening. We assessed the activity of 15 pro-seizurogenic compounds (7 CNS active therapies, 4 GABA receptor antagonists, and 4 other reported seizurogenic compounds) using automated electrophysiology against a panel of 14 ion channels (Nav1.1, Nav1.2, Nav1.6, Kv7.2/7.3, Kv7.3/7.5, Kv1.1, Kv4.2, KCa4.1, Kv2.1, Kv3.1, KCa1.1, GABA α1β2γ2, nicotinic α4β2, NMDA 1/2A). These were selected based on linkage to seizure in genetic/pharmacological studies. Fourteen compounds demonstrated at least one "hit" against the seizure panel and 11 compounds inhibited 2 or more ion channels. Next, we assessed the impact of the 15 compounds on electrical signaling using human-induced pluripotent stem cell neurons in microelectrode array (MEA). The CNS active therapies (amoxapine, bupropion, chlorpromazine, clozapine, diphenhydramine, paroxetine, quetiapine) all caused characteristic changes to electrical activity in key parameters indicative of seizure such as network burst frequency and duration. The GABA antagonist picrotoxin increased all parameters, but the antibiotics amoxicillin and enoxacin only showed minimal changes. Acetaminophen, included as a negative control, caused no changes in any of the parameters assessed. Overall, pro-seizurogenic compounds showed a distinct fingerprint in the ion channel/MEA panel. These studies highlight the potential utility of an integrated in vitro approach for early seizure prediction to provide mechanistic information and to support optimal drug design in early development, saving time and resources.
Collapse
Affiliation(s)
| | - Ruth Roberts
- ApconiX, Macclesfield SK10 4TG, UK
- Department of Biosciences, University of Birmingham, Edgbaston B15 1TT, UK
| | | | | | - Myrtle Davis
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | | |
Collapse
|
6
|
Ishibashi Y, Nagafuku N, Kinoshita K, Okamura A, Shirakawa T, Suzuki I. Verification of the seizure liability of compounds based on their in vitro functional activity in cultured rat cortical neurons and co-cultured human iPSC-derived neurons with astrocytes and in vivo extrapolation to cerebrospinal fluid concentration. Toxicol Appl Pharmacol 2023; 476:116675. [PMID: 37661062 DOI: 10.1016/j.taap.2023.116675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Methodical screening of safe and efficient drug candidate compounds is crucial for drug development. A high-throughput and accurate compound evaluation method targeting the central nervous system can be developed using in vitro neural networks. In particular, an evaluation system based on a human-derived neural network that can act as an alternative to animal experiments is desirable to avoid interspecific differences. A microelectrode array (MEA) is one such evaluation system, and can measure in vitro neural activity; however, studies on compound evaluation criteria and in vitro to in vivo extrapolation are scarce. In this study, we identified the parameters that can eliminate the effects of solvents from neural activity data obtained using MEA allow for accurate compound evaluation. Additionally, we resolved the issue associated with compound evaluation criteria during MEA using principal component analysis by considering the neuronal activity exceeding standard deviation (SD) of the solvent as indicator of seizurogenic potential. Overall, 10 seizurogenic compounds and three negative controls were assessed using MEA-based co-cultured human-induced pluripotent stem cell-derived neurons and astrocytes, and primary rat cortical neurons. In addition, we determined rat cerebrospinal fluid (CSF) concentrations during tremor and convulsion in response to exposure to test compounds. To characterize the in vitro to in vivo extrapolation and species differences, we compared the concentrations at which neuronal activity exceeding the SD range of the solvent was detectable using the MEA system and rat CSF concentration.
Collapse
Affiliation(s)
- Y Ishibashi
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan
| | - N Nagafuku
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan
| | - K Kinoshita
- Drug Safety Research Labs, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - A Okamura
- Drug Safety Research Labs, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - T Shirakawa
- Drug Safety Research Labs, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - I Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan.
| |
Collapse
|
7
|
Zhai J, Traebert M, Zimmermann K, Delaunois A, Royer L, Salvagiotto G, Carlson C, Lagrutta A. Comparative study for the IMI2-NeuroDeRisk project on microelectrode arrays to derisk drug-induced seizure liability. J Pharmacol Toxicol Methods 2023; 123:107297. [PMID: 37499956 DOI: 10.1016/j.vascn.2023.107297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/01/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION In the framework of the IMI2-NeuroDeRisk consortium, three in vitro electrophysiology assays were compared to improve preclinical prediction of seizure-inducing liabilities. METHODS Two cell models, primary rat cortical neurons and human induced pluripotent stem cell (hiPSC)-derived glutamatergic neurons co-cultured with hiPSC-derived astrocytes were tested on two different microelectrode array (MEA) platforms, Maestro Pro (Axion Biosystems) and Multiwell-MEA-System (Multi Channel Systems), in three separate laboratories. Pentylenetetrazole (PTZ) and/or picrotoxin (PTX) were included in each plate as positive (n = 3-6 wells) and ≤0.2% DMSO was used as negative controls (n = 3-12 wells). In general, concentrations in a range of 0.1-30 μM were tested, anchored, when possible, on clinically relevant exposures (unbound Cmax) were tested. Activity thresholds for drug-induced changes were set at 20%. To evaluate sensitivity, specificity and predictivity of the cell models, seizurogenic responses were defined as changes in 4 or more endpoints. Concentration dependence trends were also considered. RESULTS Neuronal activity of 33 compounds categorized as positive tool drugs, seizure-positive or seizure-negative compounds was evaluated. Acute drug effects (<60 min) were compared to baseline recordings. Time points < 15 min exhibited stronger, less variable responses to many of the test agents. For many compounds a reduction and cessation of neuronal activity was detected at higher test concentrations. There was not a single pattern of seizurogenic activity detected, even among tool compounds, likely due to different mechanisms of actions and/or off-target profiles. A post-hoc analysis focusing on changes indicative of neuronal excitation is presented. CONCLUSION All cell models showed good sensitivity, ranging from 70 to 86%. Specificity ranged from 40 to 70%. Compared to more conventional measurements of evoked activity in hippocampal slices, these plate-based models provide higher throughput and the potential to study subacute responses. Yet, they may be limited by the random, spontaneous nature of their network activity.
Collapse
Affiliation(s)
- Jin Zhai
- Merck & Co., Inc., Rahway, NJ, USA
| | | | | | | | | | | | - Coby Carlson
- Fujifilm Cellular Dynamics, Inc., Madison, WI, USA
| | | |
Collapse
|
8
|
Jarrah R, Nathani KR, Bhandarkar S, Ezeudu CS, Nguyen RT, Amare A, Aljameey UA, Jarrah SI, Bhandarkar AR, Fiani B. Microfluidic 'brain-on chip' systems to supplement neurological practice: development, applications and considerations. Regen Med 2023; 18:413-423. [PMID: 37125510 DOI: 10.2217/rme-2022-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Among the greatest general challenges in bioengineering is to mimic human physiology. Advanced efforts in tissue engineering have led to sophisticated 'brain-on-chip' (BoC) microfluidic devices that can mimic structural and functional aspects of brain tissue. BoC may be used to understand the biochemical pathways of neurolgical pathologies and assess promising therapeutic agents for facilitating regenerative medicine. We evaluated the potential of microfluidic BoC devices in various neurological pathologies, such as Alzheimer's, glioblastoma, traumatic brain injury, stroke and epilepsy. We also discuss the principles, limitations and future considerations of BoC technology. Results suggest that BoC models can help understand complex neurological pathologies and augment drug testing efforts for regenerative applications. However, implementing organ-on-chip technology to clinical practice has some practical limitations that warrant greater attention to improve large-scale applicability. Nevertheless, they remain to be versatile and powerful tools that can broaden our understanding of pathophysiological and therapeutic uncertainties to neurological diseases.
Collapse
Affiliation(s)
- Ryan Jarrah
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Shaan Bhandarkar
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Chibuze S Ezeudu
- Texas A&M School of Medicine,Texas A&M University, Bryan, TX 77807, USA
| | - Ryan T Nguyen
- University of Hawaii John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Abrham Amare
- Morehouse School of Medicine, Morehouse College, Atlanta, GA 30310, USA
| | - Usama A Aljameey
- Lincoln Memorial University DeBusk School of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA
| | - Sabrina I Jarrah
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Brian Fiani
- Department of Neurosurgery, Cornell Medical Center/New York Presbyterian, New York, NY 10065, USA
| |
Collapse
|
9
|
Suzuki I, Matsuda N, Han X, Noji S, Shibata M, Nagafuku N, Ishibashi Y. Large-Area Field Potential Imaging Having Single Neuron Resolution Using 236 880 Electrodes CMOS-MEA Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207732. [PMID: 37088859 PMCID: PMC10369302 DOI: 10.1002/advs.202207732] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/21/2023] [Indexed: 05/03/2023]
Abstract
The electrophysiological technology having a high spatiotemporal resolution at the single-cell level and noninvasive measurements of large areas provide insights on underlying neuronal function. Here, a complementary metal-oxide semiconductor (CMOS)-microelectrode array (MEA) is used that uses 236 880 electrodes each with an electrode size of 11.22 × 11.22 µm and 236 880 covering a wide area of 5.5 × 5.9 mm in presenting a detailed and single-cell-level neural activity analysis platform for brain slices, human iPS cell-derived cortical networks, peripheral neurons, and human brain organoids. Propagation pattern characteristics between brain regions changes the synaptic propagation into compounds based on single-cell time-series patterns, classification based on single DRG neuron firing patterns and compound responses, axonal conduction characteristics and changes to anticancer drugs, and network activities and transition to compounds in brain organoids are extracted. This detailed analysis of neural activity at the single-cell level using the CMOS-MEA provides a new understanding of the basic mechanisms of brain circuits in vitro and ex vivo, on human neurological diseases for drug discovery, and compound toxicity assessment.
Collapse
Affiliation(s)
- Ikuro Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Naoki Matsuda
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Xiaobo Han
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Shuhei Noji
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Mikako Shibata
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Nami Nagafuku
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Yuto Ishibashi
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| |
Collapse
|
10
|
Boucher-Routhier M, Thivierge JP. A deep generative adversarial network capturing complex spiral waves in disinhibited circuits of the cerebral cortex. BMC Neurosci 2023; 24:22. [PMID: 36964493 PMCID: PMC10039524 DOI: 10.1186/s12868-023-00792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND In the cerebral cortex, disinhibited activity is characterized by propagating waves that spread across neural tissue. In this pathological state, a widely reported form of activity are spiral waves that travel in a circular pattern around a fixed spatial locus termed the center of mass. Spiral waves exhibit stereotypical activity and involve broad patterns of co-fluctuations, suggesting that they may be of lower complexity than healthy activity. RESULTS To evaluate this hypothesis, we performed dense multi-electrode recordings of cortical networks where disinhibition was induced by perfusing a pro-epileptiform solution containing 4-Aminopyridine as well as increased potassium and decreased magnesium. Spiral waves were identified based on a spatially delimited center of mass and a broad distribution of instantaneous phases across electrodes. Individual waves were decomposed into "snapshots" that captured instantaneous neural activation across the entire network. The complexity of these snapshots was examined using a measure termed the participation ratio. Contrary to our expectations, an eigenspectrum analysis of these snapshots revealed a broad distribution of eigenvalues and an increase in complexity compared to baseline networks. A deep generative adversarial network was trained to generate novel exemplars of snapshots that closely captured cortical spiral waves. These synthetic waves replicated key features of experimental data including a tight center of mass, a broad eigenvalue distribution, spatially-dependent correlations, and a high complexity. By adjusting the input to the model, new samples were generated that deviated in systematic ways from the experimental data, thus allowing the exploration of a broad range of states from healthy to pathologically disinhibited neural networks. CONCLUSIONS Together, results show that the complexity of population activity serves as a marker along a continuum from healthy to disinhibited brain states. The proposed generative adversarial network opens avenues for replicating the dynamics of cortical seizures and accelerating the design of optimal neurostimulation aimed at suppressing pathological brain activity.
Collapse
Affiliation(s)
- Megan Boucher-Routhier
- School of Psychology, University of Ottawa, 156 Jean-Jacques Lussier, Ottawa, ON, K1N 6N5, Canada
| | - Jean-Philippe Thivierge
- School of Psychology, University of Ottawa, 156 Jean-Jacques Lussier, Ottawa, ON, K1N 6N5, Canada.
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
11
|
Lu HR, Seo M, Kreir M, Tanaka T, Yamoto R, Altrocchi C, van Ammel K, Tekle F, Pham L, Yao X, Teisman A, Gallacher DJ. High-Throughput Screening Assay for Detecting Drug-Induced Changes in Synchronized Neuronal Oscillations and Potential Seizure Risk Based on Ca 2+ Fluorescence Measurements in Human Induced Pluripotent Stem Cell (hiPSC)-Derived Neuronal 2D and 3D Cultures. Cells 2023; 12:cells12060958. [PMID: 36980298 PMCID: PMC10046961 DOI: 10.3390/cells12060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Drug-induced seizure liability is a significant safety issue and the basis for attrition in drug development. Occurrence in late development results in increased costs, human risk, and delayed market availability of novel therapeutics. Therefore, there is an urgent need for biologically relevant, in vitro high-throughput screening assays (HTS) to predict potential risks for drug-induced seizure early in drug discovery. We investigated drug-induced changes in neural Ca2+ oscillations, using fluorescent dyes as a potential indicator of seizure risk, in hiPSC-derived neurons co-cultured with human primary astrocytes in both 2D and 3D forms. The dynamics of synchronized neuronal calcium oscillations were measured with an FDSS kinetics reader. Drug responses in synchronized Ca2+ oscillations were recorded in both 2D and 3D hiPSC-derived neuron/primary astrocyte co-cultures using positive controls (4-aminopyridine and kainic acid) and negative control (acetaminophen). Subsequently, blinded tests were carried out for 25 drugs with known clinical seizure incidence. Positive predictive value (accuracy) based on significant changes in the peak number of Ca2+ oscillations among 25 reference drugs was 91% in 2D vs. 45% in 3D hiPSC-neuron/primary astrocyte co-cultures. These data suggest that drugs that alter neuronal activity and may have potential risk for seizures can be identified with high accuracy using an HTS approach using the measurements of Ca2+ oscillations in hiPSC-derived neurons co-cultured with primary astrocytes in 2D.
Collapse
Affiliation(s)
- Hua-Rong Lu
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Manabu Seo
- Elixirgen Scientific, Incorporated, Baltimore, MD 21205, USA
| | - Mohamed Kreir
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Tetsuya Tanaka
- Elixirgen Scientific, Incorporated, Baltimore, MD 21205, USA
| | - Rie Yamoto
- Healthcare Business Group, Drug Discovery Business Department, Ricoh Company Ltd., Tokyo 143-8555, Japan
| | - Cristina Altrocchi
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Karel van Ammel
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Fetene Tekle
- Statistics and Decision Sciences, Global Development, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Ly Pham
- Computational Biology & Toxicology, Preclinical Sciences and Translational Safety, A Division of Janssen Pharmaceutica NV, San Diego, CA 921921, USA
| | - Xiang Yao
- Computational Biology & Toxicology, Preclinical Sciences and Translational Safety, A Division of Janssen Pharmaceutica NV, San Diego, CA 921921, USA
| | - Ard Teisman
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| |
Collapse
|
12
|
Saleem A, Santos AC, Aquilino MS, Sivitilli AA, Attisano L, Carlen PL. Modelling hyperexcitability in human cerebral cortical organoids: Oxygen/glucose deprivation most effective stimulant. Heliyon 2023; 9:e14999. [PMID: 37089352 PMCID: PMC10113787 DOI: 10.1016/j.heliyon.2023.e14999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Epilepsy is a common neurological disorder that affects 1% of the global population. The neonatal period constitutes the highest incidence of seizures. Despite the continual developments in seizure modelling and anti-epileptic drug development, the mechanisms involved in neonatal seizures remain poorly understood. This leaves infants with neonatal seizures at a high risk of death, poor prognosis of recovery and risk of developing neurological disorders later in life. Current in vitro platforms for modelling adult and neonatal epilepsies - namely acute cerebral brain slices or cell-derived cultures, both derived from animals-either lack a complex cytoarchitecture, high-throughput capabilities or physiological similarities to the neonatal human brain. Cerebral organoids, derived from human embryonic stem cells (hESCs), are an emerging technology that could better model neurodevelopmental disorders in the developing human brain. Herein, we study induced hyperexcitability in human cerebral cortical organoids - setting the groundwork for neonatal seizure modelling - using electrophysiological techniques and pharmacological manipulations. In neonatal seizures, energy failure - specifically due to deprivation of oxygen and glucose - is a consistent and reliable seizure induction method that has been used to study the underlying cellular and molecular mechanisms. Here, we applied oxygen-glucose deprivation (OGD) as well as common chemoconvulsants in 3-7-month-old cerebral organoids. Remarkably, OGD resulted in hyperexcitability, with increased power and spontaneous events compared to other common convulsants tested at the population level. These findings characterize OGD as the stimulus most capable of inducing hyperexcitable changes in cerebral organoid tissue, which could be extended to future modelling of neonatal epilepsies in cerebral organoids.
Collapse
|
13
|
Kuroda T, Matsuda N, Ishibashi Y, Suzuki I. Detection of astrocytic slow oscillatory activity and response to seizurogenic compounds using planar microelectrode array. Front Neurosci 2023; 16:1050150. [PMID: 36703996 PMCID: PMC9872017 DOI: 10.3389/fnins.2022.1050150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Since the development of the planar microelectrode array (MEA), it has become popular to evaluate compounds based on the electrical activity of rodent and human induced pluripotent stem cell (iPSC)-derived neurons. However, there are no reports recording spontaneous human astrocyte activity from astrocyte-only culture sample by MEA. It is becoming clear that astrocytes play an important role in various neurological diseases, and astrocytes are expected to be excellent candidates for targeted therapeutics for the treatment of neurological diseases. Therefore, measuring astrocyte activity is very important for drug development for astrocytes. Recently, astrocyte activity has been found to be reflected in the low-frequency band < 1 Hz, which is much lower than the frequency band for recording neural activity. Here, we separated the signals obtained from human primary astrocytes cultured on MEA into seven frequency bands and successfully recorded the extracellular electrical activity of human astrocytes. The slow waveforms of spontaneous astrocyte activity were observed most clearly in direct current potentials < 1 Hz. We established nine parameters to assess astrocyte activity and evaluated five seizurogenic drug responses in human primary astrocytes and human iPSC-derived astrocytes. Astrocytes demonstrated the most significant dose-dependent changes in pilocarpine. Furthermore, in a principal component analysis using those parameter sets, the drug responses to each seizurogenic compound were separated. In this paper, we report the spontaneous electrical activity measurement of astrocytes alone using MEA for the first time and propose that the MEA measurement focusing on the low-frequency band could be useful as one of the methods to assess drug response in vitro.
Collapse
|
14
|
Bauer J, Devinsky O, Rothermel M, Koch H. Autonomic dysfunction in epilepsy mouse models with implications for SUDEP research. Front Neurol 2023; 13:1040648. [PMID: 36686527 PMCID: PMC9853197 DOI: 10.3389/fneur.2022.1040648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Epilepsy has a high prevalence and can severely impair quality of life and increase the risk of premature death. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in drug-resistant epilepsy and most often results from respiratory and cardiac impairments due to brainstem dysfunction. Epileptic activity can spread widely, influencing neuronal activity in regions outside the epileptic network. The brainstem controls cardiorespiratory activity and arousal and reciprocally connects to cortical, diencephalic, and spinal cord areas. Epileptic activity can propagate trans-synaptically or via spreading depression (SD) to alter brainstem functions and cause cardiorespiratory dysfunction. The mechanisms by which seizures propagate to or otherwise impair brainstem function and trigger the cascading effects that cause SUDEP are poorly understood. We review insights from mouse models combined with new techniques to understand the pathophysiology of epilepsy and SUDEP. These techniques include in vivo, ex vivo, invasive and non-invasive methods in anesthetized and awake mice. Optogenetics combined with electrophysiological and optical manipulation and recording methods offer unique opportunities to study neuronal mechanisms under normal conditions, during and after non-fatal seizures, and in SUDEP. These combined approaches can advance our understanding of brainstem pathophysiology associated with seizures and SUDEP and may suggest strategies to prevent SUDEP.
Collapse
Affiliation(s)
- Jennifer Bauer
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany,Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Orrin Devinsky
- Departments of Neurology, Neurosurgery and Psychiatry, NYU Langone School of Medicine, New York, NY, United States
| | - Markus Rothermel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Henner Koch
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany,*Correspondence: Henner Koch ✉
| |
Collapse
|
15
|
Reiss Y, Bauer S, David B, Devraj K, Fidan E, Hattingen E, Liebner S, Melzer N, Meuth SG, Rosenow F, Rüber T, Willems LM, Plate KH. The neurovasculature as a target in temporal lobe epilepsy. Brain Pathol 2023; 33:e13147. [PMID: 36599709 PMCID: PMC10041171 DOI: 10.1111/bpa.13147] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The blood-brain barrier (BBB) is a physiological barrier maintaining a specialized brain micromilieu that is necessary for proper neuronal function. Endothelial tight junctions and specific transcellular/efflux transport systems provide a protective barrier against toxins, pathogens, and immune cells. The barrier function is critically supported by other cell types of the neurovascular unit, including pericytes, astrocytes, microglia, and interneurons. The dysfunctionality of the BBB is a hallmark of neurological diseases, such as ischemia, brain tumors, neurodegenerative diseases, infections, and autoimmune neuroinflammatory disorders. Moreover, BBB dysfunction is critically involved in epilepsy, a brain disorder characterized by spontaneously occurring seizures because of abnormally synchronized neuronal activity. While resistance to antiseizure drugs that aim to reduce neuronal hyperexcitability remains a clinical challenge, drugs targeting the neurovasculature in epilepsy patients have not been explored. The use of novel imaging techniques permits early detection of BBB leakage in epilepsy; however, the detailed mechanistic understanding of causes and consequences of BBB compromise remains unknown. Here, we discuss the current knowledge of BBB involvement in temporal lobe epilepsy with the emphasis on the neurovasculature as a therapeutic target.
Collapse
Affiliation(s)
- Yvonne Reiss
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Sebastian Bauer
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Bastian David
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Kavi Devraj
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Elif Fidan
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Elke Hattingen
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Institute of Neuroradiology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Nico Melzer
- Department of Neurology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Felix Rosenow
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Theodor Rüber
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany.,Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Laurent M Willems
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Karl H Plate
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| |
Collapse
|
16
|
Han X, Matsuda N, Ishibashi Y, Odawara A, Takahashi S, Tooi N, Kinoshita K, Suzuki I. A functional neuron maturation device provides convenient application on microelectrode array for neural network measurement. Biomater Res 2022; 26:84. [PMID: 36539898 PMCID: PMC9768978 DOI: 10.1186/s40824-022-00324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Microelectrode array (MEA) systems are valuable for in vitro assessment of neurotoxicity and drug efficiency. However, several difficulties such as protracted functional maturation and high experimental costs hinder the use of MEA analysis requiring human induced pluripotent stem cells (hiPSCs). Neural network functional parameters are also needed for in vitro to in vivo extrapolation. METHODS In the present study, we produced a cost effective nanofiber culture platform, the SCAD device, for long-term culture of hiPSC-derived neurons and primary peripheral neurons. The notable advantage of SCAD device is convenient application on multiple MEA systems for neuron functional analysis. RESULTS We showed that the SCAD device could promote functional maturation of cultured hiPSC-derived neurons, and neurons responded appropriately to convulsant agents. Furthermore, we successfully analyzed parameters for in vitro to in vivo extrapolation, i.e., low-frequency components and synaptic propagation velocity of the signal, potentially reflecting neural network functions from neurons cultured on SCAD device. Finally, we measured the axonal conduction velocity of peripheral neurons. CONCLUSIONS Neurons cultured on SCAD devices might constitute a reliable in vitro platform to investigate neuron functions, drug efficacy and toxicity, and neuropathological mechanisms by MEA.
Collapse
Affiliation(s)
- Xiaobo Han
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Naoki Matsuda
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Yuto Ishibashi
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Aoi Odawara
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Sayuri Takahashi
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Norie Tooi
- Stem Cell & Device Laboratory, Inc. (SCAD), OFFICE-ONE Shijo Karasuma 11F, 480, Niwatoriboko-Cho, Shimogyo-Ku, Kyoto, 600-8491 Japan
| | - Koshi Kinoshita
- Stem Cell & Device Laboratory, Inc. (SCAD), OFFICE-ONE Shijo Karasuma 11F, 480, Niwatoriboko-Cho, Shimogyo-Ku, Kyoto, 600-8491 Japan
| | - Ikuro Suzuki
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| |
Collapse
|
17
|
Human In Vitro Models of Epilepsy Using Embryonic and Induced Pluripotent Stem Cells. Cells 2022; 11:cells11243957. [PMID: 36552721 PMCID: PMC9776452 DOI: 10.3390/cells11243957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
The challenges in making animal models of complex human epilepsy phenotypes with varied aetiology highlights the need to develop alternative disease models that can address the limitations of animal models by effectively recapitulating human pathophysiology. The advances in stem cell technology provide an opportunity to use human iPSCs to make disease-in-a-dish models. The focus of this review is to report the current information and progress in the generation of epileptic patient-specific iPSCs lines, isogenic control cell lines, and neuronal models. These in vitro models can be used to study the underlying pathological mechanisms of epilepsies, anti-seizure medication resistance, and can also be used for drug testing and drug screening with their isogenic control cell lines.
Collapse
|
18
|
Chakraborty S, Parayil R, Mishra S, Nongthomba U, Clement JP. Epilepsy Characteristics in Neurodevelopmental Disorders: Research from Patient Cohorts and Animal Models Focusing on Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms231810807. [PMID: 36142719 PMCID: PMC9501968 DOI: 10.3390/ijms231810807] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Epilepsy, a heterogeneous group of brain-related diseases, has continued to significantly burden society and families. Epilepsy comorbid with neurodevelopmental disorders (NDDs) is believed to occur due to multifaceted pathophysiological mechanisms involving disruptions in the excitation and inhibition (E/I) balance impeding widespread functional neuronal circuitry. Although the field has received much attention from the scientific community recently, the research has not yet translated into actionable therapeutics to completely cure epilepsy, particularly those comorbid with NDDs. In this review, we sought to elucidate the basic causes underlying epilepsy as well as those contributing to the association of epilepsy with NDDs. Comprehensive emphasis is put on some key neurodevelopmental genes implicated in epilepsy, such as MeCP2, SYNGAP1, FMR1, SHANK1-3 and TSC1, along with a few others, and the main electrophysiological and behavioral deficits are highlighted. For these genes, the progress made in developing appropriate and valid rodent models to accelerate basic research is also detailed. Further, we discuss the recent development in the therapeutic management of epilepsy and provide a briefing on the challenges and caveats in identifying and testing species-specific epilepsy models.
Collapse
Affiliation(s)
- Sukanya Chakraborty
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Rrejusha Parayil
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Shefali Mishra
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - Upendra Nongthomba
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - James P. Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
- Correspondence: ; Tel.: +91-08-2208-2613
| |
Collapse
|
19
|
Zhang H, Rong G, Bian S, Sawan M. Lab-on-Chip Microsystems for Ex Vivo Network of Neurons Studies: A Review. Front Bioeng Biotechnol 2022; 10:841389. [PMID: 35252149 PMCID: PMC8888888 DOI: 10.3389/fbioe.2022.841389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing population is suffering from neurological disorders nowadays, with no effective therapy available to treat them. Explicit knowledge of network of neurons (NoN) in the human brain is key to understanding the pathology of neurological diseases. Research in NoN developed slower than expected due to the complexity of the human brain and the ethical considerations for in vivo studies. However, advances in nanomaterials and micro-/nano-microfabrication have opened up the chances for a deeper understanding of NoN ex vivo, one step closer to in vivo studies. This review therefore summarizes the latest advances in lab-on-chip microsystems for ex vivo NoN studies by focusing on the advanced materials, techniques, and models for ex vivo NoN studies. The essential methods for constructing lab-on-chip models are microfluidics and microelectrode arrays. Through combination with functional biomaterials and biocompatible materials, the microfluidics and microelectrode arrays enable the development of various models for ex vivo NoN studies. This review also includes the state-of-the-art brain slide and organoid-on-chip models. The end of this review discusses the previous issues and future perspectives for NoN studies.
Collapse
Affiliation(s)
| | | | - Sumin Bian
- CenBRAIN Lab, School of Engineering, Westlake University, Hangzhou, China
| | - Mohamad Sawan
- CenBRAIN Lab, School of Engineering, Westlake University, Hangzhou, China
| |
Collapse
|
20
|
Matsuda N, Odawara A, Kinoshita K, Okamura A, Shirakawa T, Suzuki I. Raster plots machine learning to predict the seizure liability of drugs and to identify drugs. Sci Rep 2022; 12:2281. [PMID: 35145132 PMCID: PMC8831568 DOI: 10.1038/s41598-022-05697-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022] Open
Abstract
In vitro microelectrode array (MEA) assessment using human induced pluripotent stem cell (iPSC)-derived neurons holds promise as a method of seizure and toxicity evaluation. However, there are still issues surrounding the analysis methods used to predict seizure and toxicity liability as well as drug mechanisms of action. In the present study, we developed an artificial intelligence (AI) capable of predicting the seizure liability of drugs and identifying drugs using deep learning based on raster plots of neural network activity. The seizure liability prediction AI had a prediction accuracy of 98.4% for the drugs used to train it, classifying them correctly based on their responses as either seizure-causing compounds or seizure-free compounds. The AI also made concentration-dependent judgments of the seizure liability of drugs that it was not trained on. In addition, the drug identification AI implemented using the leave-one-sample-out scheme could distinguish among 13 seizure-causing compounds as well as seizure-free compound responses, with a mean accuracy of 99.9 ± 0.1% for all drugs. These AI prediction models are able to identify seizure liability concentration-dependence, rank the level of seizure liability based on the seizure liability probability, and identify the mechanism of the action of compounds. This holds promise for the future of in vitro MEA assessment as a powerful, high-accuracy new seizure liability prediction method.
Collapse
Affiliation(s)
- N Matsuda
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - A Odawara
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - K Kinoshita
- Drug Safety Research Labs, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - A Okamura
- Drug Safety Research Labs, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - T Shirakawa
- Drug Safety Research Labs, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - I Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan.
| |
Collapse
|
21
|
Fusco F, Perottoni S, Giordano C, Riva A, Iannone LF, De Caro C, Russo E, Albani D, Striano P. The microbiota‐gut‐brain axis and epilepsy from a multidisciplinary perspective: clinical evidence and technological solutions for improvement of
in vitro
preclinical models. Bioeng Transl Med 2022; 7:e10296. [PMID: 35600638 PMCID: PMC9115712 DOI: 10.1002/btm2.10296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Federica Fusco
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Simone Perottoni
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Carmen Giordano
- Dipartimento di Chimica, materiali e ingegneria chimica "Giulio Natta" Politecnico di Milano Milan Italy
| | - Antonella Riva
- Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini Genova Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Università degli Studi di Genova Genova Italy
| | | | - Carmen De Caro
- Science of Health Department Magna Graecia University Catanzaro Italy
| | - Emilio Russo
- Science of Health Department Magna Graecia University Catanzaro Italy
| | - Diego Albani
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS Milan Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini Genova Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Università degli Studi di Genova Genova Italy
| |
Collapse
|
22
|
Yokoi R, Shigemoto-Kuroda T, Matsuda N, Odawara A, Suzuki I. Electrophysiological responses to seizurogenic compounds dependent on E/I balance in human iPSC-derived cortical neural networks. J Pharmacol Sci 2022; 148:267-278. [DOI: 10.1016/j.jphs.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022] Open
|
23
|
A kainic acid-induced seizure model in human pluripotent stem cell-derived cortical neurons for studying the role of IL-6 in the functional activity. Stem Cell Res 2022; 60:102665. [DOI: 10.1016/j.scr.2022.102665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/20/2022] Open
|
24
|
|
25
|
High-content analysis and Kinetic Image Cytometry identify toxicity and epigenetic effects of HIV antiretrovirals on human iPSC-neurons and primary neural precursor cells. J Pharmacol Toxicol Methods 2022; 114:107157. [PMID: 35143957 PMCID: PMC9103414 DOI: 10.1016/j.vascn.2022.107157] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Despite viral suppression due to combination antiretroviral therapy (cART), HIV-associated neurocognitive disorders (HAND) continue to affect half of people with HIV, suggesting that certain antiretrovirals (ARVs) may contribute to HAND. METHODS We examined the effects of nucleoside/nucleotide reverse transcriptase inhibitors tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) and the integrase inhibitors dolutegravir (DTG) and elvitegravir (EVG) on viability, structure, and function of glutamatergic neurons (a subtype of CNS neuron involved in cognition) derived from human induced pluripotent stem cells (hiPSC-neurons), and primary human neural precursor cells (hNPCs), which are responsible for neurogenesis. RESULTS Using automated digital microscopy and image analysis (high content analysis, HCA), we found that DTG, EVG, and TDF decreased hiPSC-neuron viability, neurites, and synapses after 7 days of treatment. Analysis of hiPSC-neuron calcium activity using Kinetic Image Cytometry (KIC) demonstrated that DTG and EVG also decreased the frequency and magnitude of intracellular calcium transients. Longer ARV exposures and simultaneous exposure to multiple ARVs increased the magnitude of these neurotoxic effects. Using the Microscopic Imaging of Epigenetic Landscapes (MIEL) assay, we found that TDF decreased hNPC viability and changed the distribution of histone modifications that regulate chromatin packing, suggesting that TDF may reduce neuroprogenitor pools important for CNS development and maintenance of cognition in adults. CONCLUSION This study establishes human preclinical assays that can screen potential ARVs for CNS toxicity to develop safer cART regimens and HAND therapeutics.
Collapse
|
26
|
Direct Current Stimulation in Cell Culture Systems and Brain Slices-New Approaches for Mechanistic Evaluation of Neuronal Plasticity and Neuromodulation: State of the Art. Cells 2021; 10:cells10123583. [PMID: 34944091 PMCID: PMC8700319 DOI: 10.3390/cells10123583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Non-invasive direct current stimulation (DCS) of the human brain induces neuronal plasticity and alters plasticity-related cognition and behavior. Numerous basic animal research studies focusing on molecular and cellular targets of DCS have been published. In vivo, ex vivo, and in vitro models enhanced knowledge about mechanistic foundations of DCS effects. Our review identified 451 papers using a PRISMA-based search strategy. Only a minority of these papers used cell culture or brain slice experiments with DCS paradigms comparable to those applied in humans. Most of the studies were performed in brain slices (9 papers), whereas cell culture experiments (2 papers) were only rarely conducted. These ex vivo and in vitro approaches underline the importance of cell and electric field orientation, cell morphology, cell location within populations, stimulation duration (acute, prolonged, chronic), and molecular changes, such as Ca2+-dependent intracellular signaling pathways, for the effects of DC stimulation. The reviewed studies help to clarify and confirm basic mechanisms of this intervention. However, the potential of in vitro studies has not been fully exploited and a more systematic combination of rodent models, ex vivo, and cellular approaches might provide a better insight into the neurophysiological changes caused by tDCS.
Collapse
|
27
|
Autar K, Guo X, Rumsey JW, Long CJ, Akanda N, Jackson M, Narasimhan NS, Caneus J, Morgan D, Hickman JJ. A functional hiPSC-cortical neuron differentiation and maturation model and its application to neurological disorders. Stem Cell Reports 2021; 17:96-109. [PMID: 34942087 PMCID: PMC8758945 DOI: 10.1016/j.stemcr.2021.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
The maturation and functional characteristics of human induced pluripotent stem cell (hiPSC)-cortical neurons has not been fully documented. This study developed a phenotypic model of hiPSC-derived cortical neurons, characterized their maturation process, and investigated its application for disease modeling with the integration of multi-electrode array (MEA) technology. Immunocytochemistry analysis indicated early-stage neurons (day 21) were simultaneously positive for both excitatory (vesicular glutamate transporter 1 [VGlut1]) and inhibitory (GABA) markers, while late-stage cultures (day 40) expressed solely VGlut1, indicating a purely excitatory phenotype without containing glial cells. This maturation process was further validated utilizing patch clamp and MEA analysis. Particularly, induced long-term potentiation (LTP) successfully persisted for 1 h in day 40 cultures, but only achieved LTP in the presence of the GABAA receptor antagonist picrotoxin in day 21 cultures. This system was also applied to epilepsy modeling utilizing bicuculline and its correction utilizing the anti-epileptic drug valproic acid. Characterization of human cortical neuronal differentiation to a mature phenotype Microelectrode evaluation of development from a mixed to pure excitatory population Utilization of defined culture stage to create an epilepsy model Manipulation of immaturity with inhibitors for maintaining long-term potentiation
Collapse
Affiliation(s)
- Kaveena Autar
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Xiufang Guo
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - John W Rumsey
- Hesperos Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA
| | - Christopher J Long
- Hesperos Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA
| | - Nesar Akanda
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Max Jackson
- Hesperos Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA
| | | | - Julbert Caneus
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Dave Morgan
- Department of Translational Science and Molecular Medicine, Michigan State University, College of Human Medicine, Grand Rapids Research Center, 400 Monroe Avenue NW, Grand Rapids, MI 49503, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; Hesperos Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| |
Collapse
|
28
|
Ahtiainen A, Genocchi B, Tanskanen JMA, Barros MT, Hyttinen JAK, Lenk K. Astrocytes Exhibit a Protective Role in Neuronal Firing Patterns under Chemically Induced Seizures in Neuron-Astrocyte Co-Cultures. Int J Mol Sci 2021; 22:12770. [PMID: 34884577 PMCID: PMC8657549 DOI: 10.3390/ijms222312770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Astrocytes and neurons respond to each other by releasing transmitters, such as γ-aminobutyric acid (GABA) and glutamate, that modulate the synaptic transmission and electrochemical behavior of both cell types. Astrocytes also maintain neuronal homeostasis by clearing neurotransmitters from the extracellular space. These astrocytic actions are altered in diseases involving malfunction of neurons, e.g., in epilepsy, Alzheimer's disease, and Parkinson's disease. Convulsant drugs such as 4-aminopyridine (4-AP) and gabazine are commonly used to study epilepsy in vitro. In this study, we aim to assess the modulatory roles of astrocytes during epileptic-like conditions and in compensating drug-elicited hyperactivity. We plated rat cortical neurons and astrocytes with different ratios on microelectrode arrays, induced seizures with 4-AP and gabazine, and recorded the evoked neuronal activity. Our results indicated that astrocytes effectively counteracted the effect of 4-AP during stimulation. Gabazine, instead, induced neuronal hyperactivity and synchronicity in all cultures. Furthermore, our results showed that the response time to the drugs increased with an increasing number of astrocytes in the co-cultures. To the best of our knowledge, our study is the first that shows the critical modulatory role of astrocytes in 4-AP and gabazine-induced discharges and highlights the importance of considering different proportions of cells in the cultures.
Collapse
Affiliation(s)
- Annika Ahtiainen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Barbara Genocchi
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Jarno M. A. Tanskanen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Michael T. Barros
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
| | - Jari A. K. Hyttinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Kerstin Lenk
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
- Institute of Neural Engineering, Graz University of Technology, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| |
Collapse
|
29
|
Zhai J, Zhou YY, Lagrutta A. Sensitivity, specificity and limitation of in vitro hippocampal slice and neuron-based assays for assessment of drug-induced seizure liability. Toxicol Appl Pharmacol 2021; 430:115725. [PMID: 34536444 DOI: 10.1016/j.taap.2021.115725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
An effective in vitro screening assay to detect seizure liability in preclinical development can contribute to better lead molecule optimization prior to candidate selection, providing higher throughput and overcoming potential brain exposure limitations in animal studies. This study explored effects of 26 positive and 14 negative reference pharmacological agents acting through different mechanisms, including 18 reference agents acting on glutamate signaling pathways, in a brain slice assay (BSA) of adult rat to define the assay's sensitivity, specificity, and limitations. Evoked population spikes (PS) were recorded from CA1 pyramidal neurons of hippocampus (HPC) in the BSA. Endpoints for analysis were PS area and PS number. Most positive references (24/26) elicited a concentration-dependent increase in PS area and/or PS number. The negative references (14/14) had little effect on the PS. Moreover, we studied the effects of 15 reference agents testing positive in the BSA on spontaneous activity in E18 rat HPC neurons monitored with microelectrode arrays (MEA), and compared these effects to the BSA results. From these in vitro studies we conclude that the BSA provides 93% sensitivity and 100% specificity in prediction of drug-induced seizure liability, including detecting seizurogenicity by 3 groups of metabotropic glutamate receptor (mGluR) ligands. The MEA results seemed more variable, both quantitatively and directionally, particularly for endpoints capturing synchronized electrical activity. We discuss these results from the two models, comparing each with published results, and provide potential explanations for differences and future directions.
Collapse
Affiliation(s)
- Jin Zhai
- Department of Genetic Toxicology and In Vitro Cellular Toxicity, Safety Assessment & Laboratory Animal Resources (SALAR), Merck & Co., Inc., West Point, PA 19486, USA.
| | - Ying-Ying Zhou
- Program Discovery and Development, Safety Assessment & Laboratory Animal Resources (SALAR), Merck & Co., Inc., West Point, PA 19486, USA
| | - Armando Lagrutta
- Program Discovery and Development, Safety Assessment & Laboratory Animal Resources (SALAR), Merck & Co., Inc., West Point, PA 19486, USA
| |
Collapse
|
30
|
Walczak PA, Perez-Esteban P, Bassett DC, Hill EJ. Modelling the central nervous system: tissue engineering of the cellular microenvironment. Emerg Top Life Sci 2021; 5:507-517. [PMID: 34524411 PMCID: PMC8589431 DOI: 10.1042/etls20210245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/16/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022]
Abstract
With the increasing prevalence of neurodegenerative diseases, improved models of the central nervous system (CNS) will improve our understanding of neurophysiology and pathogenesis, whilst enabling exploration of novel therapeutics. Studies of brain physiology have largely been carried out using in vivo models, ex vivo brain slices or primary cell culture from rodents. Whilst these models have provided great insight into complex interactions between brain cell types, key differences remain between human and rodent brains, such as degree of cortical complexity. Unfortunately, comparative models of human brain tissue are lacking. The development of induced Pluripotent Stem Cells (iPSCs) has accelerated advancement within the field of in vitro tissue modelling. However, despite generating accurate cellular representations of cortical development and disease, two-dimensional (2D) iPSC-derived cultures lack an entire dimension of environmental information on structure, migration, polarity, neuronal circuitry and spatiotemporal organisation of cells. As such, researchers look to tissue engineering in order to develop advanced biomaterials and culture systems capable of providing necessary cues for guiding cell fates, to construct in vitro model systems with increased biological relevance. This review highlights experimental methods for engineering of in vitro culture systems to recapitulate the complexity of the CNS with consideration given to previously unexploited biophysical cues within the cellular microenvironment.
Collapse
Affiliation(s)
- Paige A. Walczak
- College of Health and Life Sciences, School of Biosciences, Aston University, Birmingham, U.K
| | - Patricia Perez-Esteban
- College of Health and Life Sciences, School of Biosciences, Aston University, Birmingham, U.K
| | - David C. Bassett
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, U.K
| | - Eric James Hill
- College of Health and Life Sciences, School of Biosciences, Aston University, Birmingham, U.K
| |
Collapse
|
31
|
Yokoi R, Shibata M, Odawara A, Ishibashi Y, Nagafuku N, Matsuda N, Suzuki I. Analysis of signal components < 500 Hz in brain organoids coupled to microelectrode arrays: A reliable test-bed for preclinical seizure liability assessment of drugs and screening of antiepileptic drugs. Biochem Biophys Rep 2021; 28:101148. [PMID: 34693037 PMCID: PMC8517166 DOI: 10.1016/j.bbrep.2021.101148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
Brain organoids with three-dimensional structure and tissue-like function are highly demanded for brain disease research and drug evaluation. However, to our knowledge, methods for measuring and analyzing brain organoid function have not been developed yet. This study focused on the frequency components of an obtained waveform below 500 Hz using planner microelectrode array (MEA) and evaluated the response to the convulsants pentylenetetrazol (PTZ) and strychnine as well as the antiepileptic drugs (AEDs) perampanel and phenytoin. Sudden and persistent seizure-like firing was observed with PTZ administration, displaying a concentration-dependent periodic activity with the frequency component enhanced even in one oscillation characteristic. On the other hand, in the administration of AEDs, the frequency of oscillation decreased in a concentration-dependent manner and the intensity of the frequency component in one oscillation also decreased. Interestingly, at low doses of phenytoin, a group of synchronized bursts was formed, which was different from the response to the perampanel. Frequency components contained information on cerebral organoid function, and MEA was proven useful in predicting the seizure liability of drugs and evaluating the effect of AEDs with a different mechanism of action. In addition, frequency component analysis of brain organoids using MEA is an important analysis method to perform in vitro to in vivo extrapolation in the future, which will help explore the function of the organoid itself, study human brain developments, and treat various brain diseases. Frequency analysis <500 Hz was performed in brain organoids coupled to planner microelectrode arrays (MEA). Concentration-dependent changes in frequency components were detected in responses to convulsants and antiepileptic drugs (AEDs). Analysis of signal components <500 Hz in brain organoids is a useful method for preclinical seizure liability assessment of drugs and screening of antiepileptic drugs.
Collapse
|
32
|
Use of neural 3D organoid with MEA in neurotoxicity testing: comparison to traditional in vitro cell culture and in vivo methods. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00184-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Ishibashi Y, Odawara A, Kinoshita K, Okamura A, Shirakawa T, Suzuki I. Principal Component Analysis to Distinguish Seizure Liability of Drugs in Human iPS Cell-Derived Neurons. Toxicol Sci 2021; 184:265-275. [PMID: 34570236 DOI: 10.1093/toxsci/kfab116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Screening for drug discovery targeting the central nervous system requires the establishment of efficient and highly accurate toxicity test methods that can reduce costs and time while maintaining high throughput using the function of an in vitro neural network. In particular, an evaluation system using a human-derived neural network is desirable in terms of species difference. Despite the attention the microelectrode array (MEA) is attracting among the evaluation systems that can measure in vitro neural activity, an effective analysis method for evaluation of toxicity and mechanism of action has not yet been established. Here we established analytical parameters and multivariate analysis method capable of detecting seizure liability of drugs using MEA measurement of human iPS cell-derived neurons. Using the spike time series data of all drugs, we established periodicity as a new analytical parameter. Periodicity has facilitated the detection of responses to seizurogenic drugs, previously difficult to detect with conventional analytical parameters. By constructing a multivariate analytical method that identifies a parameter set that achieves an arbitrary condition, we found that the parameter set comprising total spikes, maximum frequency, inter maximum frequency interval, coefficient of variance of inter maximum frequency interval, and periodicity can uniformly detect the seizure liability of seizurogenic drugs with different mechanisms of action. Seizurogenic drugs were suggested to increase the regularity of the network burst in MEA measurements in human iPS cell-derived neurons.
Collapse
Affiliation(s)
- Y Ishibashi
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - A Odawara
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - K Kinoshita
- Drug Safety Research Labs, Astellas Pharma Inc, 21 Miyukigaoka, Tsukuba, Ibaraki, 305-0841, Japan
| | - A Okamura
- Drug Safety Research Labs, Astellas Pharma Inc, 21 Miyukigaoka, Tsukuba, Ibaraki, 305-0841, Japan
| | - T Shirakawa
- Drug Safety Research Labs, Astellas Pharma Inc, 21 Miyukigaoka, Tsukuba, Ibaraki, 305-0841, Japan
| | - I Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| |
Collapse
|
34
|
Matsuda N, Kinoshita K, Okamura A, Shirakawa T, Suzuki I. Histograms of Frequency-Intensity Distribution Deep Learning to Predict the Seizure Liability of Drugs in Electroencephalography. Toxicol Sci 2021; 182:229-242. [PMID: 34021344 DOI: 10.1093/toxsci/kfab061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Detection of seizures as well as that of seizure auras is effective in improving the predictive accuracy of seizure liability of drugs. Whereas electroencephalography has been known to be effective for the detection of seizure liability, no established methods are available for the detection of seizure auras. We developed a method for detecting seizure auras through machine learning using frequency-characteristic images of electroencephalograms. Histograms of frequency-intensity distribution prepared from electroencephalograms of rats analyzed during seizures induced with 4-aminopyridine (6 mg/kg), strychnine (3 mg/kg), and pilocarpine (400 mg/kg), were used to create an artificial intelligence (AI) system that learned the features of frequency-characteristic images during seizures. The AI system detected seizure states learned in advance with 100% accuracy induced even by convulsants acting through different mechanisms, and the risk of seizure before a seizure was detected in general observation. The developed AI system determined that the unlearned convulsant Tramadol (150 mg/kg) was the risk of seizure and the negative compounds aspirin and vehicle were negative. Moreover, the AI system detected seizure liability even in electroencephalography data associated with the use of 4-aminopyridine (3 mg/kg), strychnine (1 mg/kg), and pilocarpine (150 mg/kg), which did not induce seizures detectable in general observation. These results suggest that the AI system developed herein is an effective means for electroencephalographic detection of seizure auras, raising expectations for its practical use as a new analytical method that allows for the sensitive detection of seizure liability of drugs that has been overlooked previously in preclinical studies.
Collapse
Affiliation(s)
- Naoki Matsuda
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, Sendai, Miyagi 982-8577, Japan
| | - Kenichi Kinoshita
- Drug Safety Research Labs, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Ai Okamura
- Drug Safety Research Labs, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Takafumi Shirakawa
- Drug Safety Research Labs, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Ikuro Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, Sendai, Miyagi 982-8577, Japan
| |
Collapse
|
35
|
Saavedra L, Wallace K, Freudenrich TF, Mall M, Mundy WR, Davila J, Shafer TJ, Wernig M, Haag D. Comparison of Acute Effects of Neurotoxic Compounds on Network Activity in Human and Rodent Neural Cultures. Toxicol Sci 2021; 180:295-312. [PMID: 33537736 DOI: 10.1093/toxsci/kfab008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Assessment of neuroactive effects of chemicals in cell-based assays remains challenging as complex functional tissue is required for biologically relevant readouts. Recent in vitro models using rodent primary neural cultures grown on multielectrode arrays allow quantitative measurements of neural network activity suitable for neurotoxicity screening. However, robust systems for testing effects on network function in human neural models are still lacking. The increasing number of differentiation protocols for generating neurons from human-induced pluripotent stem cells (hiPSCs) holds great potential to overcome the unavailability of human primary tissue and expedite cell-based assays. Yet, the variability in neuronal activity, prolonged ontogeny and rather immature stage of most neuronal cells derived by standard differentiation techniques greatly limit their utility for screening neurotoxic effects on human neural networks. Here, we used excitatory and inhibitory neurons, separately generated by direct reprogramming from hiPSCs, together with primary human astrocytes to establish highly functional cultures with defined cell ratios. Such neuron/glia cocultures exhibited pronounced neuronal activity and robust formation of synchronized network activity on multielectrode arrays, albeit with noticeable delay compared with primary rat cortical cultures. We further investigated acute changes of network activity in human neuron/glia cocultures and rat primary cortical cultures in response to compounds with known adverse neuroactive effects, including gamma amino butyric acid receptor antagonists and multiple pesticides. Importantly, we observed largely corresponding concentration-dependent effects on multiple neural network activity metrics using both neural culture types. These results demonstrate the utility of directly converted neuronal cells from hiPSCs for functional neurotoxicity screening of environmental chemicals.
Collapse
Affiliation(s)
- Lorena Saavedra
- NeuCyte Inc., San Carlos, California 94070, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kathleen Wallace
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Theresa F Freudenrich
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Moritz Mall
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA.,Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
| | - William R Mundy
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Jorge Davila
- NeuCyte Inc., San Carlos, California 94070, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Timothy J Shafer
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Daniel Haag
- NeuCyte Inc., San Carlos, California 94070, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
36
|
Tukker AM, Westerink RHS. Novel test strategies for in vitro seizure liability assessment. Expert Opin Drug Metab Toxicol 2021; 17:923-936. [PMID: 33595380 PMCID: PMC8367052 DOI: 10.1080/17425255.2021.1876026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The increasing incidence of mental illnesses and neurodegenerative diseases results in a high demand for drugs targeting the central nervous system (CNS). These drugs easily reach the CNS, have a high affinity for CNS targets, and are prone to cause seizures as an adverse drug reaction. Current seizure liability assessment heavily depends on in vivo or ex vivo animal models and is therefore ethically debated, labor intensive, expensive, and not always predictive for human risk. AREAS COVERED The demand for CNS drugs urges the development of alternative safety assessment strategies. Yet, the complexity of the CNS hampers reliable detection of compound-induced seizures. This review provides an overview of the requirements of in vitro seizure liability assays and highlights recent advances, including micro-electrode array (MEA) recordings using rodent and human cell models. EXPERT OPINION Successful and cost-effective replacement of in vivo and ex vivo models for seizure liability screening can reduce animal use for drug development, while increasing the predictive value of the assays, particularly if human cell models are used. However, these novel test strategies require further validation and standardization as well as additional refinements to better mimic the human in vivo situation and increase their predictive value.
Collapse
Affiliation(s)
- Anke M. Tukker
- School of Health Sciences, Purdue University, Hall for Discovery and Learning Research (DLR 339), INUSA
| | - Remco H. S. Westerink
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, TD Utrecht, The Netherlands
| |
Collapse
|
37
|
Roberts R, Authier S, Mellon RD, Morton M, Suzuki I, Tjalkens RB, Valentin JP, Pierson JB. Can We Panelize Seizure? Toxicol Sci 2021; 179:3-13. [PMID: 33165543 DOI: 10.1093/toxsci/kfaa167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seizure liability remains a significant cause of attrition in drug discovery and development, leading to loss of competitiveness, delays, and increased costs. Current detection methods rely on observations made in in vivo studies intended to support clinical trials, such as tremors or other abnormal movements. These signs could be missed or misinterpreted; thus, definitive confirmation of drug-induced seizure requires a follow-up electroencephalogram study. There has been progress in in vivo detection of seizure using automated video systems that record and analyze animal movements. Nonetheless, it would be preferable to have earlier prediction of seizurogenic risk that could be used to eliminate liabilities early in discovery while there are options for medicinal chemists making potential new drugs. Attrition due to cardiac adverse events has benefited from routine early screening; could we reduce attrition due to seizure using a similar approach? Specifically, microelectrode arrays could be used to detect potential seizurogenic signals in stem-cell-derived neurons. In addition, there is clear evidence implicating neuronal voltage-gated and ligand-gated ion channels, GPCRs and transporters in seizure. Interactions with surrounding glial cells during states of stress or inflammation can also modulate ion channel function in neurons, adding to the challenge of seizure prediction. It is timely to evaluate the opportunity to develop an in vitro assessment of seizure linked to a panel of ion channel assays that predict seizure, with the aim of influencing structure-activity relationship at the design stage and eliminating compounds predicted to be associated with pro-seizurogenic state.
Collapse
Affiliation(s)
- Ruth Roberts
- ApconiX, Alderley Park, SK10 4TG, UK.,University of Birmingham, B15 2SD, UK
| | | | - R Daniel Mellon
- US Food and Drug Administration, Silver Spring, Maryland 20993
| | | | - Ikuro Suzuki
- Tohoku Institute of Technology, Sendai, 980-8577, Japan
| | - Ronald B Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Jean-Pierre Valentin
- UCB Biopharma SRL, Early Solutions, Development Science, Investigative Toxicology, Chemin du Foriest, B-1420, Braine-l'Alleud, Belgium
| | - Jennifer B Pierson
- Health and Environmental Sciences Institute, Washington, District of Columbia 20005
| |
Collapse
|
38
|
Ahn LY, Coatti GC, Liu J, Gumus E, Schaffer AE, Miranda HC. An epilepsy-associated ACTL6B variant captures neuronal hyperexcitability in a human induced pluripotent stem cell model. J Neurosci Res 2021; 99:110-123. [PMID: 33141462 PMCID: PMC7756336 DOI: 10.1002/jnr.24747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 01/01/2023]
Abstract
ACTL6B is a component of the neuronal BRG1/brm-associated factor (nBAF) complex, which is required for chromatin remodeling in postmitotic neurons. We recently reported biallelic pathogenic variants in ACTL6B in patients diagnosed with early infantile epileptic encephalopathy, subtype 76 (EIEE-76), presenting with severe, global developmental delay, epileptic encephalopathy, cerebral atrophy, and abnormal central nervous system myelination. However, the pathophysiological mechanisms underlying their phenotype is unknown. Here, we investigate the molecular pathogenesis of ACTL6B p.(Val421_Cys425del) using in silico 3D protein modeling predictions and patient-specific induced pluripotent stem cell-derived neurons. We found neurons derived from EIEE-76 patients showed impaired accumulation of ACTL6B compared to unaffected relatives, caused by reduced protein stability. Furthermore, EIEE-76 patient-derived neurons had dysregulated nBAF target gene expression, including genes important for neuronal development and disease. Multielectrode array system analysis unveiled elevated electrophysiological activity of EIEE-76 patients-derived neurons, consistent with the patient phenotype. Taken together, our findings validate a new model for EIEE-76 and reveal how reduced ACTL6B expression affects neuronal function.
Collapse
Affiliation(s)
- Lucie Y. Ahn
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA,Medical Scientist Training ProgramCase Western Reserve UniversityClevelandOHUSA
| | - Giuliana C. Coatti
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
| | - Jingyi Liu
- Department of PathologyCase Western Reserve UniversityClevelandOHUSA
| | - Evren Gumus
- Department of Medical GeneticsFaculty of MedicineMugla Sitki Kocman UniversityMuglaTurkey,Department of Medical GeneticsFaculty of MedicineUniversity of HarranSanliurfaTurkey
| | - Ashleigh E. Schaffer
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA,Center for RNA Science and TherapeuticsCase Western Reserve UniversityClevelandOHUSA
| | - Helen C. Miranda
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA,Department of NeurosciencesCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
39
|
Pelkonen A, Mzezewa R, Sukki L, Ryynänen T, Kreutzer J, Hyvärinen T, Vinogradov A, Aarnos L, Lekkala J, Kallio P, Narkilahti S. A modular brain-on-a-chip for modelling epileptic seizures with functionally connected human neuronal networks. Biosens Bioelectron 2020; 168:112553. [DOI: 10.1016/j.bios.2020.112553] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/01/2020] [Accepted: 08/23/2020] [Indexed: 12/22/2022]
|
40
|
Tukker AM, Wijnolts FMJ, de Groot A, Westerink RHS. Applicability of hiPSC-Derived Neuronal Cocultures and Rodent Primary Cortical Cultures for In Vitro Seizure Liability Assessment. Toxicol Sci 2020; 178:71-87. [PMID: 32866265 PMCID: PMC7657345 DOI: 10.1093/toxsci/kfaa136] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Seizures are life-threatening adverse drug reactions which are investigated late in drug development using rodent models. Consequently, if seizures are detected, a lot of time, money and animals have been used. Thus, there is a need for in vitro screening models using human cells to circumvent interspecies translation. We assessed the suitability of cocultures of human-induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes compared with rodent primary cortical cultures for in vitro seizure liability assessment using microelectrode arrays. hiPSC-derived and rodent primary cortical neuronal cocultures were exposed to 9 known (non)seizurogenic compounds (pentylenetetrazole, amoxapine, enoxacin, amoxicillin, linopirdine, pilocarpine, chlorpromazine, phenytoin, and acetaminophen) to assess effects on neuronal network activity using microelectrode array recordings. All compounds affect activity in hiPSC-derived cocultures. In rodent primary cultures all compounds, except amoxicillin changed activity. Changes in activity patterns for both cell models differ for different classes of compounds. Both models had a comparable sensitivity for exposure to amoxapine (lowest observed effect concentration [LOEC] 0.03 µM), linopirdine (LOEC 1 µM), and pilocarpine (LOEC 0.3 µM). However, hiPSC-derived cultures were about 3 times more sensitive for exposure to pentylenetetrazole (LOEC 30 µM) than rodent primary cortical cultures (LOEC 100 µM). Sensitivity of hiPSC-derived cultures for chlorpromazine, phenytoin, and enoxacin was 10-30 times higher (LOECs 0.1, 0.3, and 0.1 µM, respectively) than in rodent cultures (LOECs 10, 3, and 3 µM, respectively). Our data indicate that hiPSC-derived neuronal cocultures may outperform rodent primary cortical cultures with respect to detecting seizures, thereby paving the way towards animal-free seizure assessment.
Collapse
Affiliation(s)
- Anke M Tukker
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands
| | - Fiona M J Wijnolts
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands
| | - Aart de Groot
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands
| |
Collapse
|
41
|
Fritsche E, Hogberg HT. A Brainer on Neurotoxicity. FRONTIERS IN TOXICOLOGY 2020; 2:3. [PMID: 35296123 PMCID: PMC8915857 DOI: 10.3389/ftox.2020.00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- *Correspondence: Ellen Fritsche
| | - Helena Therese Hogberg
- Center for Alternatives to Animal Testing (CAAT) at the Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Helena Therese Hogberg
| |
Collapse
|
42
|
Shirakawa T, Suzuki I. Approach to Neurotoxicity using Human iPSC Neurons: Consortium for Safety Assessment using Human iPS Cells. Curr Pharm Biotechnol 2020; 21:780-786. [DOI: 10.2174/1389201020666191129103730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2019] [Accepted: 11/03/2019] [Indexed: 01/05/2023]
Abstract
Neurotoxicity, as well as cardiotoxicity and hepatotoxicity, resulting from administration of
a test article is considered a major adverse effect both pre-clinically and clinically. Among the different
types of neurotoxicity occurring during the drug development process, seizure is one of the most serious
one. Seizure occurrence is usually assessed using in vivo animal models, the Functional Observational
Battery, the Irwin test or electroencephalograms. In in vitro studies, a number of assessments can
be performed using animal organs/cells. Interestingly, recent developments in stem cell biology, especially
the development of Human-Induced Pluripotent Stem (iPS) cells, are enabling the assessment of
neurotoxicity in human iPS cell-derived neurons. Further, a Multi-Electrode Array (MEA) using rodent
neurons is a useful tool for identifying seizure-inducing compounds. The Consortium for Safety Assessment
using Human iPS Cells (CSAHi; http://csahi.org/en/) was established in 2013 by the Japan
Pharmaceutical Manufacturers Association (JPMA) to verify the application of human iPS cell-derived
neuronal cells to drug safety evaluation. The Neuro Team of CSAHi has been attempting to evaluate the
seizure risk of compounds using the MEA platform. Here, we review the current status of neurotoxicity
and recent work, including problems related to the use of the MEA assay with human iPS neuronal
cell-derived neurons, and future developments.
Collapse
Affiliation(s)
- Takafumi Shirakawa
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Neuro Team, Japan
| | - Ikuro Suzuki
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Neuro Team, Japan
| |
Collapse
|
43
|
Crowe JA, El-Tamer A, Nagel D, Koroleva AV, Madrid-Wolff J, Olarte OE, Sokolovsky S, Estevez-Priego E, Ludl AA, Soriano J, Loza-Alvarez P, Chichkov BN, Hill EJ, Parri HR, Rafailov EU. Development of two-photon polymerised scaffolds for optical interrogation and neurite guidance of human iPSC-derived cortical neuronal networks. LAB ON A CHIP 2020; 20:1792-1806. [PMID: 32314760 DOI: 10.1039/c9lc01209e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recent progress in the field of human induced pluripotent stem cells (iPSCs) has led to the efficient production of human neuronal cell models for in vitro study. This has the potential to enable the understanding of live human cellular and network function which is otherwise not possible. However, a major challenge is the generation of reproducible neural networks together with the ability to interrogate and record at the single cell level. A promising aid is the use of biomaterial scaffolds that would enable the development and guidance of neuronal networks in physiologically relevant architectures and dimensionality. The optimal scaffold material would need to be precisely fabricated with submicron resolution, be optically transparent, and biocompatible. Two-photon polymerisation (2PP) enables precise microfabrication of three-dimensional structures. In this study, we report the identification of two biomaterials that support the growth and differentiation of human iPSC-derived neural progenitors into functional neuronal networks. Furthermore, these materials can be patterned to induce alignment of neuronal processes and enable the optical interrogation of individual cells. 2PP scaffolds with tailored topographies therefore provide an effective method of producing defined in vitro human neural networks for application in influencing neurite guidance and complex network activity.
Collapse
Affiliation(s)
- J A Crowe
- School of Life and Health Sciences, Aston University, B4 7ET Birmingham, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Genova E, Cavion F, Lucafò M, Leo LD, Pelin M, Stocco G, Decorti G. Induced pluripotent stem cells for therapy personalization in pediatric patients: Focus on drug-induced adverse events. World J Stem Cells 2019; 11:1020-1044. [PMID: 31875867 PMCID: PMC6904863 DOI: 10.4252/wjsc.v11.i12.1020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 09/05/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Adverse drug reactions (ADRs) are major clinical problems, particularly in special populations such as pediatric patients. Indeed, ADRs may be caused by a plethora of different drugs leading, in some cases, to hospitalization, disability or even death. In addition, pediatric patients may respond differently to drugs with respect to adults and may be prone to developing different kinds of ADRs, leading, in some cases, to more severe consequences. To improve the comprehension, and thus the prevention, of ADRs, the set-up of sensitive and personalized assays is urgently needed. Important progress is represented by the possibility of setting up groundbreaking patient-specific assays. This goal has been powerfully achieved using induced pluripotent stem cells (iPSCs). Due to their genetic and physiological species-specific differences and their ability to be differentiated ideally into all tissues of the human body, this model may be accurate in predicting drug toxicity, especially when this toxicity is related to individual genetic differences. This review is an up-to-date summary of the employment of iPSCs as a model to study ADRs, with particular attention to drugs used in the pediatric field. We especially focused on the intestinal, hepatic, pancreatic, renal, cardiac, and neuronal levels, also discussing progress in organoids creation. The latter are three-dimensional in vitro culture systems derived from pluripotent or adult stem cells simulating the architecture and functionality of native organs such as the intestine, liver, pancreas, kidney, heart, and brain. Based on the existing knowledge, these models are powerful and promising tools in multiple clinical applications including toxicity screening, disease modeling, personalized and regenerative medicine.
Collapse
Affiliation(s)
- Elena Genova
- PhD School in Reproduction and Development Sciences, University of Trieste, Trieste 34127, Italy
| | - Federica Cavion
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Marianna Lucafò
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste 34137, Italy
| | - Luigina De Leo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste 34137, Italy
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy.
| | - Giuliana Decorti
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste 34137, Italy
| |
Collapse
|
45
|
Hyvärinen T, Hyysalo A, Kapucu FE, Aarnos L, Vinogradov A, Eglen SJ, Ylä-Outinen L, Narkilahti S. Functional characterization of human pluripotent stem cell-derived cortical networks differentiated on laminin-521 substrate: comparison to rat cortical cultures. Sci Rep 2019; 9:17125. [PMID: 31748598 PMCID: PMC6868015 DOI: 10.1038/s41598-019-53647-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived neurons provide exciting opportunities for in vitro modeling of neurological diseases and for advancing drug development and neurotoxicological studies. However, generating electrophysiologically mature neuronal networks from hPSCs has been challenging. Here, we report the differentiation of functionally active hPSC-derived cortical networks on defined laminin-521 substrate. We apply microelectrode array (MEA) measurements to assess network events and compare the activity development of hPSC-derived networks to that of widely used rat embryonic cortical cultures. In both of these networks, activity developed through a similar sequence of stages and time frames; however, the hPSC-derived networks showed unique patterns of bursting activity. The hPSC-derived networks developed synchronous activity, which involved glutamatergic and GABAergic inputs, recapitulating the classical cortical activity also observed in rodent counterparts. Principal component analysis (PCA) based on spike rates, network synchronization and burst features revealed the segregation of hPSC-derived and rat network recordings into different clusters, reflecting the species-specific and maturation state differences between the two networks. Overall, hPSC-derived neural cultures produced with a defined protocol generate cortical type network activity, which validates their applicability as a human-specific model for pharmacological studies and modeling network dysfunctions.
Collapse
Affiliation(s)
- Tanja Hyvärinen
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, Tampere, Finland
| | - Anu Hyysalo
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, Tampere, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Fikret Emre Kapucu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Laura Aarnos
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, Tampere, Finland
| | - Andrey Vinogradov
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, Tampere, Finland
| | - Stephen J Eglen
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Laura Ylä-Outinen
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, Tampere, Finland
| | - Susanna Narkilahti
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, Tampere, Finland.
| |
Collapse
|
46
|
Rockley KL, Roberts RA, Morton MJ. Innovative models for in vitro detection of seizure. Toxicol Res (Camb) 2019; 8:784-788. [PMID: 32206299 DOI: 10.1039/c9tx00210c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
Data show that toxicity to the central nervous system (CNS) is the most frequent cause of safety failures during the clinical phase of drug development. CNS endpoints such as seizure pose a safety risk to patients and volunteers and can lead to a loss of competitiveness, delays, and increased costs. Current methods rely on detection in the nonclinical rodent and non-rodent studies required to support clinical trials. There are two main issues with this approach; seizure may be missed in the animal studies and, even if seizure is detected, significant resource has already been invested in the project by this stage. Thus, there is a need to develop improved screening methods that can be used earlier in drug discovery to predict seizure. Advances in stem cell biology coupled with an increased understanding of the role of ion channels in seizure offer an opportunity for a new paradigm in screening. Human derived induced pluripotent stem cells (hiPSCs) representative of almost all cellular subtypes present in the brain can be incorporated into physiologically relevant in vitro models that can be used to determine seizure risk using high-throughput methods. Akin to the success of screening against a panel of ion channels such as hERG to reduce cardiovascular safety liability, the involvement of ion channels in seizure suggests that a similar approach to early seizure detection is valid. Profiling of the ion channels expressed in hiPSC models showing the seizurogenic phenotype coupled with electrophysiological assessment of ion channel function could translate into an ion channel seizure panel for rapid and reliable in vitro detection of seizure. The mechanistic information gathered would support optimal drug design early in development before resources, animals and time have been wasted.
Collapse
Affiliation(s)
- Kimberly L Rockley
- ApconiX , Alderley Park , Alderley Edge , SK10 4TG , UK . ; Tel: +44 (0)77 33 01 43 96
| | - Ruth A Roberts
- ApconiX , Alderley Park , Alderley Edge , SK10 4TG , UK . ; Tel: +44 (0)77 33 01 43 96.,School of Biosciences , University of Birmingham , B15 2TT , UK
| | - Michael J Morton
- ApconiX , Alderley Park , Alderley Edge , SK10 4TG , UK . ; Tel: +44 (0)77 33 01 43 96
| |
Collapse
|
47
|
Jackson SJ, Authier S, Brohmann H, Goody SM, Jones D, Prior H, Rosch A, Traebert M, Tse K, Valentin JP, Milne A. Neurofunctional test batteries in safety pharmacology – Current and emerging considerations for the drug development process. J Pharmacol Toxicol Methods 2019; 100:106602. [DOI: 10.1016/j.vascn.2019.106602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
|
48
|
Taga A, Dastgheyb R, Habela C, Joseph J, Richard JP, Gross SK, Lauria G, Lee G, Haughey N, Maragakis NJ. Role of Human-Induced Pluripotent Stem Cell-Derived Spinal Cord Astrocytes in the Functional Maturation of Motor Neurons in a Multielectrode Array System. Stem Cells Transl Med 2019; 8:1272-1285. [PMID: 31631575 PMCID: PMC6877769 DOI: 10.1002/sctm.19-0147] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/30/2019] [Indexed: 01/15/2023] Open
Abstract
The ability to generate human‐induced pluripotent stem cell (hiPSC)‐derived neural cells displaying region‐specific phenotypes is of particular interest for modeling central nervous system biology in vitro. We describe a unique method by which spinal cord hiPSC‐derived astrocytes (hiPSC‐A) are cultured with spinal cord hiPSC‐derived motor neurons (hiPSC‐MN) in a multielectrode array (MEA) system to record electrophysiological activity over time. We show that hiPSC‐A enhance hiPSC‐MN electrophysiological maturation in a time‐dependent fashion. The sequence of plating, density, and age in which hiPSC‐A are cocultured with MN, but not their respective hiPSC line origin, are factors that influence neuronal electrophysiology. When compared to coculture with mouse primary spinal cord astrocytes, we observe an earlier and more robust electrophysiological maturation in the fully human cultures, suggesting that the human origin is relevant to the recapitulation of astrocyte/motor neuron crosstalk. Finally, we test pharmacological compounds on our MEA platform and observe changes in electrophysiological activity, which confirm hiPSC‐MN maturation. These findings are supported by immunocytochemistry and real‐time PCR studies in parallel cultures demonstrating human astrocyte mediated changes in the structural maturation and protein expression profiles of the neurons. Interestingly, this relationship is reciprocal and coculture with neurons influences astrocyte maturation as well. Taken together, these data indicate that in a human in vitro spinal cord culture system, astrocytes support hiPSC‐MN maturation in a time‐dependent and species‐specific manner and suggest a closer approximation of in vivo conditions. stem cells translational medicine2019;8:1272&1285 We describe a fully human, spinal cord‐specific, coculture platform with human‐induced pluripotent stem cell‐derived motor neurons and astrocytes for multielectrode array recording. We show that human‐induced pluripotent stem cell‐derived motor neurons/human‐induced pluripotent stem cell‐derived astrocytes bidirectional morphological and molecular maturation is reflected by electrophysiological recordings with multielectrode array recording.![]()
Collapse
Affiliation(s)
- Arens Taga
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raha Dastgheyb
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christa Habela
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jessica Joseph
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Sarah K Gross
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Giuseppe Lauria
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Gabsang Lee
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Norman Haughey
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
49
|
Witkin JM, Ping X, Cerne R, Mouser C, Jin X, Hobbs J, Tiruveedhula VVNPB, Li G, Jahan R, Rashid F, Kumar Golani L, Cook JM, Smith JL. The value of human epileptic tissue in the characterization and development of novel antiepileptic drugs: The example of CERC-611 and KRM-II-81. Brain Res 2019; 1722:146356. [PMID: 31369732 DOI: 10.1016/j.brainres.2019.146356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
The need for improved antiepileptics is clearly mandated despite the existence of multiple existing medicines from different chemical and mechanistic classes. Standard of care agents do not fully control epilepsies and have a variety of side-effect and safety issues. Patients typically take multiple antiepileptic drugs and yet many continue to have seizures. Antiepileptic-unresponsive seizures are life-disrupting and life-threatening. One approach to seizure control is surgical resection of affected brain tissue and associated neural circuits. Although non-human brain studies can provide insight into novel antiepileptic mechanisms, human epileptic brain is the bottom-line biological substrate. Human epileptic brain can provide definitive information on the presence or absence of the putative protein targets of interest in the patient population, the potential changes in these proteins in the epileptic state, and the engagement of novel molecules and their functional impact in target tissue. In this review, we discuss data on two novel potential antiepileptic drugs. CERC-611 (LY3130481) is an AMPA receptor antagonist that selectively blocks AMPA receptors associated with the auxiliary protein TARP γ-8 and is in clinical development. KRM-II-81 is a positive allosteric modulator of GABAA receptors selectively associated with protein subunits α2 and α 3. Preclinical data on these compounds argue that patient-based biological data increase the probability that a newly discovered molecule will translate its antiepileptic potential to patients.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Rok Cerne
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Claire Mouser
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Jon Hobbs
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Guanguan Li
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Rajwana Jahan
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Farjana Rashid
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Lalit Kumar Golani
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James M Cook
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, USA.
| |
Collapse
|
50
|
Yildirimer L, Zhang Q, Kuang S, Cheung CWJ, Chu KA, He Y, Yang M, Zhao X. Engineering three-dimensional microenvironments towards
in vitro
disease models of the central nervous system. Biofabrication 2019; 11:032003. [DOI: 10.1088/1758-5090/ab17aa] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|