1
|
Wack DS, Schweser F, Wack AS, Muldoon SF, Slavakis K, McGranor C, Kelly E, Miletich RS, McNerney K. Speech in noise listening correlates identified in resting state and DTI MRI images. BRAIN AND LANGUAGE 2025; 260:105503. [PMID: 39667096 DOI: 10.1016/j.bandl.2024.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/09/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
This study presents an examination of the neural connectivity associated with processing speech in noisy environments, an ability that declines with age. We correlated subjects' speech-in-noise (SIN) ability with resting-state MRI scans and Fractional Anisotropy (FA) values from the auditory section of the corpus callosum, both with and without correcting for age. The results revealed that subjects who performed poorly on the right ear SIN test (QuickSIN, MedRx) had higher correlations between the primary auditory cortex and regions of the brain that process language. Subjects who performed well on the QuickSIN test had stronger correlations bilaterally between the primary auditory cortices, however, this finding was due to age. Likewise, FA values seem best explained by age not SIN. The Ig2 region of the insula showed significant correlation with right ear SIN when correcting for age.
Collapse
Affiliation(s)
- David S Wack
- Dept. of Nuclear Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Dept. of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Audrey S Wack
- The Boston University School of Medicine, Boston, MA, USA
| | - Sarah F Muldoon
- Dept. of Mathematics, University at Buffalo, The State University of New York, Buffalo, NY, USA; Institute for Artificial Intelligence and Data Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Neuroscience Program, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Konstantinos Slavakis
- Dept. of Information and Communications Engineering, Institute of Science, Tokyo, Japan
| | - Cheryl McGranor
- Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Erin Kelly
- Canon Medical Systems, USA, Tustin, CA, USA
| | - Robert S Miletich
- Dept. of Nuclear Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Kathleen McNerney
- Dept. of Speech-Language Pathology, SUNY Buffalo State, Buffalo, NY, USA
| |
Collapse
|
2
|
Su M, Wang S, Cheng O, Xie K, Peng J, Du X, Huang L, Feng T. Constipation is associated with emotional and cognitive impairment in patients with Parkinson's disease: A clinical and brain functional study. Neuroscience 2024; 559:17-25. [PMID: 39168174 DOI: 10.1016/j.neuroscience.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/21/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE Constipation frequently occurs in patients with Parkinson's disease (PD) and may be related to cognitive and emotional disorders. The aim of this study is to investigate the clinical and brain functional characteristics of patients with PD presenting with constipation. METHODS The motor and non-motor symptoms of patients with PD were evaluated, and a resting-state functional magnetic resonance imaging (RS-fMRI) study was conducted based on propensity score matching. Alterations in brain function were analyzed using regional homogeneity (ReHo) and functional connectivity (FC). RESULTS Compared with patients without constipation (PD-NC group), patients with constipation (PD-C group) had more serious motor and non-motor symptoms (including cognitive and emotional disorders along with visual hallucinations). Further, emotional and cognitive disorders were correlated with the occurrence of constipation in patients with PD. Compared with the PD-NC group, the PD-C group showed a reduced ReHo of the right insula and bilateral orbitofrontal cortex (OFC), increased ReHo of the left postcentral gyrus, and enhanced FC between the right OFC and the left middle temporal gyrus (MTG) and middle occipital gyrus (MOG). Additionally, the activity of the OFC and insula was significantly correlated with the constipation, mood, and cognitive levels of patients with PD. CONCLUSIONS Constipation in patients with PD is closely related to emotional and cognitive impairments, abnormal activity and FC of brain regions such as the right insula and bilateral OFC may play an important role in this.
Collapse
Affiliation(s)
- Meilan Su
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song Wang
- Department of Cardiovascular Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Kai Xie
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Peng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xinyi Du
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Kim G, Khan RA, Tai Y, Shahsavarani S, Husain FT. Gray matter volumetric changes in tinnitus: The impact of hearing loss and severity. Brain Res 2024; 1846:149264. [PMID: 39369776 DOI: 10.1016/j.brainres.2024.149264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Tinnitus is a phantom auditory sensation that commonly co-occurs with hearing loss. Both tinnitus and hearing loss can impact the quality of life, emotional well-being, and cognitive functioning of the affected individuals. While previous studies have highlighted structural alterations in hearing loss and/or tinnitus, the fundamental neural mechanisms underpinning tinnitus severity remain poorly understood. In this study, we conducted a voxel-based morphometry to investigate gray matter (GM) volume differences among groups of participants with varying tinnitus severity and hearing status, and controls within a large sample. We observed reduced GM volume in the left anterior insula and right planum polare in participants with hearing loss, regardless of their tinnitus status, compared to normal hearing controls. We noted decreased GM volume in the bilateral anterior and posterior insula for those with tinnitus and normal hearing compared to a normal hearing control group. Further, the tinnitus with hearing loss group showed decreased GM volume in the left planum polare, left inferior temporal gyrus, bilateral anterior temporal gyri, and right superior frontal gyrus compared to the normal hearing control group, suggesting a combined effect of hearing loss and tinnitus. While tinnitus severity did not show a significant overall effect, there was a significant positive correlation between tinnitus distress and GM volume in bilateral planum polare. Our findings enhance the understanding of structural brain changes related to hearing loss and tinnitus, and advance the overall knowledge of tinnitus pathophysiology, which can contribute to the development of more effective treatments for tinnitus.
Collapse
Affiliation(s)
- Gibbeum Kim
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States; Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States
| | - Rafay A Khan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States
| | - Yihsin Tai
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States; Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States; Department of Speech Pathology and Audiology, Ball State University, Muncie, IN 47306, United States
| | - Somayeh Shahsavarani
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States; Department of Audiology, San Jose State University, San Jose, CA 95192, United States
| | - Fatima T Husain
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States; Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61801, United States.
| |
Collapse
|
4
|
Chen C, Cao J, Zhang T, Zhang H, Shi Q, Li X, Wang L, Tian J, Huang G, Wang Y, Zhao L. Alterations in corpus callosum subregions morphology and functional connectivity in patients with adult-onset hypothyroidism. Brain Res 2024; 1840:149110. [PMID: 38964705 DOI: 10.1016/j.brainres.2024.149110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) brain abnormalities have been reported in the corpus callosum (CC) of patients with adult-onset hypothyroidism. However, no study has directly compared CC-specific morphological or functional alterations among subclinical hypothyroidism (SCH), overt hypothyroidism (OH), and healthy controls (HC). Moreover, the association of CC alterations with cognition and emotion is not well understood. METHODS Demographic data, clinical variables, neuropsychological scores, and MRI data of 152 participants (60 SCH, 37 OH, and 55 HC) were collected. This study investigated the clinical performance, morphological and functional changes of CC subregions across three groups. Moreover, a correlation analysis was performed to explore potential relationships between these factors. RESULTS Compared to HC, SCH and OH groups exhibited lower cognitive scores and higher depressive/anxious scores. Notably, rostrum and rostral body volume of CC was larger in the SCH group. Functional connectivity between rostral body, anterior midbody and the right precentral and dorsolateral superior frontal gyrus were increased in the SCH group. In contrast, the SCH and OH groups exhibited a decline in functional connectivity between splenium and the right angular gyrus. Within the SCH group, rostrum volume demonstrated a negative correlation with Montreal Cognitive Assessment and visuospatial/executive scores, while displaying a positive correlation with 24-item Hamilton Depression Rating Scale scores. In the OH group, rostral body volume exhibited a negative correlation with serum thyroid stimulating hormone levels, while a positive correlation with serum total thyroxine and free thyroxine levels. CONCLUSIONS This study suggests that patients with different stages of adult-onset hypothyroidism may exhibit different patterns of CC abnormalities. These findings offer new insights into the neuropathophysiological mechanisms in hypothyroidism.
Collapse
Affiliation(s)
- Chen Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China.
| | - Jiancang Cao
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China.
| | - Taotao Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China.
| | - Huiyan Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, China.
| | - Qian Shi
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Xiaotao Li
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China.
| | - Liting Wang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Jinghe Tian
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China.
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510000, China.
| | - Lianping Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China.
| |
Collapse
|
5
|
Song J, Wang Y, Ouyang F, Zeng X, Yang J. Differences in brain functional connectivity between tinnitus with or without hearing loss. Neuroreport 2024; 35:712-720. [PMID: 38829954 DOI: 10.1097/wnr.0000000000002057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
To explore the differences in brain imaging in tinnitus with or without hearing loss (HL). We acquired functional MRI scans from 26 tinnitus patients with HL (tinnitus-HL), 24 tinnitus patients with no HL (tinnitus-NHL), and 26 healthy controls (HCs) matched by age and sex. The left and right thalamus were selected as seeds to study the endogenous functional connectivity (FC) of the whole brain, and its correlation with clinical indices was analyzed. Brain regions showing FC differences among the three groups included the Heschl gyrus (HES), right Hippocampus (HIP), right Amygdala (AMYG), left Calcarine fissure and surrounding cortex (CAL). Post hoc analysis showed that the thalamus-HIP connection and thalamus-lingual gyrus (LING) connection were enhanced in the tinnitus-NHL group, as compared to tinnitus-HL. Compared with HCs, the tinnitus-NHL group showed an enhanced connection between the thalamus and the left Inferior occipital gyrus, left CAL and LING. While in the tinnitus-HL group, the connection between the thalamus and several brain regions (right HES, right AMYG, etc) was weakened. In the tinnitus-HL group, the tinnitus handicap inventory scores were positively correlated with the FC of the left thalamus and right HES, right thalamus and right Rolandic operculum. The duration of tinnitus was negatively correlated with the FC of the right thalamus and right HIP. Abnormal FC in the thalamus may play an important role in the pathogenesis of tinnitus. Tinnitus-NHL and tinnitus-HL show different connection patterns, indicating that there are some differences in their pathogenesis.
Collapse
Affiliation(s)
- Jianxiong Song
- Department of Cariology and Endodontics, Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University
- Department of Otolaryngology
| | | | - Fang Ouyang
- Department of Endocrinology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | | | - Jian Yang
- Department of Cariology and Endodontics, Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University
| |
Collapse
|
6
|
Zhu Y, Lai X, Wang M, Tang X, Wan T, Li B, Liu X, Wu J, He L, He Y. Abnormal Functional Connectivity Intra- and Inter-Network in Resting-State Brain Networks of Patients with Toothache. J Pain Res 2024; 17:2111-2120. [PMID: 38903397 PMCID: PMC11189307 DOI: 10.2147/jpr.s456437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
Objective To separate the resting-state network of patients with dental pain using independent component analysis (ICA) and analyze abnormal changes in functional connectivity within as well as between the networks. Patients and Methods Twenty-three patients with dental pain and 30 healthy controls participated in this study. We extracted the resting-state functional network components of both using ICA. Functional connectivity differences within 14 resting-state brain networks were analyzed at the voxel level. Directional interactions between networks were analyzed using Granger causality analysis. Subsequently, functional connectivity values and causal coefficients were assessed for correlations with clinical parameters. Results Compared to healthy controls, we found enhanced functional connectivity in the left superior temporal gyrus of anterior protrusion network and the right Rolandic operculum of auditory network in patients with dental pain (p<0.01 and cluster-level p<0.05, Gaussian random field corrected). In contrast, functional connectivity of the right precuneus in the precuneus network was reduced, and were significantly as well as negatively correlated to those of the Visual Analogue Scale (r=-4.93, p=0.017), Hamilton Anxiety Scale (r=-0.46, p=0.027), and Hamilton Depression Scale (r=-0.563, p<0.01), using the Spearman correlation analysis. Regarding the causal relationship between resting-state brain networks, we found increased connectivity from the language network to the precuneus in patients with dental pain (p<0.05, false discovery rate corrected). However, the increase in causal coefficients from the verbal network to the precuneus network was independent of clinical parameters. Conclusion Patients with toothache exhibited abnormal functional changes in cognitive-emotion-related brain networks, such as the salience, auditory, and precuneus networks, thereby offering a new imaging basis for understanding central neural mechanisms in dental pain patients.
Collapse
Affiliation(s)
- Yuping Zhu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Xunfu Lai
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Mengting Wang
- Department of Radiology, Yichang Central People’s Hospital, Yichang, People’s Republic of China
| | - Xin Tang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Tianyi Wan
- Department of Radiology, Jiangxi Provincial People’s Hospital, Nanchang, People’s Republic of China
| | - Bin Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Xiaoming Liu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Jialin Wu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Lei He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Yulin He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
7
|
Shin S, Nam HY. Characteristics of brain glucose metabolism and metabolic connectivity in noise-induced hearing loss. Sci Rep 2023; 13:21889. [PMID: 38081979 PMCID: PMC10713681 DOI: 10.1038/s41598-023-48911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
The purpose of this study was to evaluate the differences in cerebral glucose metabolism and metabolic connectivity between noise-induced hearing loss (NIHL) subjects and normal subjects. Eighty-nine subjects who needed close observation for NIHL or were diagnosed with NIHL and 89 normal subjects were enrolled. After pre-processing of positron emission tomography images including co-registration, spatial normalization, and smoothing, a two-sample t-test was conducted to compare cerebral glucose metabolism between the two groups. To evaluate metabolic connectivity between two groups, BRAPH-BRain Analysis using graPH theory, a software package to perform graph theory analysis of the brain connectome was used. NIHL subjects showed hypometabolism compared to normal subjects in both insulae (x - 38, y - 18, z 4; × 42, y - 12, z 4) and right superior temporal gyrus (× 44, y 16, z - 20). No brain regions showed hypermetabolism in the NIHL subjects. In metabolic connectivity analysis, NIHL subjects showed decreased average strength, global efficiency, local efficiency, and mean clustering coefficient when compared with normal subjects. Decreased glucose metabolism and metabolic connectivity in NIHL subject might reflect decreased auditory function. It might be characteristic of sensorineural hearing loss.
Collapse
Affiliation(s)
- Seunghyeon Shin
- Department of Nuclear Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Hyun-Yeol Nam
- Department of Nuclear Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea.
| |
Collapse
|
8
|
Zhang C, Wang X, Ding Z, Zhou H, Liu P, Xue X, Wang L, Jiang Y, Chen J, Shen W, Yang S, Wang F. Study on tinnitus-related electroencephalogram microstates in patients with vestibular schwannomas. Front Neurosci 2023; 17:1159019. [PMID: 37090804 PMCID: PMC10118047 DOI: 10.3389/fnins.2023.1159019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Tinnitus is closely associated with cognition functioning. In order to clarify the central reorganization of tinnitus in patients with vestibular schwannoma (VS), this study explored the aberrant dynamics of electroencephalogram (EEG) microstates and their correlations with tinnitus features in VS patients. Clinical and EEG data were collected from 98 VS patients, including 76 with tinnitus and 22 without tinnitus. Microstates were clustered into four categories. Our EEG microstate analysis revealed that VS patients with tinnitus exhibited an increased frequency of microstate C compared to those without tinnitus. Furthermore, correlation analysis demonstrated that the Tinnitus Handicap Inventory (THI) score was negatively associated with the duration of microstate A and positively associated with the frequency of microstate C. These findings suggest that the time series and syntax characteristics of EEG microstates differ significantly between VS patients with and without tinnitus, potentially reflecting abnormal allocation of neural resources and transition of functional brain activity. Our results provide a foundation for developing diverse treatments for tinnitus in VS patients.
Collapse
Affiliation(s)
- Chi Zhang
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Zhan Tan Temple Outpatient Department, Central Medical Branch of PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
| | - Xiaoguang Wang
- Zhan Tan Temple Outpatient Department, Central Medical Branch of PLA General Hospital, Beijing, China
| | - Zhiwei Ding
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Hanwen Zhou
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Peng Liu
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Xinmiao Xue
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Li Wang
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yuke Jiang
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Jiyue Chen
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Weidong Shen
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shiming Yang
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fangyuan Wang
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Fangyuan Wang,
| |
Collapse
|
9
|
Zhu W, Chen F, Yin D, Chen K, Wang S. Changes in brain gray matter volume in nasopharyngeal carcinoma patients after radiotherapy in long-term follow-up. Braz J Otorhinolaryngol 2023; 89:477-484. [PMID: 36805347 PMCID: PMC10165243 DOI: 10.1016/j.bjorl.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/13/2022] [Accepted: 01/28/2023] [Indexed: 02/10/2023] Open
Abstract
OBJECTIVES The aim of this study was to examine the changes in gray matter in nasopharyngeal carcinoma patients with normal hearing (Group 1) and nasopharyngeal carcinoma patients with hearing loss (Group 2) after radiotherapy using voxel-based morphological analysis and to analyze the relationship with the radiation doses of the temporal lobe. METHODS 21 patients in Group 1, 14 patients in Group 2, and 21 healthy volunteers were selected. All participants underwent an otologic examination and three-dimensional magnetization preparatory rapid acquisition gradient echo sequence scan. The correlation between the variation of whole brain gray matter volume and the doses of the temporal lobe was analyzed by Data Processing & Analysis for Brain Imaging software. RESULTS Compared with the normal control group, the brain areas with reduced gray matter volume in nasopharyngeal carcinoma patients after radiotherapy were mainly in the left posterior cerebellar lobe (T = -8.797), left insular lobe (T = -7.96), and the right insular lobe (T = -6.632). Compared to Group 1, the brain areas of Group 2 patients with reduced gray matter volume were mainly in the left superior temporal gyrus (T = -2.366), left olfactory bulb (T = -2.52), left Rolandic operculum (T = -2.431), and right olfactory bulb (T = -3.100). Compared with Group 1, the brain areas of Group 2 patients with increased gray matter volume were mainly in the left calcarine sulcus (T=3.425) and right calcarine sulcus (T=3.169). There were no correlations between the changes of brain gray matter volume and the radiation doses of the temporal lobe in both Group 1 and Group 2. CONCLUSIONS The radiotherapy may cause the changes of brain areas associated with cognitive function in nasopharyngeal carcinoma in a long-term follow-up. At the same time, nasopharyngeal carcinoma patients with the radiation-induced hearing loss had abnormal gray matter volumes in the auditory center and other sensory centers. Our findings might provide new understanding into the pathogenesis of radiation-induced brain damage in normal-appearing brain tissue. Yet this exploratory study should be taken with caution.
Collapse
Affiliation(s)
- Wenjia Zhu
- Fudan University, Shanghai Medical College, Huashan Hospital, Department of Radiotherapy, Shanghai, China; Eye & ENT Hospital of Fudan University, Department of Radiation Oncology, Shanghai, China
| | - Fu Chen
- Eye & ENT Hospital of Fudan University, Department of Radiation Oncology, Shanghai, China
| | - Dongming Yin
- Zhongshan Hospital Fudan University, Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai, China
| | - Keguang Chen
- Zhongshan Hospital Fudan University, Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai, China.
| | - Shengzi Wang
- Eye & ENT Hospital of Fudan University, Department of Radiation Oncology, Shanghai, China.
| |
Collapse
|
10
|
Zhang M, Siegle GJ. Linking Affective and Hearing Sciences-Affective Audiology. Trends Hear 2023; 27:23312165231208377. [PMID: 37904515 PMCID: PMC10619363 DOI: 10.1177/23312165231208377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 11/01/2023] Open
Abstract
A growing number of health-related sciences, including audiology, have increasingly recognized the importance of affective phenomena. However, in audiology, affective phenomena are mostly studied as a consequence of hearing status. This review first addresses anatomical and functional bidirectional connections between auditory and affective systems that support a reciprocal affect-hearing relationship. We then postulate, by focusing on four practical examples (hearing public campaigns, hearing intervention uptake, thorough hearing evaluation, and tinnitus), that some important challenges in audiology are likely affect-related and that potential solutions could be developed by inspiration from affective science advances. We continue by introducing useful resources from affective science that could help audiology professionals learn about the wide range of affective constructs and integrate them into hearing research and clinical practice in structured and applicable ways. Six important considerations for good quality affective audiology research are summarized. We conclude that it is worthwhile and feasible to explore the explanatory power of emotions, feelings, motivations, attitudes, moods, and other affective processes in depth when trying to understand and predict how people with hearing difficulties perceive, react, and adapt to their environment.
Collapse
Affiliation(s)
- Min Zhang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Greg J. Siegle
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Dong H, Li N, Fan L, Wei J, Xu J. Integrative interaction of emotional speech in audio-visual modality. Front Neurosci 2022; 16:797277. [PMID: 36440282 PMCID: PMC9695733 DOI: 10.3389/fnins.2022.797277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Emotional clues are always expressed in many ways in our daily life, and the emotional information we receive is often represented by multiple modalities. Successful social interactions require a combination of multisensory cues to accurately determine the emotion of others. The integration mechanism of multimodal emotional information has been widely investigated. Different brain activity measurement methods were used to determine the location of brain regions involved in the audio-visual integration of emotional information, mainly in the bilateral superior temporal regions. However, the methods adopted in these studies are relatively simple, and the materials of the study rarely contain speech information. The integration mechanism of emotional speech in the human brain still needs further examinations. In this paper, a functional magnetic resonance imaging (fMRI) study was conducted using event-related design to explore the audio-visual integration mechanism of emotional speech in the human brain by using dynamic facial expressions and emotional speech to express emotions of different valences. Representational similarity analysis (RSA) based on regions of interest (ROIs), whole brain searchlight analysis, modality conjunction analysis and supra-additive analysis were used to analyze and verify the role of relevant brain regions. Meanwhile, a weighted RSA method was used to evaluate the contributions of each candidate model in the best fitted model of ROIs. The results showed that only the left insula was detected by all methods, suggesting that the left insula played an important role in the audio-visual integration of emotional speech. Whole brain searchlight analysis, modality conjunction analysis and supra-additive analysis together revealed that the bilateral middle temporal gyrus (MTG), right inferior parietal lobule and bilateral precuneus might be involved in the audio-visual integration of emotional speech from other aspects.
Collapse
Affiliation(s)
- Haibin Dong
- Tianjin Key Lab of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Na Li
- Tianjin Key Lab of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jianguo Wei
- Tianjin Key Lab of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Junhai Xu
- Tianjin Key Lab of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University, Tianjin, China
- *Correspondence: Junhai Xu,
| |
Collapse
|
12
|
Xu XM, Zhang YQ, Zang FC, Lu CQ, Liu LJ, Wang J, Salvi R, Chen YC, Teng GJ. Alterations to cognitive abilities and functional networks in rats post broad-band intense noise exposure. Brain Imaging Behav 2022; 16:1884-1892. [PMID: 35543862 DOI: 10.1007/s11682-022-00643-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 11/25/2022]
Abstract
This study aimed to investigate the alterations of cognition and functional connectivity post noise, and find the progress and neural substrates of noise induced hearing loss (NIHL)-associated cognitive impairment. We exposed rats to 122 dB broad-band noise for 2 h to induce hearing loss and the auditory function was assessed by measuring auditory brainstem response thresholds. Morris water maze test and resting state MRI were computed at 0 day, 1, 3, 6 months post noise to reveal cognitive ability and neural substrate. The interregional connections in the auditory network and default mode network, as well as the connections using the auditory cortex and cingulate cortex as seeds were also examined addtionally. The deficit in spatial learning/memory was only observed at 6 months after noise exposure. The internal connections in the auditory network and default mode network were enhanced at 0 day and decreased at 6 months post noise. The connectivity using the auditory cortex and cingulate cortex as seeds generally followed the rule of "enhancement-normal-decrease-widely decrease". A new model accounting for arousal, dementia, motor control of NIHL in is proposed. Our study highlights the fundamental flexibility of neural systems, and may also point toward novel therapeutic strategies for treating sensory disorders.
Collapse
Affiliation(s)
- Xiao-Min Xu
- Department of Radiology, Zhongda Hospital, Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, China
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Yu-Qun Zhang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng-Chao Zang
- Department of Radiology, Zhongda Hospital, Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Chun-Qiang Lu
- Department of Radiology, Zhongda Hospital, Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Li-Jie Liu
- Institute of Life Sciences, Southeast University, Nanjing, China
| | - Jian Wang
- School of Human Communication Disorders, Dalhousie University, Halifax, Canada
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| | - Gao-Jun Teng
- Department of Radiology, Zhongda Hospital, Southeast University, No.87 Dingjiaqiao Road, Nanjing, 210009, China.
| |
Collapse
|
13
|
Ma W, Zhang Y, Li X, Liu S, Gao Y, Yang J, Xu L, Liang H, Ren F, Gao F, Wang Y. High-Frequency Hearing Loss Is Associated With Anxiety and Brain Structural Plasticity in Older Adults. Front Aging Neurosci 2022; 14:821537. [PMID: 35360202 PMCID: PMC8961435 DOI: 10.3389/fnagi.2022.821537] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/09/2022] [Indexed: 12/01/2022] Open
Abstract
Age-related hearing loss (ARHL) is a kind of symmetrical and slow sensorineural hearing loss, which is a common condition in older adults. The characteristic of ARHL is hearing loss beginning in the high-frequency region and spreading toward low-frequency with age. Previous studies have linked it to anxiety, suggesting that brain structure may be involved in compensatory plasticity after partial hearing deprivation. However, the neural mechanisms of underlying ARHL-related anxiety remain unclear. The purpose of this cross-sectional study was to explore the interactions among high-frequency hearing loss and anxiety as well as brain structure in older adults. Sixty-seven ARHL patients and 68 normal hearing (NH) controls participated in this study, and the inclusion criterion of ARHL group was four-frequency (0.5, 1, 2, and 4 kHz) pure tone average (PTA) > 25 decibels hearing level of the better hearing ear. All participants performed three-dimensional T1-weighted magnetic resonance imaging (MRI), pure tone audiometry tests, anxiety and depression scales. Our results found gray matter volume (GMV) decreased in 20 brain regions in the ARHL group compared with the NH group, and a positive correlation existed between high-frequency pure tone audiometry (H-PT) and anxiety scores in the ARHL group. Among 20 brain regions, we also found the GMVs of the middle cingulate cortex (MCC), and the hippocampal/parahippocampal (H-P) regions were associated with H-PT and anxiety scores in all participants separately. However, the depressive symptoms indicated no relationship with hearing assessment or GMVs. Our findings revealed that the crucial role of MCC and H-P in a link of anxiety and hearing loss in older adults.
Collapse
Affiliation(s)
- Wen Ma
- Department of Otolaryngology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yue Zhang
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Xiao Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Siqi Liu
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Yuting Gao
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Jing Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Longji Xu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hudie Liang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fuxin Ren
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Wang
- School of Life Sciences, Tiangong University, Tianjin, China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
14
|
Xing C, Chen YC, Shang S, Xu JJ, Chen H, Yin X, Wu Y, Zheng JX. Abnormal Static and Dynamic Functional Network Connectivity in Patients With Presbycusis. Front Aging Neurosci 2022; 13:774901. [PMID: 35069176 PMCID: PMC8766420 DOI: 10.3389/fnagi.2021.774901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Aim: This study aimed to investigate abnormal static and dynamic functional network connectivity (FNC) and its association with cognitive function in patients with presbycusis. Methods: In total, 60 patients with presbycusis and 60 age-, sex-, and education-matched healthy controls (HCs) underwent resting-state functional MRI (rs-fMRI) and cognitive assessments. Group independent component analysis (ICA) was carried out on the rs-fMRI data, and eight resting-state networks (RSNs) were identified. Static and dynamic FNCs (sFNC and dFNC) were then constructed to evaluate differences in RSN connectivity between the patients with presbycusis and the HCs. Furthermore, the correlations between these differences and cognitive scores were analyzed. Results: Patients with presbycusis had differences in sFNC compared with HCs, mainly reflected in decreased sFNC in the default mode network (DMN)-left frontoparietal network (LFPN) and attention network (AN)-cerebellum network (CN) pairs, but they had increased sFNC in the auditory network (AUN) between DMN domains. The decreased sFNC in the DMN-LFPN pair was negatively correlated with their TMT-B score (r = –0.441, p = 0.002). Patients with presbycusis exhibited aberrant dFNCs in State 2 and decreased dFNCs between the CN and AN and the visual network (VN). Moreover, the presbycusis group had a shorter mean dwell time (MDT) and fraction time (FT) in State 3 (p = 0.0027; p = 0.0031, respectively). Conclusion: This study highlighted differences in static and dynamic functional connectivity in patients with presbycusis and suggested that FNC may serve as an important biomarker of cognitive performance since abnormal alterations can better track cognitive impairment in presbycusis.
Collapse
Affiliation(s)
- Chunhua Xing
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Song’an Shang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin-Jing Xu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Yuanqing Wu,
| | - Jin-Xia Zheng
- Department of Radiology, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jin-Xia Zheng,
| |
Collapse
|
15
|
Fitzhugh MC, Pa J. Longitudinal Changes in Resting-State Functional Connectivity and Gray Matter Volume Are Associated with Conversion to Hearing Impairment in Older Adults. J Alzheimers Dis 2022; 86:905-918. [PMID: 35147536 PMCID: PMC10796152 DOI: 10.3233/jad-215288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Hearing loss was recently identified as a modifiable risk factor for dementia although the potential mechanisms explaining this relationship are unknown. OBJECTIVE The current study examined longitudinal change in resting-state fMRI functional connectivity and gray matter volume in individuals who developed a hearing impairment compared to those whose hearing remained normal. METHODS This study included 440 participants from the UK Biobank: 163 who had normal hearing at baseline and impaired hearing at follow-up (i.e., converters, mean age = 63.11±6.33, 53% female) and 277 who had normal hearing at baseline and maintained normal hearing at follow-up (i.e., non-converters, age = 63.31±5.50, 50% female). Functional connectivity was computed between a priori selected auditory seed regions (left and right Heschl's gyrus and cytoarchitectonic subregions Te1.0, Te1.1, and Te1.2) and select higher-order cognitive brain networks. Gray matter volume within these same regions was also obtained. RESULTS Converters had increased connectivity from left Heschl's gyrus to left anterior insula and from right Heschl's gyrus to right anterior insula, and decreased connectivity between right Heschl's gyrus and right hippocampus, compared to non-converters. Converters also had reduced gray matter volume in left hippocampus and left lateral visual cortex compared to non-converters. CONCLUSION These findings suggest that conversion to a hearing impairment is associated with altered brain functional connectivity and gray matter volume in the attention, memory, and visual processing regions that were examined in this study.
Collapse
Affiliation(s)
- Megan C. Fitzhugh
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Judy Pa
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Belkhiria C, Vergara RC, Martinez M, Delano PH, Delgado C. Neural links between facial emotion recognition and cognitive impairment in presbycusis. Int J Geriatr Psychiatry 2021; 36:1171-1178. [PMID: 33503682 DOI: 10.1002/gps.5501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/05/2020] [Accepted: 01/22/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Facial emotion recognition (FER) is impaired in people with dementia and with severe to profound hearing loss, probably reflecting common neural changes. Here, we aim to study the association between brain structures and FER impairment in mild to moderate age-related hearing loss participants. METHODS We evaluated FER in a cross-sectional cohort of 111 Chilean nondemented elderly participants. They were assessed for FER in seven different categories using 35 facial stimuli. We collected pure-tone average (PTA) audiometric thresholds, cognitive and neuropsychiatric assessments, and morphometric brain imaging using a 3-Tesla MRI. RESULTS According to PTA threshold levels, participants were classified as controls (≤25 dB, n = 56) or presbycusis (>25 dB, n = 55), with an average PTA of 17.08 ± 4.8 dB HL and 36.27 ± 9.5 dB HL respectively. Poorer total FER score was correlated with worse hearing thresholds (r = -0.23, p < 0.05) in participants with presbycusis. Multiple regression models explained 57 % of the variability of FER in presbycusis and 10% in controls. In both groups, the main determinant of FER was cognitive performance. In the brain structure of presbycusis participants, FER was correlated with the atrophy of the right insula, right hippocampus, bilateral cingulate cortex and multiple areas of the temporal cortex. In controls, FER was only associated with bilateral middle temporal cortex volume. CONCLUSIONS FER impairment in presbycusis is distinctively associated with atrophy of neural structures engaged in the perceptual and conceptual level of face emotion processing.
Collapse
Affiliation(s)
- Chama Belkhiria
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo C Vergara
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Kinesiology Department, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Melissa Martinez
- Neurology and Neurosurgery Department, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Paul H Delano
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Otolaryngology Department, Hospital Clínico de la Universidad de Chile, Santiago, Chile
- Centro Avanzado de Ingeniería Eléctrica y Electrónica, AC3E, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carolina Delgado
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Neurology and Neurosurgery Department, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Zhang G, Xu LC, Zhang MF, Zou Y, He LM, Cheng YF, Zhang DS, Zhao WB, Wang XY, Wang PC, Zhang GY. Changes of the Brain Causal Connectivity Networks in Patients With Long-Term Bilateral Hearing Loss. Front Neurosci 2021; 15:628866. [PMID: 34276277 PMCID: PMC8280322 DOI: 10.3389/fnins.2021.628866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
It remains poorly understood how brain causal connectivity networks change following hearing loss and their effects on cognition. In the current study, we investigated this issue. Twelve patients with long-term bilateral sensorineural hearing loss [mean age, 55.7 ± 2.0; range, 39–63 years; threshold of hearing level (HL): left ear, 49.0 ± 4.1 dB HL, range, 31.25–76.25 dB HL; right ear, 55.1 ± 7.1 dB HL, range, 35–115 dB HL; the duration of hearing loss, 16.67 ± 4.5, range, 3–55 years] and 12 matched normally hearing controls (mean age, 52.3 ± 1.8; range, 42–63 years; threshold of hearing level: left ear, 17.6 ± 1.3 dB HL, range, 11.25–26.25 dB HL; right ear, 19.7 ± 1.3 dB HL, range, 8.75–26.25 dB HL) participated in this experiment. We constructed and analyzed the causal connectivity networks based on functional magnetic resonance imaging data of these participants. Two-sample t-tests revealed significant changes of causal connections and nodal degrees in the right secondary visual cortex, associative visual cortex, right dorsolateral prefrontal cortex, left subgenual cortex, and the left cingulate cortex, as well as the shortest causal connectivity paths from the right secondary visual cortex to Broca’s area in hearing loss patients. Neuropsychological tests indicated that hearing loss patients presented significant cognitive decline. Pearson’s correlation analysis indicated that changes of nodal degrees and the shortest causal connectivity paths were significantly related with poor cognitive performances. We also found a cross-modal reorganization between associative visual cortex and auditory cortex in patients with hearing loss. Additionally, we noted that visual and auditory signals had different effects on neural activities of Broca’s area, respectively. These results suggest that changes in brain causal connectivity network are an important neuroimaging mark of cognitive decline. Our findings provide some implications for rehabilitation of hearing loss patients.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Otorhinolaryngology and Head-Neck Surgery, The Second Affiliated Hospital, Shandong First Medical University, Tai'an, China
| | - Long-Chun Xu
- Department of Radiology, The Second Affiliated Hospital, Shandong First Medical University, Tai'an, China
| | - Min-Feng Zhang
- Department of Radiology, The Second Affiliated Hospital, Shandong First Medical University, Tai'an, China
| | - Yue Zou
- Department of Otorhinolaryngology and Head-Neck Surgery, The Second Affiliated Hospital, Shandong First Medical University, Tai'an, China
| | - Le-Min He
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Yun-Fu Cheng
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Dong-Sheng Zhang
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Wen-Bo Zhao
- Department of Otorhinolaryngology and Head-Neck Surgery, The Second Affiliated Hospital, Shandong First Medical University, Tai'an, China
| | - Xiao-Yan Wang
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Peng-Cheng Wang
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Guang-Yu Zhang
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| |
Collapse
|
18
|
Profant O, Škoch A, Tintěra J, Svobodová V, Kuchárová D, Svobodová Burianová J, Syka J. The Influence of Aging, Hearing, and Tinnitus on the Morphology of Cortical Gray Matter, Amygdala, and Hippocampus. Front Aging Neurosci 2020; 12:553461. [PMID: 33343328 PMCID: PMC7746808 DOI: 10.3389/fnagi.2020.553461] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Age related hearing loss (presbycusis) is a natural process represented by elevated auditory thresholds and decreased speech intelligibility, especially in noisy conditions. Tinnitus is a phantom sound that also potentially leads to cortical changes, with its highest occurrence coinciding with the clinical onset of presbycusis. The aim of our project was to identify age, hearing loss and tinnitus related structural changes, within the auditory system and associated structures. Groups of subjects with presbycusis and tinnitus (22 subjects), with only presbycusis (24 subjects), young tinnitus patients with normal hearing (10 subjects) and young controls (17 subjects), underwent an audiological examination to characterize hearing loss and tinnitus. In addition, MRI (3T MR system, analysis in Freesurfer software) scans were used to identify changes in the cortical and subcortical structures. The following areas of the brain were analyzed: Heschl gyrus (HG), planum temporale (PT), primary visual cortex (V1), gyrus parahippocampus (PH), anterior insula (Ins), amygdala (Amg), and hippocampus (HP). A statistical analysis was performed in R framework using linear mixed-effects models with explanatory variables: age, tinnitus, laterality and hearing. In all of the cortical structures, the gray matter thickness decreased significantly with aging without having an effect on laterality (differences between the left and right hemispheres). The decrease in the gray matter thickness was faster in the HG, PT and Ins in comparison with the PH and V1. Aging did not influence the surface of the cortical areas, however there were differences between the surface size of the reported regions in the left and right hemispheres. Hearing loss caused only a borderline decrease of the cortical surface in the HG. Tinnitus was accompanied by a borderline decrease of the Ins surface and led to an increase in the volume of Amy and HP. In summary, aging is accompanied by a decrease in the cortical gray matter thickness; hearing loss only has a limited effect on the structure of the investigated cortical areas and tinnitus causes structural changes which are predominantly within the limbic system and insula, with the structure of the auditory system only being minimally affected.
Collapse
Affiliation(s)
- Oliver Profant
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Department of Otorhinolaryngology, 3rd Faculty of Medicine, Faculty Hospital Kralovske Vinohrady, Charles University, Prague, Czechia
| | - Antonín Škoch
- MR Unit, Institute of Clinical and Experimental Medicine, Prague, Czechia
| | - Jaroslav Tintěra
- MR Unit, Institute of Clinical and Experimental Medicine, Prague, Czechia
| | - Veronika Svobodová
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czechia
| | - Diana Kuchárová
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czechia
| | - Jana Svobodová Burianová
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
19
|
Keesom SM, Hurley LM. Silence, Solitude, and Serotonin: Neural Mechanisms Linking Hearing Loss and Social Isolation. Brain Sci 2020; 10:brainsci10060367. [PMID: 32545607 PMCID: PMC7349698 DOI: 10.3390/brainsci10060367] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
For social animals that communicate acoustically, hearing loss and social isolation are factors that independently influence social behavior. In human subjects, hearing loss may also contribute to objective and subjective measures of social isolation. Although the behavioral relationship between hearing loss and social isolation is evident, there is little understanding of their interdependence at the level of neural systems. Separate lines of research have shown that social isolation and hearing loss independently target the serotonergic system in the rodent brain. These two factors affect both presynaptic and postsynaptic measures of serotonergic anatomy and function, highlighting the sensitivity of serotonergic pathways to both types of insult. The effects of deficits in both acoustic and social inputs are seen not only within the auditory system, but also in other brain regions, suggesting relatively extensive effects of these deficits on serotonergic regulatory systems. Serotonin plays a much-studied role in depression and anxiety, and may also influence several aspects of auditory cognition, including auditory attention and understanding speech in challenging listening conditions. These commonalities suggest that serotonergic pathways are worthy of further exploration as potential intervening mechanisms between the related conditions of hearing loss and social isolation, and the affective and cognitive dysfunctions that follow.
Collapse
Affiliation(s)
- Sarah M. Keesom
- Department of Biology, Utica College, Utica, NY 13502, USA
- Correspondence:
| | - Laura M. Hurley
- Center for the Integrative Study of Animal Behavior, Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| |
Collapse
|
20
|
Belkhiria C, Vergara RC, San Martin S, Leiva A, Martinez M, Marcenaro B, Andrade M, Delano PH, Delgado C. Insula and Amygdala Atrophy Are Associated With Functional Impairment in Subjects With Presbycusis. Front Aging Neurosci 2020; 12:102. [PMID: 32410980 PMCID: PMC7198897 DOI: 10.3389/fnagi.2020.00102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 03/26/2020] [Indexed: 01/07/2023] Open
Abstract
Hearing loss is an important risk factor for dementia. However, the mechanisms that relate these disorders are still unknown. As a proxy of this relationship, we studied the structural brain changes associated with functional impairment in activities of daily living in subjects with age related hearing loss, or presbycusis. One hundred eleven independent, non-demented subjects older than 65 years recruited in the ANDES cohort were evaluated using a combined approach including (i) audiological tests: hearing thresholds and cochlear function measured by pure tone averages and the distortion product otoacoustic emissions respectively; (ii) behavioral variables: cognitive, neuropsychiatric, and functional impairment in activities of daily living measured by validated questionnaires; and (iii) structural brain imaging—assessed by magnetic resonance imaging at 3 Tesla. The mean age of the recruited subjects (69 females) was 73.95 ± 5.47 years (mean ± SD) with an average educational level of 9.44 ± 4.2 years of schooling. According to the audiometric hearing thresholds and presence of otoacoustic emissions, we studied three groups: controls with normal hearing (n = 36), presbycusis with preserved cochlear function (n = 33), and presbycusis with cochlear dysfunction (n = 38). We found a significant association (R2D = 0.17) between the number of detected otoacoustic emissions and apathy symptoms. The presbycusis with cochlear dysfunction group had worse performance than controls in global cognition, language and executive functions, and severe apathy symptoms than the other groups. The neuropsychiatric symptoms and language deficits were the main determinants of functional impairment in both groups of subjects with presbycusis. Atrophy of insula, amygdala, and other temporal areas were related with functional impairment, apathy, and language deficits in the presbycusis with cochlear dysfunction group. We conclude that (i) the neuropsychiatric symptoms had a major effect on functional loss in subjects with presbycusis, (ii) cochlear dysfunction is relevant for the association between hearing loss and behavioral impairment, and (iii) atrophy of the insula and amygdala among other temporal areas are related with hearing loss and behavioral impairment.
Collapse
Affiliation(s)
- Chama Belkhiria
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo C Vergara
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Kinesiology Department, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Simón San Martin
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alexis Leiva
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Melissa Martinez
- Neurology and Neurosurgery Department, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Bruno Marcenaro
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Maricarmen Andrade
- Internal Medicine Department, Clínica Universidad de los Andes, Santiago, Chile
| | - Paul H Delano
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Otolaryngology Department, Hospital Clínico de la Universidad de Chile, Santiago, Chile.,Centro Avanzado de Ingeniería Eléctrica y Electrónica, AC3E, Universidad Técnica Federico Santa María, Valparaíso, Chile.,Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carolina Delgado
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Neurology and Neurosurgery Department, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| |
Collapse
|
21
|
Ratnanather JT. Structural neuroimaging of the altered brain stemming from pediatric and adolescent hearing loss-Scientific and clinical challenges. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1469. [PMID: 31802640 PMCID: PMC7307271 DOI: 10.1002/wsbm.1469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/01/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022]
Abstract
There has been a spurt in structural neuroimaging studies of the effect of hearing loss on the brain. Specifically, magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) technologies provide an opportunity to quantify changes in gray and white matter structures at the macroscopic scale. To date, there have been 32 MRI and 23 DTI studies that have analyzed structural differences accruing from pre- or peri-lingual pediatric hearing loss with congenital or early onset etiology and postlingual hearing loss in pre-to-late adolescence. Additionally, there have been 15 prospective clinical structural neuroimaging studies of children and adolescents being evaluated for cochlear implants. The results of the 70 studies are summarized in two figures and three tables. Plastic changes in the brain are seen to be multifocal rather than diffuse, that is, differences are consistent across regions implicated in the hearing, speech and language networks regardless of modes of communication and amplification. Structures in that play an important role in cognition are affected to a lesser extent. A limitation of these studies is the emphasis on volumetric measures and on homogeneous groups of subjects with hearing loss. It is suggested that additional measures of morphometry and connectivity could contribute to a greater understanding of the effect of hearing loss on the brain. Then an interpretation of the observed macroscopic structural differences is given. This is followed by discussion of how structural imaging can be combined with functional imaging to provide biomarkers for longitudinal tracking of amplification. This article is categorized under: Developmental Biology > Developmental Processes in Health and Disease Translational, Genomic, and Systems Medicine > Translational Medicine Laboratory Methods and Technologies > Imaging.
Collapse
Affiliation(s)
- J. Tilak Ratnanather
- Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
22
|
Loughrey DG, Pakhomov SVS, Lawlor BA. Altered verbal fluency processes in older adults with age-related hearing loss. Exp Gerontol 2019; 130:110794. [PMID: 31790801 DOI: 10.1016/j.exger.2019.110794] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/27/2019] [Accepted: 11/24/2019] [Indexed: 11/28/2022]
Abstract
Epidemiological studies have linked age-related hearing loss (ARHL) with an increased risk of neurocognitive decline. Difficulties in speech perception with subsequent changes in brain morphometry, including regions important for lexical-semantic memory, are thought to be a possible mechanism for this relationship. This study investigated differences in automatic and executive lexical-semantic processes on verbal fluency tasks in individuals with acquired hearing loss. The primary outcomes were indices of automatic (clustering/word retrieval at start of task) and executive (switching/word retrieval after start of the task) processes from semantic and phonemic fluency tasks. To extract indices of clustering and switching, we used both manual and computerised methods. There were no differences between groups on indices of executive fluency processes or on any indices from the semantic fluency task. The hearing loss group demonstrated weaker automatic processes on the phonemic fluency task. Further research into differences in lexical-semantic processes with ARHL is warranted.
Collapse
Affiliation(s)
- David G Loughrey
- Global Brain Health Institute, Trinity College Dublin, Ireland; Global Brain Health Institute, University of California, San Francisco, USA; Trinity College Institute of Neuroscience, Trinity College Dublin.
| | | | - Brian A Lawlor
- Global Brain Health Institute, Trinity College Dublin, Ireland; Global Brain Health Institute, University of California, San Francisco, USA; Mercer's Institute for Successful Ageing, St James Hospital, Dublin, Ireland
| |
Collapse
|
23
|
Wolak T, Cieśla K, Pluta A, Włodarczyk E, Biswal B, Skarżyński H. Altered Functional Connectivity in Patients With Sloping Sensorineural Hearing Loss. Front Hum Neurosci 2019; 13:284. [PMID: 31507391 PMCID: PMC6713935 DOI: 10.3389/fnhum.2019.00284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Background Sensory deprivation, such as hearing loss, has been demonstrated to change the intrinsic functional connectivity (FC) of the brain, as measured with resting-state functional magnetic resonance imaging (rs-fMRI). Patients with sloping sensorineural hearing loss (SNHL) are a unique population among the hearing impaired, as they have all been exposed to some auditory input throughout their lifespan and all use spoken language. Materials and Methods Twenty patients with SNHL and 21 control subjects participated in a rs-fMRI study. Whole-brain seed-driven FC maps were obtained, with audiological scores of patients, including hearing loss severity and speech performance, used as covariates. Results Most profound differences in FC were found between patients with prelingual (before language development, PRE) vs. postlingual onset (after language development, POST) of SNHL. An early onset was related to enhancement in long-range network connections, including the default-mode network, the dorsal-attention network and the fronto-parietal network, as well as in local sensory networks, the visual and the sensorimotor. A number of multisensory brain regions in frontal and parietal cortices, as well as the cerebellum, were also more internally connected. We interpret these effects as top-down mechanisms serving optimization of multisensory experience in SNHL with a prelingual onset. At the same time, POST patients showed enhanced FC between the salience network and multisensory parietal areas, as well as with the hippocampus, when they were compared to those with PRE hearing loss. Signal in several cortex regions subserving visual processing was also more intra-correlated in POST vs. PRE patients. This outcome might point to more attention resources directed to multisensory as well as memory experience. Finally, audiological scores correlated with FC in several sensory and high-order brain regions in all patients. Conclusion The results show that a sloping hearing loss is related to altered resting-state brain organization. Effects were shown in attention and cognitive control networks, as well as visual and sensorimotor regions. Specifically, we found that even in a partial hearing deficit (affecting only some of the hearing frequency ranges), the age at the onset affects the brain function differently, pointing to the role of sensitive periods in brain development.
Collapse
Affiliation(s)
- Tomasz Wolak
- Institute of Physiology and Pathology of Hearing, Bioimaging Research Center, World Hearing Center, Warsaw, Poland
| | - Katarzyna Cieśla
- Institute of Physiology and Pathology of Hearing, Bioimaging Research Center, World Hearing Center, Warsaw, Poland
| | - Agnieszka Pluta
- Institute of Physiology and Pathology of Hearing, Bioimaging Research Center, World Hearing Center, Warsaw, Poland.,Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Elżbieta Włodarczyk
- Institute of Physiology and Pathology of Hearing, Bioimaging Research Center, World Hearing Center, Warsaw, Poland
| | - Bharat Biswal
- Department of Biomedical Engineering and Department of Radiology, New Jersey Medical School, NJIT, Newark, NJ, United States
| | - Henryk Skarżyński
- Institute of Physiology and Pathology of Hearing, Bioimaging Research Center, World Hearing Center, Warsaw, Poland
| |
Collapse
|