1
|
Li CL, Wang Q, Wu L, Hu JY, Gao QC, Jiao XL, Zhang YX, Tang S, Yu Q, He PF. The PANoptosis-related hippocampal molecular subtypes and key biomarkers in Alzheimer's disease patients. Sci Rep 2024; 14:23851. [PMID: 39394418 PMCID: PMC11470079 DOI: 10.1038/s41598-024-75377-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder, and various molecules associated with PANoptosis are involved in neuroinflammation and neurodegenerative diseases. This work aims to identify key genes, and characterize PANoptosis-related molecular subtypes in AD. Moreover, we establish a scoring system for distinguishing PANoptosis molecular subtypes and constructing diagnostic models for AD differentiation. A total of 5 hippocampal datasets were obtained from the Gene Expression Omnibus (GEO) database. In total, 1324 protein-encoding genes associated with PANoptosis (1313 apoptosis genes, 11 necroptosis genes, and 31 pyroptosis genes) were extracted from the GeneCards database. The Limma package was used to identify differentially expressed genes. Weighted Gene Co-Expression Network Analysis (WGCNA) was conducted to identify gene modules significantly associated with AD. The ConsensusClusterPlus algorithm was used to identify AD subtypes. Gene Set Variation Analysis (GSVA) was used to assess functional and pathway differences among the subtypes. The Boruta, Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest (RF), and Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithms were used to select the three PANoptosis-related Key AD genes (PKADg). A scoring model was constructed based on the Boruta algorithm. PANoptosis diagnostic models were developed using the RF, SVM-RFE, and Logistic Regression (LR) algorithms. The ROC curves were used to assess the model performance. A total of 48 important genes were identified by intersecting 725 differentially expressed genes and 2127 highly correlated module genes from WGCNA with 1324 protein-encoding genes related to PANoptosis. Machine learning algorithms identified 3 key AD genes related to PANoptosis, including ANGPT1, STEAP3, and TNFRSF11B. These genes had strong discriminatory capacities among samples, with Receiver Operating Characteristic Curve (ROC) analysis indicating Area Under the Curve (AUC) values of 0.839, 0.8, and 0.868, respectively. Using the 48 important genes, the ConsensusClusterPlus algorithm identified 2 PANoptosis subtypes among AD patients, i.e., apoptosis subtype and mild subtype. Apoptosis subtype patients displayed evident cellular apoptosis and severe functionality damage in the hippocampal tissue. Meanwhile, mild subtype patients showed milder functionality damage. These two subtypes had significant differences in apoptosis and necroptosis; however, there was no apparent variation in pyroptosis functionality. The scoring model achieved an AUC of 100% for sample differentiation. The RF PANoptosis diagnostic model demonstrated an AUC of 100% in the training set and 85.85% in the validation set for distinguishing AD. This study identified two PANoptosis-related hippocampal molecular subtypes of AD, identified key genes, and established machine learning models for subtype differentiation and discrimination of AD. We found that in the context of AD, PANoptosis may influence disease progression through the modulation of apoptosis and necrotic apoptosis.
Collapse
Affiliation(s)
- Chen-Long Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Big Data Clinical Decision Research in Shanxi Province, Taiyuan, China
| | - Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Big Data Clinical Decision Research in Shanxi Province, Taiyuan, China
| | - Li Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Department of Anesthesiology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Jing-Yi Hu
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Qi-Chao Gao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Big Data Clinical Decision Research in Shanxi Province, Taiyuan, China
| | - Xin-Long Jiao
- School of Medical Science, Shanxi Medical University, Taiyuan, China
| | - Yu-Xiang Zhang
- Second Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Shan Tang
- First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Qi Yu
- Key Laboratory of Big Data Clinical Decision Research in Shanxi Province, Taiyuan, China.
- School of Management, Shanxi Medical University, Taiyuan, China.
| | - Pei-Feng He
- Key Laboratory of Big Data Clinical Decision Research in Shanxi Province, Taiyuan, China.
- School of Management, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
2
|
Gao X, Li R, Luo L, Liao C, Yang H, Mao S. Alpha-Asarone Ameliorates Neurological Dysfunction of Subarachnoid Hemorrhagic Rats in Both Acute and Recovery Phases via Regulating the CaMKII-Dependent Pathways. Transl Stroke Res 2024; 15:476-494. [PMID: 36781743 DOI: 10.1007/s12975-023-01139-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Accepted: 02/05/2023] [Indexed: 02/15/2023]
Abstract
Early brain injury (EBI) is the leading cause of poor prognosis for patients suffering from subarachnoid hemorrhage (SAH), particularly learning and memory deficits in the repair phase. A recent report has involved calcium/calmodulin-dependent protein kinase II (CaMKII) in the pathophysiological process underlying SAH-induced EBI. Alpha-asarone (ASA), a major compound isolated from the Chinese medicinal herb Acorus tatarinowii Schott, was proven to reduce secondary brain injury by decreasing CaMKII over-phosphorylation in rats' model of intracerebral hemorrhage in our previous report. However, the effect of ASA on SAH remains unclear, and the role of CaMKII in both acute and recovery stages of SAH needs further investigation. In this work, we first established a classic SAH rat model by endovascular perforation and intraperitoneally administrated different ASA doses (10, 20, and 40 mg/kg) 2 h after successful modeling. Then, the short- and long-term neurobehavioral performances were blindly evaluated to confirm ASA's efficacy against SAH. Subsequently, we explored ASA's therapeutic mechanism in both acute and recovery stages using histopathological examination, TUNEL staining, flow cytometry, Western-blot, double-immunofluorescence staining, and transmission electron microscopy (TEM) observation. Finally, KN93, a selective CaMKII inhibitor, was applied in oxyhemoglobin-damaged HT22 cells to explore the role of CaMKII in ASA's neuroprotective effect. The results demonstrated that ASA alleviated short- and long-term neurological dysfunction, reduced mortality and seizure rate within 24 h, and prolonged 14-day survival in SAH rats. Histopathological examination showed a reduction of neuronal damage and a restoration of the hippocampal structure after ASA treatment in both acute and recovery phases of SAH. In the acute stage, the Western-blot and flow cytometer analyses showed that ASA restored E/I balance, reduced calcium overload and CaMKII phosphorylation, and inhibited mitochondrion-involved apoptosis, thus preventing neuronal damage and apoptosis underlying EBI post-SAH. In the recovery stage, the TEM observation, double-immunofluorescence staining, and Western-blot analyses indicated that ASA increased the numbers of synapses and enhanced synaptic plasticity in the ipsilateral hippocampi, probably by promoting NR2B/CaMKII interaction and activating subsequent CREB/BDNF/TrkB signaling pathways. Furthermore, KN93 notably reversed ASA's neuroprotective effect on oxyhemoglobin-damaged HT22 cells, confirming CaMKII a potential target for ASA's efficacy against SAH. Our study confirmed for the first time that ASA ameliorated the SAH rats' neurobehavioral deterioration, possibly via modulating CaMKII-involved pathways. These findings provided a promising candidate for the clinical treatment of SAH and shed light on future drug discovery against SAH.
Collapse
Affiliation(s)
- Xiaofeng Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, School of Pharmacy, Sichuan University, Chengdu, 610041, West China, China
| | - Rui Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, School of Pharmacy, Sichuan University, Chengdu, 610041, West China, China
| | - Lijun Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, School of Pharmacy, Sichuan University, Chengdu, 610041, West China, China
| | - Can Liao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, School of Pharmacy, Sichuan University, Chengdu, 610041, West China, China
| | - Huiyuan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, School of Pharmacy, Sichuan University, Chengdu, 610041, West China, China
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, School of Pharmacy, Sichuan University, Chengdu, 610041, West China, China.
| |
Collapse
|
3
|
Sun XG, Chu XH, Godje Godje IS, Liu SY, Hu HY, Zhang YB, Zhu LJ, Wang H, Sui C, Huang J, Shen YJ. Aerobic Glycolysis Induced by mTOR/HIF-1α Promotes Early Brain Injury After Subarachnoid Hemorrhage via Activating M1 Microglia. Transl Stroke Res 2024; 15:1-15. [PMID: 36385451 DOI: 10.1007/s12975-022-01105-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/19/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
M1 microglial activation is crucial for the pathogenesis of early brain injury (EBI) following subarachnoid hemorrhage (SAH), and there is growing evidence that glucose metabolism is frequently involved in microglial activation. However, the molecular mechanism of glycolysis and its role in M1 microglial activation in the context of EBI are not yet fully understood. In this study, firstly, the relationship between aerobic glycolysis and M1 microglial activation as well as SAH-induced EBI was researched in vivo. Then, intervention on mammalian target of rapamycin (mTOR) was performed to investigate the effects on glycolysis-dependent M1 microglial activation and EBI and its relationship with hypoxia-inducible factor-1α (HIF-1α) in vivo. Next, Hif-1α was inhibited to analyze its role in aerobic glycolysis, M1 microglial activation, and EBI in vivo. Lastly, both in vivo and in vitro, mTOR inhibition and Hif-1α enhancement were administered simultaneously, and the combined effects were further confirmed again. The results showed that aerobic glycolysis and M1 microglial polarization were increased after SAH, and glycolytic inhibition could attenuate M1 microglial activation and EBI. Inhibition of mTOR reduced glycolysis-dependent M1 microglial polarization and EBI severity by down-regulating HIF-1α expression, while enhancement had the opposite effects. Blockading HIF-1α had the similar effects as suppressing mTOR, while HIF-1α agonist worked against mTOR antagonist when administered simultaneously. In conclusion, the present study showed new evidence that aerobic glycolysis induced by mTOR/HIF-1α might promote EBI after SAH by activating M1 microglia. This finding provided new insights for the treatment of EBI.
Collapse
Affiliation(s)
- Xin-Gang Sun
- Department of Neurology, The Second Hospital Affiliated to Shanxi Medical University, Taiyuan, 030000, Shanxi, China.
| | - Xue-Hong Chu
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | | | - Shao-Yu Liu
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Hui-Yu Hu
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Yi-Bo Zhang
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Li-Juan Zhu
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Hai Wang
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Chen Sui
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Juan Huang
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Ying-Jie Shen
- Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| |
Collapse
|
4
|
Hu Y, Zhao X, Jiang G, Jin M, Jiang W, Han F. Prophylactic supplement with melatonin prevented the brain injury after cardiac arrest in rats. Sci Rep 2023; 13:20100. [PMID: 37973931 PMCID: PMC10654502 DOI: 10.1038/s41598-023-47424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Prophylactic pharmacotherapy for health care in patients with high risk of cardiac arrest (CA) is an elusive and less explored strategy. Melatonin has possibilities used as a daily nutraceutical to trigger the cellular adaptation. We sought to find the effects of long-term daily prophylactic supplement with melatonin on the victim of CA. Rats were divided into sham, CA, and melatonin + CA (Mel + CA) groups. The rats in the Mel + CA group received daily IP injection of melatonin 100 mg/kg for 14 days. CA was induced by 8 min asphyxia and followed by manual cardiopulmonary resuscitation. The endpoint was 24 h after resuscitation. Survival, neurological outcome, and hippocampal mitochondrial integrity, dynamics and function were assessed. Survival was significantly higher in the Mel + CA group than the CA group (81 vs. 42%, P = 0.04). Compared to the CA group, neurological damage in the CA1 region and the level of cytochrome c, cleaved caspase-3 and caspase-9 in the Mel + CA group were decreased (P < 0.05). Mitochondrial function and integrity were protected in the Mel + CA group compared to the CA group, according to the results of mitochondrial swelling, ΔΨm, ROS production, oxygen consumption rate, and respiratory control rate (P < 0.05). Melatonin increased SIRT3 and downregulated acetylated CypD. The mitochondrial dynamics and autophagy were improved in the Mel + CA group (P < 0.05). Long-term daily prophylactic supplement with melatonin buy the time from brain injury after CA.
Collapse
Affiliation(s)
- Yanan Hu
- Department of Anesthesiology, The Third Medical Center of PLA General Hospital, Beijing, China
- Department of Anesthesiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xuyan Zhao
- Department of Anesthesiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ge Jiang
- Department of Anesthesiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Mingxin Jin
- Department of Anesthesiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Jiang
- Department of Anesthesiology, The Third Medical Center of PLA General Hospital, Beijing, China.
| | - Fei Han
- Department of Anesthesiology, The Third Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
5
|
Yu W, Chang X, Liao J, Quan J, Liu S, He T, Zhong G, Huang J, Liu Z, Tang Z. Long-term oral tribasic copper chloride exposure impedes cognitive function and disrupts mitochondrial metabolism by inhibiting mitophagy in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122474. [PMID: 37652230 DOI: 10.1016/j.envpol.2023.122474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Copper (Cu) is an essential micronutrient element that commonly acted as a feed additive and antimicrobial in agricultural production. Tribasic copper chloride (TBCC) is a relatively new dietary Cu source, and its exposure directly or indirectly affects the safety of animals and ecological environment, thus posing a potential risk to human health. Cu overexposure would produce toxic reactive oxygen species (ROS) that may have toxic effects on the host, but the mechanism of neurotoxicity remains unclear. Herein, to explore the effects of long-term TBCC-induced neurotoxicity, 150 male Sprague-Dawley rats were randomly allocated and treated with different doses of TBCC, and the cortical and hippocampus tissues were harvested at 0, 6, and 12 weeks after treatment. Morris Water Maze (MWM) test showed that excessive intake of TBCC could induce cognitive dysfunction in rats. Moreover, after treatment with 160 mg/kg Cu (276 mg/kg TBCC) for 12 weeks, pathological changes were observed in the cortex and hippocampus, and the number of Nissl bodies decreased significantly in the hippocampus. Additionally, mitochondrial structure was significantly altered and neuronal mitochondrial fusion/fission equilibrium was disrupted in 80 mg/kg and 160 mg/kg Cu groups at 12 weeks. With an increase in TBCC dose and treatment time, the number of mitophagosomes and the expression of mitophagy-related genes were significantly decreased after initially increasing. Furthermore, metformin (Met) and 3-methyladenine (3-MA) were used to regulate the level of mitophagy to further explore the mechanism of Cu-induced nerve cell injury in vitro., and it found that mitophagy activator (Met) would increase mitochondrial fission, while mitophagy inhibitors (3-MA) would aggravate mitochondrial metabolic disorders by promoting mitochondrial fusion and inhibiting mitochondrial division. These results indicate that long-term oral TBCC could impede cognitive function and disrupts mitochondrial metabolism by inhibiting mitophagy, providing an insightful perspective on the neurotoxicity of dietary TBCC.
Collapse
Affiliation(s)
- Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Laboratory Animal Center, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| | - Xiaoyue Chang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jinwen Quan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Siying Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Ting He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jilei Huang
- Instrumental Analysis & Research Center, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Zhonghua Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Laboratory Animal Center, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| |
Collapse
|
6
|
Luo D, Lu Y, Liu Q, Yin H, Huang X, Li S. The mechanism of cadmium exposure-induced lymph node necroptosis and inflammation in piglets: Activation of CYP450 through VDR / CREB1 pathway. Res Vet Sci 2023; 164:105044. [PMID: 37806098 DOI: 10.1016/j.rvsc.2023.105044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Cadmium (Cd) is toxic non-essential heavy metal that precipitates adverse health effects in humans and animals, but the effect of Cd on lymph node toxicity of piglets is still unclear. In order to explore the possible molecular mechanism of Cd toxicity to lymph nodes of piglets, ten 6-week-old male weaned piglets were randomly divided into two groups, C group and Cd group. Group C was fed with basal diet, while group Cd was fed with basal diet supplemented with CdCl2 (20 mg/kg) for 40 days, the pigs were euthanized and the mesenteric, inguinal and submandibular lymph nodes (MLN, ILN, SLN) were collected. The results indicated that Cd could induce the inflammatory cell infiltration, microvascular hemorrhage, microthrombosis and cell necrosis in MLN, ILN and SLN of piglets, induced Cytochrome P450 proteins (CYP1A1、CYP2E1、CYP2A1 and CYP3A2) mRNA levels and the protein levels of Vitamin D receptor (VDR) and cAMP response element binding protein 1 (CREB1). In addition, Cd exposure upregulated the mRNA and protein levels of dynamin-related protein 1 (DRP1), receptor-interacting protein kinase 3 (RIP3), mixed lineage kinase domain-like protein (MLKL), and increased tumor necrosis factor-α (TNFα), interferon-γ (IFNγ), interleukin-2 (IL-2), interleukin-4 (IL-4), cyclooxygenase 2 (COX-2) protein levels, and the damage degree of three kinds of lymph nodes was similar after Cd exposure. In general, these results manifest that Cd exposure regulates VDR/CREB1 pathway, activates CYP450s, induces necroptosis of lymph nodes, and leads to inflammation.
Collapse
Affiliation(s)
- Dongliu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yiming Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hang Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaodan Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Lauzier DC, Jayaraman K, Yuan JY, Diwan D, Vellimana AK, Osbun J, Chatterjee AR, Athiraman U, Dhar R, Zipfel GJ. Early Brain Injury After Subarachnoid Hemorrhage: Incidence and Mechanisms. Stroke 2023; 54:1426-1440. [PMID: 36866673 PMCID: PMC10243167 DOI: 10.1161/strokeaha.122.040072] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Aneurysmal subarachnoid hemorrhage is a devastating condition causing significant morbidity and mortality. While outcomes from subarachnoid hemorrhage have improved in recent years, there continues to be significant interest in identifying therapeutic targets for this disease. In particular, there has been a shift in emphasis toward secondary brain injury that develops in the first 72 hours after subarachnoid hemorrhage. This time period of interest is referred to as the early brain injury period and comprises processes including microcirculatory dysfunction, blood-brain-barrier breakdown, neuroinflammation, cerebral edema, oxidative cascades, and neuronal death. Advances in our understanding of the mechanisms defining the early brain injury period have been accompanied by improved imaging and nonimaging biomarkers for identifying early brain injury, leading to the recognition of an elevated clinical incidence of early brain injury compared with prior estimates. With the frequency, impact, and mechanisms of early brain injury better defined, there is a need to review the literature in this area to guide preclinical and clinical study.
Collapse
Affiliation(s)
- David C. Lauzier
- Department of Neurological Surgery, Washington University School of Medicine
| | - Keshav Jayaraman
- Department of Neurological Surgery, Washington University School of Medicine
| | - Jane Y. Yuan
- Department of Neurological Surgery, Washington University School of Medicine
| | - Deepti Diwan
- Department of Neurological Surgery, Washington University School of Medicine
| | - Ananth K. Vellimana
- Department of Neurological Surgery, Washington University School of Medicine
- Department of Neurology, Washington University School of Medicine
- Mallinckrodt Institute of Radiology, Washington University School of Medicine
| | - Joshua Osbun
- Department of Neurological Surgery, Washington University School of Medicine
- Department of Neurology, Washington University School of Medicine
- Mallinckrodt Institute of Radiology, Washington University School of Medicine
| | - Arindam R. Chatterjee
- Department of Neurological Surgery, Washington University School of Medicine
- Department of Neurology, Washington University School of Medicine
- Mallinckrodt Institute of Radiology, Washington University School of Medicine
| | | | - Rajat Dhar
- Department of Neurology, Washington University School of Medicine
| | - Gregory J. Zipfel
- Department of Neurological Surgery, Washington University School of Medicine
- Department of Neurology, Washington University School of Medicine
| |
Collapse
|
8
|
Pisani A, Paciello F, Del Vecchio V, Malesci R, De Corso E, Cantone E, Fetoni AR. The Role of BDNF as a Biomarker in Cognitive and Sensory Neurodegeneration. J Pers Med 2023; 13:jpm13040652. [PMID: 37109038 PMCID: PMC10140880 DOI: 10.3390/jpm13040652] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a crucial function in the central nervous system and in sensory structures including olfactory and auditory systems. Many studies have highlighted the protective effects of BDNF in the brain, showing how it can promote neuronal growth and survival and modulate synaptic plasticity. On the other hand, conflicting data about BDNF expression and functions in the cochlear and in olfactory structures have been reported. Several clinical and experimental research studies showed alterations in BDNF levels in neurodegenerative diseases affecting the central and peripheral nervous system, suggesting that BDNF can be a promising biomarker in most neurodegenerative conditions, including Alzheimer's disease, shearing loss, or olfactory impairment. Here, we summarize current research concerning BDNF functions in brain and in sensory domains (olfaction and hearing), focusing on the effects of the BDNF/TrkB signalling pathway activation in both physiological and pathological conditions. Finally, we review significant studies highlighting the possibility to target BDNF as a biomarker in early diagnosis of sensory and cognitive neurodegeneration, opening new opportunities to develop effective therapeutic strategies aimed to counteract neurodegeneration.
Collapse
Affiliation(s)
- Anna Pisani
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Valeria Del Vecchio
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| | - Rita Malesci
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| | - Eugenio De Corso
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Elena Cantone
- Department of Neuroscience, Reproductive Sciences and Dentistry-ENT Section, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Reproductive Sciences and Dentistry-Audiology Section, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
9
|
Qiu X, Tao Q, Zhang L, Kuang C, Xie Y, Zhang L, Yin S, Peng J, Jiang Y. Deletion of Bak1 alleviates microglial necroptosis and neuroinflammation after experimental subarachnoid hemorrhage. J Neurochem 2022; 164:829-846. [PMID: 36583235 DOI: 10.1111/jnc.15751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022]
Abstract
Microglial necroptosis exacerbates neurodegenerative diseases, central nervous system (CNS) injury, and demonstrates a proinflammatory process, but its contribution to subarachnoid hemorrhage (SAH) is poorly characterized. BCL-2 homologous antagonist-killer protein (Bak1), a critical regulatory molecule of endogenous apoptosis, can be involved in the pathologic process of necroptosis by regulating mitochondrial permeability. In this study, we revealed microglia undergo necroptosis after SAH in vivo and vitro. Western blot revealed that Bak1 was elevated at 24 h after SAH. Knocked down of Bak1 by adeno-associated virus attenuates microglial necroptosis, alleviates neuroinflammation, and improves neurologic function after SAH in mice. Furthermore, oxyhemoglobin (10 μM) induced necroptosis in BV2 microglia, increasing Bak1 expression and mediating proinflammatory phenotype transformation, exacerbating oxidative stress and neuroinflammation. Abrogating BV2 Bak1 could reduce necroptosis by down-regulating the expression of phosphorylated pseudokinase mixed lineage kinase domain-like protein (p-MLKL), then down-regulating proinflammatory phenotype gene expression. RNA-Seq showed that disrupting BV2 Bak1 down-regulates multiple immune and inflammatory pathways and ameliorates cell injury by elevating thrombospondin 1 (THBS1) expression. In summary, we identified a critical regulatory role for Bak1 in microglial necroptosis and neuroinflammation after SAH. Bak1 is expected to be a potential target for the treatment strategy of SAH.
Collapse
Affiliation(s)
- Xiancheng Qiu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Neurosurgery, Shifang City People's Hospital, Shifang, China
| | - Qianke Tao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lihan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chenghao Kuang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Yuke Xie
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Lifang Zhang
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Chen J, Li M, Liu Z, Wang Y, Xiong K. Molecular mechanisms of neuronal death in brain injury after subarachnoid hemorrhage. Front Cell Neurosci 2022; 16:1025708. [PMID: 36582214 PMCID: PMC9793715 DOI: 10.3389/fncel.2022.1025708] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
Subarachnoid haemorrhage (SAH) is a common cerebrovascular disease with high disability and mortality rates worldwide. The pathophysiological mechanisms involved in an aneurysm rupture in SAH are complex and can be divided into early brain injury and delayed brain injury. The initial mechanical insult results in brain tissue and vascular disruption with hemorrhages and neuronal necrosis. Following this, the secondary injury results in diffused cerebral damage in the peri-core area. However, the molecular mechanisms of neuronal death following an aneurysmal SAH are complex and currently unclear. Furthermore, multiple cell death pathways are stimulated during the pathogenesis of brain damage. Notably, particular attention should be devoted to necrosis, apoptosis, autophagy, necroptosis, pyroptosis and ferroptosis. Thus, this review discussed the mechanism of neuronal death and its influence on brain injury after SAH.
Collapse
Affiliation(s)
- Junhui Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China,Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhuanghua Liu
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Yuhai Wang
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China,*Correspondence: Yuhai Wang,
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China,Kun Xiong,
| |
Collapse
|
11
|
Shao H, Wu W, Wang P, Han T, Zhuang C. Role of Necroptosis in Central Nervous System Diseases. ACS Chem Neurosci 2022; 13:3213-3229. [PMID: 36373337 DOI: 10.1021/acschemneuro.2c00405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Necroptosis is a type of precisely regulated necrotic cell death activated in caspase-deficient conditions. Multiple factors initiate the necroptotic signaling pathway, including toll-like receptor 3/4, tumor necrosis factor (TNF), dsRNA viruses, and T cell receptors. Presently, TNF-induced necroptosis via the phosphorylation of three key proteins, receptor-interacting protein kinase 1, receptor-interacting protein kinase 3, and mixed lineage kinase domain-like protein, is the best-characterized process. Necroptosis induced by Z-DNA-binding protein 1 (ZBP-1) and toll/interleukin-1 receptor (TIR)-domain-containing adapter-inducing interferon (TRIF) plays a significant role in infectious diseases, such as influenza A virus, Zika virus, and herpesvirus infection. An increasing number of studies have demonstrated the close association of necroptosis with multiple diseases, and disrupting necroptosis has been confirmed to be effective for treating (or managing) these diseases. The central nervous system (CNS) exhibits unique physiological structures and immune characteristics. Necroptosis may occur without the sequential activation of signal proteins, and the necroptosis of supporting cells has more important implications in disease development. Additionally, necroptotic signals can be activated in the absence of necroptosis. Here, we summarize the role of necroptosis and its signal proteins in CNS diseases and characterize typical necroptosis regulators to provide a basis for the further development of therapeutic strategies for treating such diseases. In the present review, relevant information has been consolidated from recent studies (from 2010 until the present), excluding the patents in this field.
Collapse
Affiliation(s)
- Hongming Shao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wenbin Wu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Pei Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ting Han
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.,School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
12
|
Resveratrol Ameliorates Trigeminal Neuralgia-Induced Cognitive Deficits by Regulating Neural Ultrastructural Remodelling and the CREB/BDNF Pathway in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4926678. [PMID: 36478990 PMCID: PMC9722315 DOI: 10.1155/2022/4926678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/30/2022]
Abstract
Chronic pain often leads to cognitive impairment. Resveratrol (Res), a natural polyphenol existing in Polygonum cuspidatum, has been widely investigated for its antinociceptive, anti-inflammatory, and neuroprotective properties. Our aim was to explore the ameliorating effects of resveratrol on pain-related behaviors and learning and memory deficits induced by cobra venom-induced trigeminal neuralgia (TN). The TN model of rats was established by injecting cobra venom solution beneath the epineurium of the infraorbital nerve. Resveratrol was intragastrically administered at a dose of 40 mg/kg twice daily beginning on postoperative day 15. CREB inhibitor 666-15 was intraperitoneally administered at a dose of 10 mg/kg from POD 35-42 after morning resveratrol treatment. Mechanical allodynia was measured via von Frey filaments. Rat free movement was videotaped and analyzed. Spatial learning and memory were evaluated via the Morris water maze test. Ultrastructures of the hippocampal DG region and infraorbital nerve were observed by transmission electron microscopy. We found that resveratrol alleviated TN-induced allodynia, ameliorated learning and memory deficits, restored the ultrastructure of hippocampal neurons and synapses, repaired the damaged myelin sheath of the infraorbital nerve, and activated the CREB/BDNF pathway in the hippocampus of TN rats. CREB inhibitor administration suppressed the resveratrol-rescued abnormal hippocampal ultrastructural changes and aggravated spatial learning and memory impairment by inhibiting CREB/BDNF pathway activation in the hippocampus. Our findings indicated that resveratrol alleviated pain and improved cognitive deficits, probably by regulating neural ultrastructure remodelling and the CREB/BDNF pathway.
Collapse
|
13
|
Xin Y, Chen J, Zhang H, Ostrowski RP, Liang Y, Zhao J, Xiang X, Liang F, Fu W, Huang H, Wu X, Su J, Deng J, He Z. Dexras1 Induces Dysdifferentiation of Oligodendrocytes and Myelin Injury by Inhibiting the cAMP-CREB Pathway after Subarachnoid Hemorrhage. Cells 2022; 11:2976. [PMID: 36230939 PMCID: PMC9564295 DOI: 10.3390/cells11192976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
White matter damage (WMD), one of the research hotspots of subarachnoid hemorrhage (SAH), mainly manifests itself as myelin injury and oligodendrocyte differentiation disorder after SAH, although the specific mechanism remains unclear. Dexamethasone-induced Ras-related protein 1(Dexras1) has been reported to be involved in nervous system damage in autoimmune encephalitis and multiple sclerosis. However, whether Dexras1 participates in dysdifferentiation of oligodendrocytes and myelin injury after SAH has yet to be examined, which is the reason for creating the research content of this article. Here, intracerebroventricular lentiviral administration was used to modulate Dexras1 levels in order to determine its functional influence on neurological injury after SAH. Immunofluorescence, transmission electron microscopy, and Western blotting methods, were used to investigate the effects of Dexras1 on demyelination, glial cell activation, and differentiation of oligodendrocyte progenitor cells (OPCs) after SAH. Primary rat brain neurons were treated with oxyhemoglobin to verify the association between Dexras1 and cAMP-CREB. The results showed that Dexras1 levels were significantly increased upon in vivo SAH model, accompanied by OPC differentiation disturbances and myelin injury. Dexras1 overexpression significantly worsened OPC dysdifferentiation and myelin injury after SAH. In contrast, Dexras1 knockdown ameliorated myelin injury, OPC dysdifferentiation, and glial cell activation. Further research of the underlying mechanism discovered that the cAMP-CREB pathway was inhibited after Dexras1 overexpression in the in vitro model of SAH. This study is the first to confirm that Dexras1 induced oligodendrocyte dysdifferentiation and myelin injury after SAH by inhibiting the cAMP-CREB pathway. This present research may reveal novel therapeutic targets for the amelioration of brain injury and neurological dysfunction after SAH.
Collapse
Affiliation(s)
- Yuanjun Xin
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing 400016, China
| | - Jie Chen
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Hongxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing 400016, China
| | - Robert P. Ostrowski
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Yidan Liang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing 400016, China
| | - Jun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing 400016, China
| | - Xiang Xiang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing 400016, China
| | - Fuming Liang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing 400016, China
| | - Wenqiao Fu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing 400016, China
| | - Hao Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing 400016, China
| | - Xintong Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing 400016, China
| | - Jun Su
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing 400016, China
| | - Jiewen Deng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing 400016, China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing 400016, China
| |
Collapse
|
14
|
The regulation of necroptosis and perspectives for the development of new drugs preventing ischemic/reperfusion of cardiac injury. Apoptosis 2022; 27:697-719. [DOI: 10.1007/s10495-022-01760-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/11/2022]
|
15
|
Abd El-Aal SA, AbdElrahman M, Reda AM, Afify H, Ragab GM, El-Gazar AA, Ibrahim SSA. Galangin Mitigates DOX-induced Cognitive Impairment in Rats: Implication of NOX-1/Nrf-2/HMGB1/TLR4 and TNF-α/MAPKs/RIPK/MLKL/BDNF. Neurotoxicology 2022; 92:77-90. [PMID: 35843304 DOI: 10.1016/j.neuro.2022.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/03/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
The cognitive and behavioral decline observed in cancer survivors who underwent doxorubicin (DOX)-based treatment raises the need for therapeutic interventions to counteract these complications. Galangin (GAL) is a flavonoid-based phytochemical with pronounced protective effects in various neurological disorders. However, its impact on DOX-provoked neurotoxicity has not been clarified. Hence, the current investigation aimed to explore the ability of GAL to ameliorate DOX-provoked chemo-brain in rats. DOX (2mg/kg, once/week, i.p.) and GAL (50mg/kg, 5 times/week., via gavage) were administered for four successive weeks. The MWM and EPM tests were used to evaluate memory disruption and anxiety-like behavior, respectively. Meanwhile, targeted biochemical markers and molecular signals were examined by the aid of ELISA, Western blotting, and immune-histochemistry. In contrast to DOX-impaired rats, GAL effectively preserved hippocampal neurons, improved cognitive/behavioral functions, and enhanced the expression of the cell repair/growth index and BDNF. The antioxidant feature of GAL was confirmed by the amelioration of MDA, NO and NOX-1, along with restoring the Nrf-2/HO-1/GSH cue. In addition, GAL displayed marked anti-inflammatory properties as verified by the suppression of the HMGB1/TLR4 nexus and p-NF-κB p65 to inhibit TNF-α, IL-6, IL-1β, and iNOS. This inhibitory impact extended to entail astrocyte activation, as evidenced by the diminution of GFAP. These beneficial effects were associated with a notable reduction in p-p38MAPK, p-JNK1/2, and p-ERK1/2, as well as the necroptosis cascade p-RIPK1/p-RIPK3/p-MLKL. Together, these pleiotropic protective impacts advocate the concurrent use of GAL as an adjuvant agent for managing DOX-driven neurodegeneration and cognitive/behavioral deficits. DATA AVAILABILITY: The authors confirm that all relevant data are included in the supplementary materials.
Collapse
Affiliation(s)
- Sarah A Abd El-Aal
- Department of Pharmacy, Kut University College, Al Kut, Wasit 52001, Iraq.
| | - Mohamed AbdElrahman
- Department of Pharmacy, Al-Mustaqbal University College, Babylon 51001, Iraq; Department of Clinical Pharmacy, Badr University Hospital, Faculty of Medicine, Helwan University, Cairo 11795, Egypt
| | - Ahmed M Reda
- Department of Pharmacy, Kut University College, Al Kut, Wasit 52001, Iraq; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11562, Egypt
| | - Hassan Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11562, Egypt
| | - Ghada M Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12585, Egypt
| | - Amira A El-Gazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | | |
Collapse
|
16
|
Biological Effects and Mechanisms of Caspases in Early Brain Injury after Subarachnoid Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3345637. [PMID: 35847583 PMCID: PMC9277153 DOI: 10.1155/2022/3345637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022]
Abstract
Caspases are an evolutionarily conserved family of proteases responsible for mediating and initiating cell death signals. In the past, the dysregulated activation of caspases was reported to play diverse but equally essential roles in neurodegenerative diseases, such as brain injury and neuroinflammatory diseases. A subarachnoid hemorrhage (SAH) is a traumatic event that is either immediately lethal or induces a high risk of stroke and neurological deficits. Currently, the prognosis of SAH after treatment is not ideal. Early brain injury (EBI) is considered one of the main factors contributing to the poor prognosis of SAH. The mechanisms of EBI are complex and associated with oxidative stress, neuroinflammation, blood-brain barrier disruption, and cell death. Based on mounting evidence, caspases are involved in neuronal apoptosis or death, endothelial cell apoptosis, and increased inflammatory cytokine-induced by apoptosis, pyroptosis, and necroptosis in the initial stages after SAH. Caspases can simultaneously mediate multiple death modes and regulate each other. Caspase inhibitors (including XIAP, VX-765, and Z-VAD-FMK) play an essential role in ameliorating EBI after SAH. In this review, we explore the related pathways mediated by caspases and their reciprocal regulation patterns after SAH. Furthermore, we focus on the extensive crosstalk of caspases as a potential area of research on therapeutic strategies for treating EBI after SAH.
Collapse
|
17
|
Zhou J, Xu J, Li P, Sun S, Kadier Y, Zhou S, Cheng A. Necroptosis and Viral Myocarditis: Tumor Necrosis Factor α as a Novel Biomarker for the Diagnosis of Viral Myocarditis. Front Cell Dev Biol 2022; 10:826904. [PMID: 35602592 PMCID: PMC9114881 DOI: 10.3389/fcell.2022.826904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Programmed cell death (PCD), including necroptosis, has emerged as a significant pathway in cardiovascular diseases. The infection of viral myocarditis (VMC) could cause cardiomyocytes degeneration, necrosis, and immune-inflammatory myocardial response. In this review, we summarized and evaluated the available evidence on the pathogenesis, molecule mechanism, diagnosis, and potential treatment strategies of viral myocarditis, with a special focus on the novel mechanism of necroptosis for cardiomyocytes death. Studies have shown that tumor necrosis factor-alpha (TNF-α) is an important cytokine involved in the activation of necroptosis; an elevated level of TNF-α is continually reported in patients suffering from VMC, implicating its involvement in the pathogenesis of VMC. It is of great interest to explore the clinical implication of TNF-α. We subsequently conducted a meta-analysis on the efficacy of serum TNF-α expression level and its diagnostic accuracy on acute viral myocarditis detection. Taken together, the review demonstrates a compelling role of necroptosis involved in the pathogenesis of VMC. Further, applying TNF-α as a serological marker for the diagnosis of VMC may be a useful strategy.
Collapse
Affiliation(s)
- Jin Zhou
- Tianjin Chest Hospital, Tianjin, China
| | - Jing Xu
- Tianjin Chest Hospital, Tianjin, China
| | - Peng Li
- Tianjin Chest Hospital, Tianjin, China
| | - Shan Sun
- Tianjin Chest Hospital, Tianjin, China
| | | | - Shiying Zhou
- Hotan District People’s Hospital, Tianjin, China
| | - Aijuan Cheng
- Tianjin Chest Hospital, Tianjin, China
- *Correspondence: Aijuan Cheng,
| |
Collapse
|
18
|
Yin C, Zhang Q, Zhao J, Li Y, Yu J, Li W, Wang Q. Necrostatin-1 Against Sevoflurane-Induced Cognitive Dysfunction Involves Activation of BDNF/TrkB Pathway and Inhibition of Necroptosis in Aged Rats. Neurochem Res 2022; 47:1060-1072. [PMID: 35040026 DOI: 10.1007/s11064-021-03505-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022]
Abstract
Postoperative cognitive dysfunction (POCD) induced by anesthesia or surgery has become a common complication in the aged population. Sevoflurane, a clinical inhalation anesthetic, could stimulate calcium overload and necroptosis to POCD. In addition, necroptosis inhibitor necrostatin-1 (Nec-1) alleviated cognitive impairment caused by multiple causes, including postoperative cognitive impairment. However, whether Nec-1 exerts a neuroprotective effect on POCD via calcium and necroptosis remains unclear. We anesthetized Sprague-Dawley rats with sevoflurane to construct the POCD model and to explore the mechanism underlying neuroprotective effects of Nec-1 in POCD. Rats were treated with Nec-1 (6.25 mg/kg) 1 h prior to anesthesia. Open field test and Morris water maze were employed to detect the cognitive function. In this study, rats exposed to sevoflurane displayed cognitive dysfunction without changes in spontaneous activity; however, the sevoflurane-induced POCD could be relieved by Nec-1 pretreatment. Nec-1 decreased sevoflurane-induced calcium overload and calpain activity in the hippocampus. In addition, Nec-1 alleviated the expression of p-RIPK1, RIPK1, p-RIPK3, RIPK3, p-MLKL and MLKL. Furthermore, Nec-1 remarkably increased BDNF and p-TrkB/TrkB expression in the hippocampus of aged rats. Ultimately, our research manifests evidence that Nec-1 may play a neuroprotective role against sevoflurane-induced cognitive impairment via the increase of BDNF/TrkB and suppression of necroptosis-related pathway.
Collapse
Affiliation(s)
- Chunping Yin
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, China
| | - Qi Zhang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, China.,Department of Anesthesiology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Shijiazhuang City, Hebei, China
| | - Juan Zhao
- Teaching Experiment Center, Hebei Medical University, Shijiazhuang City, Hebei, China
| | - Yanan Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, China
| | - Jiaxu Yu
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, China
| | - Wei Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, China
| | - Qiujun Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, China.
| |
Collapse
|
19
|
Necrostatin-1 Relieves Learning and Memory Deficits in a Zebrafish Model of Alzheimer's Disease Induced by Aluminum. Neurotox Res 2022; 40:198-214. [PMID: 34982355 DOI: 10.1007/s12640-021-00463-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022]
Abstract
Aluminum (Al) is considered one of the environmental risk factors for Alzheimer's disease (AD). The present study aims to establish a zebrafish AD model induced by Al and explore if necrostation-1 (Nec-1), a specific inhibitor of necroptosis, is effective in relieving learning and memory deficits in the zebrafish AD models. We treated adult zebrafish with aluminum trichloride at various doses for 1 month, followed by a T-maze test to evaluate learning and memory performance. Al concentration, levels of acetylcholine (Ach), and AD-related protein and gene expression in the brain tissue were evaluated in the zebrafish AD models. Our results demonstrated that in the brain tissue of Al-treated zebrafish, Al accumulated, Ach levels decreased, and AD-related genes and proteins increased. As a result, the learning and memory performance of Al-treated zebrafish was impaired. This suggested that a zebrafish AD model was established. To test the effect of Nec-1 on the zebrafish AD model, we added Nec-1 into the culture medium of the Al-treated adult zebrafish. The results demonstrated that Nec-1 could relive the learning and memory deficits, enhance Ach levels and the numbers of neural cells, and impact necroptosis-related gene expression. We concluded that Nec-1 could reverse Al-induced learning and memory impairment and had potential theoretical value in the zebrafish AD model.
Collapse
|
20
|
Lin F, Li R, Tu WJ, Chen Y, Wang K, Chen X, Zhao J. An Update on Antioxidative Stress Therapy Research for Early Brain Injury After Subarachnoid Hemorrhage. Front Aging Neurosci 2021; 13:772036. [PMID: 34938172 PMCID: PMC8686680 DOI: 10.3389/fnagi.2021.772036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
Abstract
The main reasons for disability and death in aneurysmal subarachnoid hemorrhage (aSAH) may be early brain injury (EBI) and delayed cerebral ischemia (DCI). Despite studies reporting and progressing when DCI is well-treated clinically, the prognosis is not well-improved. According to the present situation, we regard EBI as the main target of future studies, and one of the key phenotype-oxidative stresses may be called for attention in EBI after laboratory subarachnoid hemorrhage (SAH). We summarized the research progress and updated the literature that has been published about the relationship between experimental and clinical SAH-induced EBI and oxidative stress (OS) in PubMed from January 2016 to June 2021. Many signaling pathways are related to the mechanism of OS in EBI after SAH. Several antioxidative stress drugs were studied and showed a protective response against EBI after SAH. The systematical study of antioxidative stress in EBI after laboratory and clinical SAH may supply us with new therapies about SAH.
Collapse
Affiliation(s)
- Fa Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Runting Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Wen-Jun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,The General Office of Stroke Prevention Project Committee, National Health Commission of the People's Republic of China, Beijing, China.,Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Li S, Qu L, Wang X, Kong L. Novel insights into RIPK1 as a promising target for future Alzheimer's disease treatment. Pharmacol Ther 2021; 231:107979. [PMID: 34480965 DOI: 10.1016/j.pharmthera.2021.107979] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/30/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an intractable neurodegenerative disease showing a clinical manifestation with memory loss, cognitive impairment and behavioral dysfunction. The predominant pathological characteristics of AD include neuronal loss, β-amyloid (Aβ) deposition and hyperphosphorylated Tau induced neurofibrillary tangles (NFTs), while considerable studies proved these could be triggered by neuronal death and neuroinflammation. Receptor-interacting protein kinase 1 (RIPK1) is a serine/threonine kinase existed at the cross-point of cell death and inflammatory signaling pathways. Emerging investigations have shed light on RIPK1 for its potential role in AD progression. The present review makes a bird's eye view on the functions of RIPK1 and mainly focus on the underlying linkages between RIPK1 and AD from comprehensive aspects including neuronal death, Aβ and Tau, inflammasome activation, BBB rupture, AMPK/mTOR, mitochondrial dysfunction and O-glcNAcylation. Moreover, the discovery of RIPK1 inhibitors, ongoing clinical trials along with future RIPK1-targeted therapeutics are also reviewed.
Collapse
Affiliation(s)
- Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lailiang Qu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
22
|
Yu JZ, Wang J, Sheridan SD, Perlis RH, Rasenick MM. N-3 polyunsaturated fatty acids promote astrocyte differentiation and neurotrophin production independent of cAMP in patient-derived neural stem cells. Mol Psychiatry 2021; 26:4605-4615. [PMID: 32504049 PMCID: PMC10034857 DOI: 10.1038/s41380-020-0786-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022]
Abstract
Evidence from epidemiological and laboratory studies, as well as randomized placebo-controlled trials, suggests supplementation with n-3 polyunsaturated fatty acids (PUFAs) may be efficacious for treatment of major depressive disorder (MDD). The mechanisms underlying n-3 PUFAs potential therapeutic properties remain unknown. There are suggestions in the literature that glial hypofunction is associated with depressive symptoms and that antidepressants may normalize glial function. In this study, induced pluripotent stem cells (iPSC)-derived neuronal stem cell lines were generated from individuals with MDD. Astrocytes differentiated from patient-derived neuronal stem cells (iNSCs) were verified by GFAP. Cells were treated with eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or stearic acid (SA). During astrocyte differentiation, we found that n-3 PUFAs increased GFAP expression and GFAP positive cell formation. BDNF and GDNF production were increased in the astrocytes derived from patients subsequent to n-3 PUFA treatment. Stearic Acid (SA) treatment did not have this effect. CREB activity (phosphorylated CREB) was also increased by DHA and EPA but not by SA. Furthermore, when these astrocytes were treated with n-3 PUFAs, the cAMP antagonist, RP-cAMPs did not block n-3 PUFA CREB activation. However, the CREB specific inhibitor (666-15) diminished BDNF and GDNF production induced by n-3 PUFA, suggesting CREB dependence. Together, these results suggested that n-3 PUFAs facilitate astrocyte differentiation, and may mimic effects of some antidepressants by increasing production of neurotrophic factors. The CREB-dependence and cAMP independence of this process suggests a manner in which n-3 PUFA could augment antidepressant effects. These data also suggest a role for astrocytes in both MDD and antidepressant action.
Collapse
Affiliation(s)
- Jiang-Zhou Yu
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Jennifer Wang
- Center for Experimental Drugs and Diagnostics and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Steven D Sheridan
- Center for Experimental Drugs and Diagnostics and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Roy H Perlis
- Center for Experimental Drugs and Diagnostics and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Division of Clinical Research, Massachusetts General Hospital, Boston, 02114, USA
| | - Mark M Rasenick
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
- Pax Neuroscience, Glenview, IL, 60025, USA.
| |
Collapse
|
23
|
Zhao X, Lu J, Chen X, Gao Z, Zhang C, Chen C, Qiao D, Wang H. Methamphetamine exposure induces neuronal programmed necrosis by activating the receptor-interacting protein kinase 3 -related signalling pathway. FASEB J 2021; 35:e21561. [PMID: 33864423 DOI: 10.1096/fj.202100188r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022]
Abstract
Methamphetamine (METH) is a synthetic drug with severe neurotoxicity, however, the regulation of METH-induced neuronal programmed necrosis remains poorly understood. The aim of this study was to identify the molecular mechanisms of METH-induced neuronal programmed necrosis. We found that neuronal programmed necrosis occurred in the striatum of brain samples from human and mice that were exposed to METH. The receptor-interacting protein kinase 3 (RIP3) was highly expressed in the neurons of human and mice exposed to METH, and RIP3-silenced or RIP1-inhibited protected neurons developed neuronal programmed necrosis in vitro and in vivo following METH exposure. Moreover, the RIP1-RIP3 complex causes cell programmed necrosis by regulating mixed lineage kinase domain-like protein (MLKL)-mediated cell membrane rupture and dynamin-related protein 1 (Drp1)-mediated mitochondrial fission. Together, these data indicate that RIP3 plays an indispensable role in the mechanism of METH-induced neuronal programmed necrosis, which may represent a potential therapeutic target for METH-induced neurotoxicity.
Collapse
Affiliation(s)
- Xu Zhao
- School of Forensic Medicine, Southern Medical University, Guangzhou, P.R. China
| | - Jiancong Lu
- School of Forensic Medicine, Southern Medical University, Guangzhou, P.R. China
| | - Xuebing Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, P.R. China
| | - Zhengxiang Gao
- School of Forensic Medicine, Southern Medical University, Guangzhou, P.R. China
| | - Cui Zhang
- School of Forensic Medicine, Southern Medical University, Guangzhou, P.R. China
| | - Chuanxiang Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, P.R. China
| | - Dongfang Qiao
- School of Forensic Medicine, Southern Medical University, Guangzhou, P.R. China
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
24
|
Zhang CS, Han Q, Song ZW, Jia HY, Shao TP, Chen YP. Hydrogen gas post-conditioning attenuates early neuronal pyroptosis in a rat model of subarachnoid hemorrhage through the mitoK ATP signaling pathway. Exp Ther Med 2021; 22:836. [PMID: 34149882 PMCID: PMC8200808 DOI: 10.3892/etm.2021.10268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Neuronal pyroptosis serves an important role in the progress of neurologic dysfunction following subarachnoid hemorrhage (SAH), which is predominantly caused by a ruptured aneurysm. Hydrogen gas has been previously reported to be an effective anti-inflammatory agent against ischemia-associated diseases by regulating mitochondrial function. The objective of the present study was to investigate the potential neuroprotective effects of hydrogen gas post-conditioning against neuronal pyroptosis after SAH, with specific focus on the mitochondrial ATP-sensitive K+ (mitoKATP) channels. Following SAH induction by endovascular perforation, rats were treated with inhalation of 2.9% hydrogen gas for 2 h post-perforation. Neurologic deficits, brain water content, reactive oxygen species (ROS) levels, neuronal pyroptosis, phosphorylation of ERK1/2, p38 MAPK and pyroptosis-associated proteins IL-1β and IL-18 were evaluated 24 h after perforation by a modified Garcia method, ratio of wet/dry weight, 2',7'-dichlorofluorescin diacetate, immunofluorescence and western blot assays, respectively. An inhibitor of the mitoKATP channel, 5-hydroxydecanoate sodium (5-HD), was used to assess the potential role of the mitoKATP-ERK1/2-p38 MAPK signal pathway. Hydrogen gas post-conditioning significantly alleviated brain edema and improved neurologic function, reduced ROS production and neuronal pyroptosis, suppressed the expression of IL-1β and IL-18 whilst upregulating ERK1/2 phosphorylation, but downregulated p38 MAPK activation 24 h post-SAH. These aforementioned effects neuroprotective were partially reversed by 5-HD treatment. Therefore, these observations suggest that post-conditioning with hydrogen gas ameliorated SAH-induced neuronal pyroptosis at least in part through the mitoKATP/ERK1/2/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Chuan-Suo Zhang
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Qian Han
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Zhao-Wei Song
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Hong-Yan Jia
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Tian-Peng Shao
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yan-Peng Chen
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
25
|
Tang JJ, Feng S, Chen XD, Huang H, Mao M, Wang HY, Li S, Lu XM, Wang YT. The Effects of P75NTR on Learning Memory Mediated by Hippocampal Apoptosis and Synaptic Plasticity. Curr Pharm Des 2021; 27:531-539. [PMID: 32938344 DOI: 10.2174/1381612826666200916145142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Neurological diseases bring great mental and physical torture to the patients, and have long-term and sustained negative effects on families and society. The attention to neurological diseases is increasing, and the improvement of the material level is accompanied by an increase in the demand for mental level. The p75 neurotrophin receptor (p75NTR) is a low-affinity neurotrophin receptor and involved in diverse and pleiotropic effects in the developmental and adult central nervous system (CNS). Since neurological diseases are usually accompanied by the regression of memory, the pathogenesis of p75NTR also activates and inhibits other signaling pathways, which has a serious impact on the learning and memory of patients. The results of studies shown that p75NTR is associated with LTP/LTD-induced synaptic enhancement and inhibition, suggest that p75NTR may be involved in the progression of synaptic plasticity. And its proapoptotic effect is associated with activation of proBDNF and inhibition of proNGF, and TrkA/p75NTR imbalance leads to pro-survival or proapoptotic phenomena. It can be inferred that p75NTR mediates apoptosis in the hippocampus and amygdale, which may affect learning and memory behavior. This article mainly discusses the relationship between p75NTR and learning memory and associated mechanisms, which may provide some new ideas for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Jun-Jie Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shuang Feng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xing-Dong Chen
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hua Huang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Min Mao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
26
|
Huang Z, Wan C, Wang Y, Qiao P, Zou Q, Ma J, Liu Z, Cai Z. Anti-Cognitive Decline by Yinxing-Mihuan-Oral-Liquid via Activating CREB/BDNF Signaling and Inhibiting Neuroinflammatory Process. Exp Aging Res 2021; 47:273-287. [PMID: 33499761 DOI: 10.1080/0361073x.2021.1878756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND: Cognitive decline in the normal aging process is one of the most common and prominent problems. Delaying and alleviating cognitive impairment is an important strategy of anti-aging. This study is to aim at investigating the effects of Yinxing-Mihuan-Oral-Liquid(GMOL) on the CREB/BDNF signaling in the normal aging process.METHODS: SD rats were randomly divided into GMOL group and control group. The Morris water maze (MWM) was introduced for behavioral test. Immunohistochemistry and immunofluorescence were used for cAMP response element binding protein 1(CREB1), p-CREB(Ser133), brain-derived neurotrophic factor(BDNF), synaptophysin(SYP) and glial fibrillary acidic protein(GFAP). Western blot was conducted for investigating the levels of CREB1 and p-CREB(Ser133), BDNF, SYP, GFAP and interleukin 6(IL-6). RESULTS: Our data showed that compared with the control group, GMOL group had higher expression of memory-related proteins, decreased inflammatory factors, and enhanced spatial learning and memory ability.CONCLUSION: The study results show that GMOL ameliorates cognitive impairment of the normal aged SD rats via enhancing the expression of memory biomarkers and inhibiting inflammatory process. The potential neuroprotective role of GMOL in the process of aging may be related to mitigating cognitive decline via activating CREB/BDNF signaling and inhibiting inflammatory process.
Collapse
Affiliation(s)
- Zhenting Huang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Chengqun Wan
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yangyang Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Peifeng Qiao
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Jingxi Ma
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Zhou Liu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhiyou Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
27
|
Sapio L, Salzillo A, Ragone A, Illiano M, Spina A, Naviglio S. Targeting CREB in Cancer Therapy: A Key Candidate or One of Many? An Update. Cancers (Basel) 2020; 12:cancers12113166. [PMID: 33126560 PMCID: PMC7693618 DOI: 10.3390/cancers12113166] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Only 5% of all drug-related targets currently move from preclinical to clinical in cancer, and just some of them achieve patient’s bedside. Among others, intratumor heterogeneity and preclinical cancer model limitations actually represent the main reasons for this failure. Cyclic-AMP response element-binding protein (CREB) has been defined as a proto-oncogene in different tumor types, being involved in maintenance and progression. Due to its relevance in tumor pathophysiology, many CREB inhibitor compounds have been developed and tested over the years. Herein, we examine the current state-of-the-art of both CREB and CREB inhibitors in cancer, retracing some of the most significant findings of the last years. While the scientific statement confers on CREB a proactive role in cancer, its therapeutic potential is still stuck at laboratory bench. Therefore, pursuing every concrete result to achieve CREB inhibition in clinical might give chance and future to cancer patients worldwide. Abstract Intratumor heterogeneity (ITH) is considered the major disorienting factor in cancer treatment. As a result of stochastic genetic and epigenetic alterations, the appearance of a branched evolutionary shape confers tumor plasticity, causing relapse and unfavorable clinical prognosis. The growing evidence in cancer discovery presents to us “the great paradox” consisting of countless potential targets constantly discovered and a small number of candidates being effective in human patients. Among these, cyclic-AMP response element-binding protein (CREB) has been proposed as proto-oncogene supporting tumor initiation, progression and metastasis. Overexpression and hyperactivation of CREB are frequently observed in cancer, whereas genetic and pharmacological CREB downregulation affects proliferation and apoptosis. Notably, the present review is designed to investigate the feasibility of targeting CREB in cancer therapy. In particular, starting with the latest CREB evidence in cancer pathophysiology, we evaluate the advancement state of CREB inhibitor design, including the histone lysine demethylases JMJD3/UTX inhibitor GSKJ4 that we newly identified as a promising CREB modulator in leukemia cells. Moreover, an accurate analysis of strengths and weaknesses is also conducted to figure out whether CREB can actually represent a therapeutic candidate or just one of the innumerable preclinical cancer targets.
Collapse
|
28
|
Mifflin L, Ofengeim D, Yuan J. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat Rev Drug Discov 2020; 19:553-571. [PMID: 32669658 PMCID: PMC7362612 DOI: 10.1038/s41573-020-0071-y] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a key mediator of cell death and inflammation. The unique hydrophobic pocket in the allosteric regulatory domain of RIPK1 has enabled the development of highly selective small-molecule inhibitors of its kinase activity, which have demonstrated safety in preclinical models and clinical trials. Potential applications of these RIPK1 inhibitors for the treatment of monogenic and polygenic autoimmune, inflammatory, neurodegenerative, ischaemic and acute conditions, such as sepsis, are emerging. This article reviews RIPK1 biology and disease-associated mutations in RIPK1 signalling pathways, highlighting clinical trials of RIPK1 inhibitors and potential strategies to mitigate development challenges. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) — a key mediator of cell death and inflammation — is activated in human diseases. Here, Yuan and colleagues discuss current understanding of RIPK1 biology and its association with diseases including inflammatory and autoimmune disorders, neurodegenerative diseases and sepsis. The clinical development of small-molecule RIPK1 inhibitors and associated challenges are discussed.
Collapse
Affiliation(s)
- Lauren Mifflin
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Dimitry Ofengeim
- Rare and Neurologic Disease Research, Sanofi, Framingham, MA, USA
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Jinawong K, Apaijai N, Wongsuchai S, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Necrostatin-1 Mitigates Cognitive Dysfunction in Prediabetic Rats With No Alteration in Insulin Sensitivity. Diabetes 2020; 69:1411-1423. [PMID: 32345751 DOI: 10.2337/db19-1128] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/17/2020] [Indexed: 11/13/2022]
Abstract
Previous studies showed that 12 weeks of high-fat diet (HFD) consumption caused not only prediabetes but also cognitive decline and brain pathologies. Recently, necrostatin-1 (nec-1), a necroptosis inhibitor, showed beneficial effects in brain against stroke. However, the comparative effects of nec-1 and metformin on cognition and brain pathologies in prediabetes have not been investigated. We hypothesized that nec-1 and metformin equally attenuated cognitive decline and brain pathologies in prediabetic rats. Rats (n = 32) were fed with either normal diet (ND) or HFD for 20 weeks. At week 13, ND-fed rats were given a vehicle (n = 8) and HFD-fed rats were randomly assigned into three subgroups (n = 8/subgroup) with vehicle, nec-1, or metformin for 8 weeks. Metabolic parameters, cognitive function, brain insulin receptor function, synaptic plasticity, dendritic spine density, microglial morphology, brain mitochondrial function, Alzheimer protein, and cell death were determined. HFD-fed rats exhibited prediabetes, cognitive decline, and brain pathologies. Nec-1 and metformin equally improved cognitive function, synaptic plasticity, dendritic spine density, microglial morphology, and brain mitochondrial function and reduced hyperphosphorylated Tau and necroptosis in HFD-fed rats. Interestingly, metformin, but not nec-1, improved brain insulin sensitivity in those rats. In conclusion, necroptosis inhibition directly improved cognition in prediabetic rats without alteration in insulin sensitivity.
Collapse
Affiliation(s)
- Kewarin Jinawong
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Supawit Wongsuchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
30
|
Cai GF, Sun ZR, Zhuang Z, Zhou HC, Gao S, Liu K, Shang LL, Jia KP, Wang XZ, Zhao H, Cai GL, Song WL, Xu SN. Cross electro-nape-acupuncture ameliorates cerebral hemorrhage-induced brain damage by inhibiting necroptosis. World J Clin Cases 2020; 8:1848-1858. [PMID: 32518774 PMCID: PMC7262720 DOI: 10.12998/wjcc.v8.i10.1848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/01/2020] [Accepted: 04/21/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Receptor interacting protein kinase 1 (RIPK1)-mediated cell death, including apoptosis and necroptosis, belongs to programmed cell death. It has been reported that RIPK1-mediated necroptosis exists in lesions of cerebral hemorrhage (CH). Electroacupuncture, a treatment derived from traditional Chinese medicine, could improve neurological impairment in patients with brain injury.
AIM To investigate the protective role of cross electro-nape acupuncture (CENA) in CH, and clarify the potential mechanism.
METHODS CH rat models were established, and CENA was applied to the experimental rats. Neurological functions and encephaledema were then measured. Necrotic cells in the brain of rats with CH were evaluated by propidium iodide staining. Necroptosis was assessed by immunofluorescence. Activation of the necroptosis-related pathway was detected by western blot. Extraction of brain tissue, cerebrospinal fluid and serum samples was conducted to measure the expression and secretion of inflammatory cytokines by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay.
RESULTS The necroptotic marker p-MLKL was detectable in the brains of rats with CH. Next, we found that CENA could ameliorate neurological functions in rat models of CH. Moreover, the upregulation of RIPK1-mediated necroptosis-related molecules in the brains of rats with CH were inhibited by CENA. Further investigation revealed that CENA partially blocked the interaction between RIPK1 and RIPK3. Finally, in vivo assays showed that CENA decreased the expression of the inflammatory cytokines tumor necrosis factor-α, interleukin-6 and interleukin-8 in CH rat models.
CONCLUSION These findings revealed that CENA exerts a protective role in CH models by inhibiting RIPK1-mediated necroptosis.
Collapse
Affiliation(s)
- Guo-Feng Cai
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, Heilongjiang Province, China
- Postdoctoral Research Station of Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150001, Heilongjiang Province, China
| | - Zhong-Ren Sun
- Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Zhe Zhuang
- Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150000, Heilongjiang Province, China
| | - Hai-Chun Zhou
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, Heilongjiang Province, China
| | - Shan Gao
- First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Kai Liu
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, Heilongjiang Province, China
| | - Li-Li Shang
- Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150000, Heilongjiang Province, China
| | - Kun-Ping Jia
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, Heilongjiang Province, China
| | - Xiu-Zhen Wang
- Hanan Branch of Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150001, Heilongjiang Province, China
| | - Hui Zhao
- Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150000, Heilongjiang Province, China
| | - Guo-Liang Cai
- Harbin Sport University, Harbin 150001, Heilongjiang Province, China
| | - Wen-Li Song
- Harbin Sport University, Harbin 150001, Heilongjiang Province, China
| | - Sheng-Nan Xu
- Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| |
Collapse
|
31
|
Lin DQ, Cai XY, Wang CH, Yang B, Liang RS. Optimal concentration of necrostatin-1 for protecting against hippocampal neuronal damage in mice with status epilepticus. Neural Regen Res 2020; 15:936-943. [PMID: 31719260 PMCID: PMC6990772 DOI: 10.4103/1673-5374.268903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/10/2019] [Accepted: 08/13/2019] [Indexed: 02/05/2023] Open
Abstract
Hippocampal neurons undergo various forms of cell death after status epilepticus. Necrostatin-1 specifically inhibits necroptosis mediated by receptor interacting protein kinase 1 (RIP1) and RIP3 receptors. However, there are no reports of necroptosis in mouse models of status epilepticus. Therefore, in this study, we investigated the effects of necrostatin-1 on hippocampal neurons in mice with status epilepticus, and, furthermore, we tested different amounts of the compound to identify the optimal concentration for inhibiting necroptosis and apoptosis. A mouse model of status epilepticus was produced by intraperitoneal injection of kainic acid, 12 mg/kg. Different concentrations of necrostatin-1 (10, 20, 40, and 80 μM) were administered into the lateral ventricle 15 minutes before kainic acid injection. Hippocampal damage was assessed by hematoxylin-eosin staining 24 hours after the model was successfully produced. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining, western blot assay and immunohistochemistry were used to evaluate the expression of apoptosis-related and necroptosis-related proteins. Necrostatin-1 alleviated damage to hippocampal tissue in the mouse model of epilepsy. The 40 μM concentration of necrostatin-1 significantly decreased the number of apoptotic cells in the hippocampal CA1 region. Furthermore, necrostatin-1 significantly downregulated necroptosis-related proteins (MLKL, RIP1, and RIP3) and apoptosis-related proteins (cleaved-Caspase-3, Bax), and it upregulated the expression of anti-apoptotic protein Bcl-2. Taken together, our findings show that necrostatin-1 effectively inhibits necroptosis and apoptosis in mice with status epilepticus, with the 40 μM concentration of the compound having an optimal effect. The experiments were approved by the Animal Ethics Committee of Fujian Medical University, China (approval No. 2016-032) on November 9, 2016.
Collapse
Affiliation(s)
- Dong-Qi Lin
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xin-Ying Cai
- Clinical Research Center, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong Province, China
| | - Chun-Hua Wang
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Bin Yang
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ri-Sheng Liang
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Correspondence to: Ri-Sheng Liang, .
| |
Collapse
|
32
|
Fang Y, Gao S, Wang X, Cao Y, Lu J, Chen S, Lenahan C, Zhang JH, Shao A, Zhang J. Programmed Cell Deaths and Potential Crosstalk With Blood-Brain Barrier Dysfunction After Hemorrhagic Stroke. Front Cell Neurosci 2020; 14:68. [PMID: 32317935 PMCID: PMC7146617 DOI: 10.3389/fncel.2020.00068] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Hemorrhagic stroke is a life-threatening neurological disease characterized by high mortality and morbidity. Various pathophysiological responses are initiated after blood enters the interstitial space of the brain, compressing the brain tissue and thus causing cell death. Recently, three new programmed cell deaths (PCDs), necroptosis, pyroptosis, and ferroptosis, were also found to be important contributors in the pathophysiology of hemorrhagic stroke. Additionally, blood-brain barrier (BBB) dysfunction plays a crucial role in the pathophysiology of hemorrhagic stroke. The primary insult following BBB dysfunction may disrupt the tight junctions (TJs), transporters, transcytosis, and leukocyte adhesion molecule expression, which may lead to brain edema, ionic homeostasis disruption, altered signaling, and immune infiltration, consequently causing neuronal cell death. This review article summarizes recent advances in our knowledge of the mechanisms regarding these new PCDs and reviews their contributions in hemorrhagic stroke and potential crosstalk in BBB dysfunction. Numerous studies revealed that necroptosis, pyroptosis, and ferroptosis participate in cell death after subarachnoid hemorrhage (SAH) and intracerebral hemorrhage (ICH). Endothelial dysfunction caused by these three PCDs may be the critical factor during BBB damage. Also, several signaling pathways were involved in PCDs and BBB dysfunction. These new PCDs (necroptosis, pyroptosis, ferroptosis), as well as BBB dysfunction, each play a critical role after hemorrhagic stroke. A better understanding of the interrelationship among them might provide us with better therapeutic targets for the treatment of hemorrhagic stroke.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Aluminum-induced "mixed" cell death in mice cerebral tissue and potential intervention. Neurotox Res 2019; 37:835-846. [PMID: 31721047 DOI: 10.1007/s12640-019-00123-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 10/04/2019] [Indexed: 01/14/2023]
Abstract
The brain is one of organs vulnerable to aluminum insult. Aluminum toxicity is involved in neurobehavioral deficit, neuronal cell dysfunction, and death. The aim of this study are as follows: (1) to evaluate the repairing efficiency of Necrostatin-1 (Nec-1), a cell death inhibitor, and Z-VAD-FMK, a pan-caspase inhibitor, on Al-induced neurobehavioral deficit and neuronal cell death, in order to evidence the cell death inducing ability of aluminum, and (2) to primarily explore the possibility of treating neuronal cell loss-related disease, such as Alzheimer's disease, with Nec-1 and Z-VAD in Al-induced dementia animal model. We found Nec-1 and Z-VAD-FMK alone or in combination could reduce aluminum-induced learning and memory impairment in mice. Pathohistological results indicated that Nec-1 and Z-VAD-FMK can decrease Al-induced neuronal death cell. In addition, some cell death-associated proteins in cell death signal pathway were inhibited by Nec-1 and Z-VAD-FMK in Al-exposed mice. In conclusions, Nec-1 and Z-VAD-FMK can repair the injury of learning and memory induced by aluminum in mice. Furthermore, Nec-1 was more obvious to repair the injury of learning and memory function compared with Z-VAD-FMK. Nec-1 and Z-VAD-FMK can repair the Al-induced morphological injury of cell and reduce the amounts of dead cell, and repairing effects were more significant at higher doses. The effect of Nec-1 was stronger than Z-VAD-FMK, though their mechanism was different. The combination of them had the strongest effect. Our study evidenced Al-induced neuronal necroptosis and apoptosis existing in animal model and suggested potential therapeutic effects of Nec-1 and Z-VAD-FMK on neuronal cell death in neurodegenerative diseases.
Collapse
|
34
|
Chen J, Jin H, Xu H, Peng Y, Jie L, Xu D, Chen L, Li T, Fan L, He P, Ying G, Gu C, Wang C, Wang L, Chen G. The Neuroprotective Effects of Necrostatin-1 on Subarachnoid Hemorrhage in Rats Are Possibly Mediated by Preventing Blood-Brain Barrier Disruption and RIP3-Mediated Necroptosis. Cell Transplant 2019; 28:1358-1372. [PMID: 31370690 PMCID: PMC6802141 DOI: 10.1177/0963689719867285] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/29/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
Despite the substantial efforts to elucidate the role of early brain injury in subarachnoid hemorrhage (SAH), an effective pharmaceutical therapy for patients with SAH continues to be unavailable. This study aims to reveal the role of necroptosis after SAH, and explore whether the disruption of the blood-brain barrier (BBB) and RIP3-mediated necroptosis following SAH in a rat SAH model are altered by necrostatin-1 via its selective inhibition of receptor-interacting protein kinase 1 (RIP1). Sixty-five rats were used in the experiments. The SAH model was established using endovascular perforation. Necrostatin-1 was intracerebroventricularly injected 1 h before SAH induction. The neuroprotective effects of necrostatin-1 were evaluated with multiple methods such as magnetic resonance imaging (MRI) scanning, immunohistochemistry, propidium iodide (PI) labeling, and western blotting. Pretreatment with necrostatin-1 attenuated brain swelling and reduced the lesion volume on T2 sequence and ventricular volume on MRI 72 h after SAH induction. Albumin leakage and the degradation of tight junction proteins were also ameliorated by necrostatin-1 administration. In addition, necrostatin-1 decreased the number of PI-positive cells in the basal cortex, reduced the levels of the RIP3 and MLKL proteins, and inhibited the production of the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. Based on the findings from the present study, the selective RIP1 inhibitor necrostatin-1 functioned as a neuroprotective agent after SAH by attenuating brain swelling and BBB disruption. Moreover, the necrostatin-1 pretreatment prevented SAH-induced necroptosis by suppressing the activity of the RIP3/MLKL signaling pathway. These results will provide insights into new drugs and pharmacological targets to manage SAH, which are worth further study.
Collapse
Affiliation(s)
- Jingsen Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
- All the authors contributed equally to this article
| | - Hanghuang Jin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
- Department of Neurosurgery, Affiliated Taizhou Municipal Hospital, Taizhou
University, Taizhou, China
- All the authors contributed equally to this article
| | - Hangzhe Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
- All the authors contributed equally to this article
| | - Yucong Peng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Liyong Jie
- Department of Radiology, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Demin Xu
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen,
China
| | - Lili Chen
- Department of Neurology, Xiasha Campus, Sir Run Run Shaw Hospital, School of
Medicine, Zhejiang University, Hangzhou, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Linfeng Fan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Pingyou He
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Guangyu Ying
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Chi Gu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Chun Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| |
Collapse
|