1
|
Miller S, Cobos KL, Rasic N, Long X, Lebel C, Bar Am N, Noel M, Kopala‐Sibley D, Mychasiuk R, Miller JV. Adverse childhood experiences, brain efficiency, and the development of pain symptoms in youth. Eur J Pain 2025; 29:e4702. [PMID: 39010829 PMCID: PMC11609899 DOI: 10.1002/ejp.4702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 06/10/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Adverse childhood experiences (ACEs) are often reported by youths with chronic pain, and both ACEs and chronic pain disrupt how information is processed. However, it is unknown whether changes to shared neural networks underlie the relationship between ACEs and the development of pain symptoms. This study explored the relationships between ACEs, brain efficiency, and pain symptomology in youth. METHODS A community sample of youths aged 14-18 years underwent MRIs, answered trauma and pain questionnaires, and underwent pain sensory testing, twice, 3 months apart (Nbaseline = 44; Nfollow-up = 42). Sensory testing determined thresholds for mechanical and thermal stimuli. Global and local network efficiencies were evaluated using graph theory. Generalized estimating equations were applied to examine whether brain efficiency moderated the relationships between ACEs, pain intensity, and pain sensitivity (i.e., mechanical detection, heat pain, and temperature change thresholds). RESULTS There was a significant interaction between ACEs and global brain efficiency in association with pain intensity (β = -0.31, p = 0.02) and heat pain (β = -0.29, p = 0.004). Lower global brain efficiency exacerbated the relationship between ACEs and pain intensity (θX → Y|W = -1.16 = 0.37, p = 0.05), and heat pain sensitivity (θX → Y|W = -1.30 = 0.44, p = 0.05). Higher global brain efficiency ameliorated the relationship between ACEs and pain intensity (θX → Y|W = 1.75 = -0.53, p = 0.05). CONCLUSIONS The relationship between ACEs and pain symptomology was comparable to chronic pain phenotypes (i.e., higher pain intensity and pain thresholds) and may vary as a function of brain efficiency in youth. This stresses the importance of assessing for pain symptoms in trauma-exposed youth, as earlier identification and intervention are critical in preventing the chronification of pain. SIGNIFICANCE This article explores the relationship between ACEs, pain symptomology, and brain efficiency in youth. ACEs may affect how the brain processes information, including pain. Youths with lower brain efficiencies that were exposed to more ACEs have pain symptomology comparable to youths with chronic pain. Understanding this relationship is important for the earlier identification of pain symptoms, particularly in vulnerable populations such as youths exposed to trauma, and is critical for preventing the chronification of pain.
Collapse
Affiliation(s)
- Samantha Miller
- Department of Anesthesiology, Perioperative, and Pain MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Karen L. Cobos
- Department of Anesthesiology, Perioperative, and Pain MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Nivez Rasic
- Department of Anesthesiology, Perioperative, and Pain MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteCalgaryAlbertaCanada
| | - Xiangyu Long
- Alberta Children's Hospital Research InstituteCalgaryAlbertaCanada
- Department of RadiologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteCalgaryAlbertaCanada
| | - Catherine Lebel
- Alberta Children's Hospital Research InstituteCalgaryAlbertaCanada
- Department of RadiologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteCalgaryAlbertaCanada
- Owerko Centre, Alberta Children's Hospital Research InstituteCalgaryAlbertaCanada
- The Mathison Centre for Mental Health and EducationHotchkiss Brain InstituteCalgaryAlbertaCanada
| | - Neta Bar Am
- Department of Anesthesiology, Perioperative, and Pain MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteCalgaryAlbertaCanada
| | - Melanie Noel
- Department of Anesthesiology, Perioperative, and Pain MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteCalgaryAlbertaCanada
- Hotchkiss Brain InstituteCalgaryAlbertaCanada
- Owerko Centre, Alberta Children's Hospital Research InstituteCalgaryAlbertaCanada
- The Mathison Centre for Mental Health and EducationHotchkiss Brain InstituteCalgaryAlbertaCanada
- Department of PsychologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Daniel Kopala‐Sibley
- Alberta Children's Hospital Research InstituteCalgaryAlbertaCanada
- Hotchkiss Brain InstituteCalgaryAlbertaCanada
- The Mathison Centre for Mental Health and EducationHotchkiss Brain InstituteCalgaryAlbertaCanada
- Department of PsychiatryUniversity of CalgaryCalgaryAlbertaCanada
| | - Richelle Mychasiuk
- Hotchkiss Brain InstituteCalgaryAlbertaCanada
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
| | - Jillian Vinall Miller
- Department of Anesthesiology, Perioperative, and Pain MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteCalgaryAlbertaCanada
- Hotchkiss Brain InstituteCalgaryAlbertaCanada
- Owerko Centre, Alberta Children's Hospital Research InstituteCalgaryAlbertaCanada
- The Mathison Centre for Mental Health and EducationHotchkiss Brain InstituteCalgaryAlbertaCanada
- O'Brien CenterUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
2
|
Hinojosa CA, George GC, Ben-Zion Z. Neuroimaging of posttraumatic stress disorder in adults and youth: progress over the last decade on three leading questions of the field. Mol Psychiatry 2024; 29:3223-3244. [PMID: 38632413 PMCID: PMC11449801 DOI: 10.1038/s41380-024-02558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Almost three decades have passed since the first posttraumatic stress disorder (PTSD) neuroimaging study was published. Since then, the field of clinical neuroscience has made advancements in understanding the neural correlates of PTSD to create more efficacious treatment strategies. While gold-standard psychotherapy options are available, many patients do not respond to them, prematurely drop out, or never initiate treatment. Therefore, elucidating the neurobiological mechanisms that define the disorder can help guide clinician decision-making and develop individualized mechanisms-based treatment options. To this end, this narrative review highlights progress made in the last decade in adult and youth samples on three outstanding questions in PTSD research: (1) Which neural alterations serve as predisposing (pre-exposure) risk factors for PTSD development, and which are acquired (post-exposure) alterations? (2) Which neural alterations can predict treatment outcomes and define clinical improvement? and (3) Can neuroimaging measures be used to define brain-based biotypes of PTSD? While the studies highlighted in this review have made progress in answering the three questions, the field still has much to do before implementing these findings into clinical practice. Overall, to better answer these questions, we suggest that future neuroimaging studies of PTSD should (A) utilize prospective longitudinal designs, collecting brain measures before experiencing trauma and at multiple follow-up time points post-trauma, taking advantage of multi-site collaborations/consortiums; (B) collect two scans to explore changes in brain alterations from pre-to-post treatment and compare changes in neural activation between treatment groups, including longitudinal follow up assessments; and (C) replicate brain-based biotypes of PTSD. By synthesizing recent findings, this narrative review will pave the way for personalized treatment approaches grounded in neurobiological evidence.
Collapse
Affiliation(s)
- Cecilia A Hinojosa
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Grace C George
- Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Ziv Ben-Zion
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- US Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
3
|
Sibilia F, Jost-Mousseau C, Banaschewski T, Barker GJ, Büchel C, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Ittermann B, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Poustka L, Millenet S, Fröhner JH, Smolka MN, Walter H, Whelan R, Schumann G, Bokde AL. The relationship between negative life events and cortical structural connectivity in adolescents. IBRO Neurosci Rep 2024; 16:201-210. [PMID: 38348392 PMCID: PMC10859284 DOI: 10.1016/j.ibneur.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/27/2024] [Indexed: 02/15/2024] Open
Abstract
Adolescence is a crucial period for physical and psychological development. The impact of negative life events represents a risk factor for the onset of neuropsychiatric disorders. This study aims to investigate the relationship between negative life events and structural brain connectivity, considering both graph theory and connectivity strength. A group (n = 487) of adolescents from the IMAGEN Consortium was divided into Low and High Stress groups. Brain networks were extracted at an individual level, based on morphological similarity between grey matter regions with regions defined using an atlas-based region of interest (ROI) approach. Between-group comparisons were performed with global and local graph theory measures in a range of sparsity levels. The analysis was also performed in a larger sample of adolescents (n = 976) to examine linear correlations between stress level and network measures. Connectivity strength differences were investigated with network-based statistics. Negative life events were not found to be a factor influencing global network measures at any sparsity level. At local network level, between-group differences were found in centrality measures of the left somato-motor network (a decrease of betweenness centrality was seen at sparsity 5%), of the bilateral central visual and the left dorsal attention network (increase of degree at sparsity 10% at sparsity 30% respectively). Network-based statistics analysis showed an increase in connectivity strength in the High stress group in edges connecting the dorsal attention, limbic and salience networks. This study suggests negative life events alone do not alter structural connectivity globally, but they are associated to connectivity properties in areas involved in emotion and attention.
Collapse
Affiliation(s)
- Francesca Sibilia
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Coline Jost-Mousseau
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Paris Institute of Technology for Life, Food and Environmental Sciences, Paris, France
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Christian Büchel
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | - Sylvane Desrivières
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Charité – Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Saclay, University Paris Descartes – Sorbonne Paris Cité; and Maison de Solenn, Paris, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Saclay, University Paris Descartes; and AP-HP.Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes - Sorbonne Paris Cité; and Psychiatry Department 91G16, Orsay Hospital, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Charité – Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Gunter Schumann
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Arun L.W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - IMAGEN Consortium
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Paris Institute of Technology for Life, Food and Environmental Sciences, Paris, France
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, VT, USA
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Charité – Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Saclay, University Paris Descartes – Sorbonne Paris Cité; and Maison de Solenn, Paris, France
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Saclay, University Paris Descartes; and AP-HP.Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes - Sorbonne Paris Cité; and Psychiatry Department 91G16, Orsay Hospital, France
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| |
Collapse
|
4
|
Zhang L, Rakesh D, Cropley V, Whittle S. Neurobiological correlates of resilience during childhood and adolescence - A systematic review. Clin Psychol Rev 2023; 105:102333. [PMID: 37690325 DOI: 10.1016/j.cpr.2023.102333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/09/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
Research examining the neurobiological mechanisms of resilience has grown rapidly over the past decade. However, there is vast heterogeneity in research study design, methods, and in how resilience is operationalized, making it difficult to gauge what we currently know about resilience biomarkers. This preregistered systematic review aimed to review and synthesize the extant literature to identify neurobiological correlates of resilience to adversity during childhood and adolescence. Literature searches on MEDLINE and PsycINFO yielded 3834 studies and a total of 49 studies were included in the final review. Findings were synthesized based on how resilience was conceptualized (e.g., absence of psychopathology, trait resilience), and where relevant, the type of outcome examined (e.g., internalizing symptoms, post-traumatic stress disorder). Our synthesis showed that findings were generally mixed. Nevertheless, some consistent findings suggest that resilience neural mechanisms may involve prefrontal and subcortical regions structure/activity, as well as connectivity between these regions. Given substantial heterogeneity in the definition and operationalization of resilience, more methodological consistency across studies is required for advancing knowledge in this field.
Collapse
Affiliation(s)
- Lu Zhang
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Australia.
| | - Divyangana Rakesh
- Neuroimaging Department, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK; Department of Psychology, Harvard University, MA, USA
| | - Vanessa Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Australia
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Australia
| |
Collapse
|
5
|
Cheong EN, Rhee Y, Kim CO, Kim HC, Hong N, Shin YW. Alterations in the global brain network in older adults with poor sleep quality: A resting-state fMRI study. J Psychiatr Res 2023; 168:100-107. [PMID: 39492234 DOI: 10.1016/j.jpsychires.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
OBJECTIVES Older adults often experience more fragmented and less restful sleep than younger individuals. However, the mechanisms in the brain that underlie these phenomena have been rarely studied. The aim of this study was to identify the differences in global brain network properties between older adults with good and poor sleep quality and to explore the relationship between these network properties and symptoms of insomnia. METHODS We performed a graph-theoretic analysis of resting-state functional magnetic resonance imaging data from two groups of older adults: 59 with good sleep quality and 59 with poor sleep quality. Functional connectivity among 264 brain regions of interest was estimated, and undirected graphs were constructed. Network topological properties were compared using one-way repeated-measures analysis of variance. Pearson's correlation analysis assessed the relationship between the mean scores of the global network properties across network sparsity and insomnia symptoms, as measured using the global Pittsburgh Sleep Quality Index score. RESULTS Older adults with poor sleep quality displayed increased small-world-ness, global efficiency and modularity in the functional brain network during rest. Conversely, they exhibited decreased local efficiency, characteristic path length and clustering coefficient. In the total population, we found associations between insomnia symptoms and global network characteristics, except for betweenness centrality and modularity. CONCLUSIONS In older adults with poor sleep quality, global network measures revealed a functional brain architecture that tended towards integration rather than segregation. Further research is needed to better understand what these findings mean about the effects of aging on poor sleep quality.
Collapse
Affiliation(s)
- E-Nae Cheong
- Department of Medical Science and Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yumie Rhee
- Department of Internal Medicine, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Republic of Korea
| | - Chang Oh Kim
- Divison of Geriatrics, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeon Chang Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Namki Hong
- Department of Internal Medicine, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Republic of Korea.
| | - Yong-Wook Shin
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Ross MC, Heilicher M, Cisler JM. Functional imaging correlates of childhood trauma: A qualitative review of past research and emerging trends. Pharmacol Biochem Behav 2021; 211:173297. [PMID: 34780877 DOI: 10.1016/j.pbb.2021.173297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/22/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Childhood trauma exposure is common and is associated with poor clinical outcomes in adolescence along with mental health and sociodemographic challenges in adulthood. While many strategies exist to investigate the biological imprint of childhood trauma exposure, functional neuroimaging is a robust and growing technology for non-invasive studies of brain activity following traumatic experience and the relationship of childhood trauma exposure with psychopathology, cognition, and behavior. In this review, we discuss three popular approaches for discerning functional neural correlates to early life trauma, including regional activation, bivariate functional connectivity, and network-based connectivity. The breadth of research in each method is discussed, followed by important limitations and considerations for future research. We close by considering emerging trends in functional neuroimaging research of childhood trauma, including the use of complex decision-making tasks to mimic clinically-relevant behaviors, data-driven techniques such as multivariate pattern analysis and whole-brain network topology, and the applications of real-time neurofeedback for treatment of trauma-related mental disorders. We aim for this review to provide a framework for understanding the relationship between atypical neural functioning and adverse outcomes following childhood trauma exposure, with a focus on improving consistency in research methods and translatability of research findings for clinical settings.
Collapse
Affiliation(s)
- Marisa C Ross
- Northwestern Neighborhood & Network Initiative, Institute for Policy Research, Northwestern University, United States of America.
| | | | - Josh M Cisler
- University of Texas at Austin, Department of Psychiatry
| |
Collapse
|
7
|
Shi M, Liu S, Chen H, Geng W, Yin X, Chen YC, Wang L. Disrupted brain functional network topology in unilateral acute brainstem ischemic stroke. Brain Imaging Behav 2021; 15:444-452. [PMID: 32705464 DOI: 10.1007/s11682-020-00353-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study aimed to investigate the topological properties of brain functional connectome in unilateral acute brainstem ischemic stroke using graph theory. Fifty-three acute brainstem ischemic stroke patients, consisted of 27 left-sided and 26 right-sided brainstem stroke patients, and 20 age, gender, and education-matched healthy controls (HCs) were recruited to undergo a resting-state functional magnetic resonance imaging (rs-fMRI) scan in this study. Graph theory analyses were then used to examine the group-specific topological properties of the functional connectomes seperately. The unilateral acute brainstem stroke patients and HCs all exhibited "small-world" brain network topology. The functional connectome of the left brainstem stroke patients showed significant differences in all topological properties while the right brainstem stroke patients showed a significant increase in clustering coefficient Cp (p < 0.001) and local efficiency Elocal (p < 0.001), and a significantly decrease in normalized clustering coefficient γ (p < 0.001) and global efficiency Eglobal (p < 0.001), suggesting both a shift toward regular networks. At the nodal level, abnormal nodal centralities were mainly observed in the defaut mode network, subcortical network, frontal and occipital lobe. The findings of disrupted topological properties of functional brain networks may help better understanding the disease characterization and innovation in management for acute brainstem ischemic stroke patients.
Collapse
Affiliation(s)
- Mengye Shi
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Shenghua Liu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Wen Geng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| | - Liping Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| |
Collapse
|
8
|
Sheynin J, Duval ER, King AP, Angstadt M, Phan KL, Simon NM, Rauch SAM, Liberzon I. Associations between resting-state functional connectivity and treatment response in a randomized clinical trial for posttraumatic stress disorder. Depress Anxiety 2020; 37:1037-1046. [PMID: 32668087 PMCID: PMC7722156 DOI: 10.1002/da.23075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/04/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Alterations in resting-state functional connectivity (rsFC) have been reported in posttraumatic stress disorder (PTSD). Here, we examined pre- and post-treatment rsFC during a randomized clinical trial to characterize alterations and examine predictors of treatment response. METHODS Sixty-four combat veterans with PTSD were randomly assigned to prolonged exposure (PE) plus placebo, sertraline plus enhanced medication management, or PE plus sertraline. Symptom assessment and resting-state functional magnetic resonance imaging (fMRI) scans occurred before and after treatment. Twenty-nine trauma-exposed combat veterans without PTSD served as a control group at intake. Seed-based and region of interest (ROI)-to-ROI connectivities, as well as an exploratory connectome-based approach were used to analyze rsFC patterns. Based on previously reported findings, analyses focused on Salience Network (SN) and Default-Mode Network (DMN). RESULTS At intake, patients with PTSD showed greater DMN-dorsal attention network (DAN) connectivity (between ventromedial prefrontal cortex and superior parietal lobule; family-wise error corrected p = .011), greater SN-DAN connectivity (between insula and middle frontal gyrus; corrected p = .003), and a negative correlation between re-experiencing symptoms and within-DMN connectivity (between posterior cingulate cortex (PCC) and middle temporal gyrus; corrected p < .001). We also found preliminary evidence for associations between rsFC and treatment response. Specifically, high responders (≥50% PTSD symptom improvement), compared with low responders, had greater SN-DMN segregation (i.e., less pre-treatment amygdala-PCC connectivity; p = .011) and lower pre-treatment global centrality (p = .042). CONCLUSIONS Our findings suggest neural abnormalities in PTSD and may inform future research examining neural biomarkers of PTSD treatment response.
Collapse
Affiliation(s)
- Jony Sheynin
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth R. Duval
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Anthony P. King
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - K. Luan Phan
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Naomi M. Simon
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, New York University Medical School, New York, NY, USA
| | - Sheila A. M. Rauch
- Atlanta VA Healthcare System, Decatur, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Israel Liberzon
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Proessl F, Dretsch MN, Connaboy C, Lovalekar M, Dunn-Lewis C, Canino MC, Sterczala AJ, Deshpande G, Katz JS, Denney TS, Flanagan SD. Structural Connectome Disruptions in Military Personnel with Mild Traumatic Brain Injury and Post-Traumatic Stress Disorder. J Neurotrauma 2020; 37:2102-2112. [DOI: 10.1089/neu.2020.6999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Felix Proessl
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael N. Dretsch
- U.S. Army Medical Research Directorate-West, Walter Reed Army Institute of Research, Joint Base Lewis-McChord, Washington, USA
- U.S. Army Aeromedical Research Laboratory, Fort Rucker, Alabama, USA
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
| | - Chris Connaboy
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mita Lovalekar
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Courtenay Dunn-Lewis
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maria C. Canino
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam J. Sterczala
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gopikrishna Deshpande
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
- Alabama Advanced Imaging Consortium, Alabama, USA
- Center for Neuroscience, Auburn University, Auburn, Alabama, USA
- School of Psychology, Capital Normal University, Beijing, China
| | - Jeffrey S. Katz
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
- Alabama Advanced Imaging Consortium, Alabama, USA
- Center for Neuroscience, Auburn University, Auburn, Alabama, USA
| | - Thomas S. Denney
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
- Alabama Advanced Imaging Consortium, Alabama, USA
- Center for Neuroscience, Auburn University, Auburn, Alabama, USA
| | - Shawn D. Flanagan
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Ross MC, Cisler JM. Altered large-scale functional brain organization in posttraumatic stress disorder: A comprehensive review of univariate and network-level neurocircuitry models of PTSD. Neuroimage Clin 2020; 27:102319. [PMID: 32622316 PMCID: PMC7334481 DOI: 10.1016/j.nicl.2020.102319] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022]
Abstract
Classical neural circuitry models of posttraumatic stress disorder (PTSD) are largely derived from univariate activation studies and implicate the fronto-limbic circuit as a main neural correlate of PTSD symptoms. Though well-supported by human neuroimaging literature, these models are limited in their ability to explain the widely distributed neural and behavioral deficits in PTSD. Emerging interest in the application of large-scale network methods to functional neuroimaging provides a new opportunity to overcome such limitations and conceptualize the neural circuitry of PTSD in the context of network patterns. This review aims to evaluate both the classical neural circuitry model and a new, network-based model of PTSD neural circuitry using a breadth of functional brain organization research in subjects with PTSD. Taken together, this literature suggests global patterns of reduced functional connectivity (FC) in PTSD groups as well as altered FC targets that reside disproportionately in canonical functional networks, especially the default mode network. This provides evidence for an integrative model that includes elements of both the classical models and network-based models to characterize the neural circuitry of PTSD.
Collapse
Affiliation(s)
- Marisa C Ross
- Neuroscience and Training Program, University of Wisconsin-Madison, United States; Neuroscience and Public Policy Program, University of Wisconsin-Madison, United States.
| | - Josh M Cisler
- Neuroscience and Training Program, University of Wisconsin-Madison, United States; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, United States
| |
Collapse
|
11
|
Marusak HA, Harper FW, Taub JW, Rabinak CA. Pediatric cancer, posttraumatic stress and fear-related neural circuitry. Int J Hematol Oncol 2019; 8:IJH17. [PMID: 31467663 PMCID: PMC6714068 DOI: 10.2217/ijh-2019-0002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This review examines the neurobiological effects of pediatric cancer-related posttraumatic stress symptoms (PTSS). We first consider studies on prevalence and predictors of childhood cancer-related PTSS and compare these studies to those in typically developing (i.e., noncancer) populations. Then, we briefly introduce the brain regions implicated in PTSS and review neuroimaging studies examining the neural correlates of PTSS in noncancer populations. Next, we present a framework and recommendations for future research. In particular, concurrent evaluation of PTSS and neuroimaging, as well as sociodemographic, medical, family factors, and other life events, are needed to uncover mechanisms leading to cancer-related PTSS. We review findings from neuroimaging studies on childhood cancer and one recent study on cancer-related PTSS as a starting point in this line of research.
Collapse
Affiliation(s)
- Hilary A Marusak
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI 48201, USA.,Population Studies & Disparities Research Program, Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Felicity W Harper
- Population Studies & Disparities Research Program, Karmanos Cancer Institute, Detroit, MI 48201, USA.,Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Jeffrey W Taub
- Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48201, USA.,Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Christine A Rabinak
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI 48201, USA.,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI 48201, USA.,Department of Psychiatry & Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
12
|
Impaired brain white matter and functional networks in healthy individuals with auditory verbal hallucinations. Chin Med J (Engl) 2019; 132:606-608. [PMID: 30741828 PMCID: PMC6416001 DOI: 10.1097/cm9.0000000000000106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|