1
|
Zhu L, Li J, Pan J, Wu N, Xu Q, Zhou Q, Wang Q, Han D, Wang Z, Xu Q, Liu X, Guo J, Wang J, Zhang Z, Wang Y, Cai H, Li Y, Pan H, Zhang L, Chen X, Lu G. Precise Identification of Glioblastoma Micro-Infiltration at Cellular Resolution by Raman Spectroscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401014. [PMID: 39083299 PMCID: PMC11423152 DOI: 10.1002/advs.202401014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/06/2024] [Indexed: 09/26/2024]
Abstract
Precise identification of glioblastoma (GBM) microinfiltration, which is essential for achieving complete resection, remains an enormous challenge in clinical practice. Here, the study demonstrates that Raman spectroscopy effectively identifies GBM microinfiltration with cellular resolution in clinical specimens. The spectral differences between infiltrative lesions and normal brain tissues are attributed to phospholipids, nucleic acids, amino acids, and unsaturated fatty acids. These biochemical metabolites identified by Raman spectroscopy are further confirmed by spatial metabolomics. Based on differential spectra, Raman imaging resolves important morphological information relevant to GBM lesions in a label-free manner. The area under the receiver operating characteristic curve (AUC) for Raman spectroscopy combined with machine learning in detecting infiltrative lesions exceeds 95%. Most importantly, the cancer cell threshold identified by Raman spectroscopy is as low as 3 human GBM cells per 0.01 mm2. Raman spectroscopy enables the detection of previously undetectable diffusely infiltrative cancer cells, which holds potential value in guiding complete tumor resection in GBM patients.
Collapse
Affiliation(s)
- Lijun Zhu
- Department of Radiology, Jinling Hospital, The First School of Clinical MedicineSouthern Medical University305 Zhongshan Road East, XuanwuNanjing210002China
- Department of Medicine UltrasonicsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jianrui Li
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing University305 Zhongshan Road East, XuanwuNanjing210002China
| | - Jing Pan
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing University305 Zhongshan Road East, XuanwuNanjing210002China
| | - Nan Wu
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing210002China
| | - Qing Xu
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing University305 Zhongshan Road East, XuanwuNanjing210002China
| | - Qing‐Qing Zhou
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing University305 Zhongshan Road East, XuanwuNanjing210002China
| | - Qiang Wang
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing University305 Zhongshan Road East, XuanwuNanjing210002China
| | - Dong Han
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life ScienceNanjing UniversityNanjing210002China
| | - Ziyang Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life ScienceNanjing UniversityNanjing210002China
| | - Qiang Xu
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing University305 Zhongshan Road East, XuanwuNanjing210002China
| | - Xiaoxue Liu
- Department of RadiologyNanjing First HospitalNanjing Medical UniversityNanjing210002China
| | - Jingxing Guo
- School of ChemistryChemical Engineering and Life SciencesWuhan University of TechnologyWuhan430000China
| | - Jiandong Wang
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing210002China
| | - Zhiqiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing University305 Zhongshan Road East, XuanwuNanjing210002China
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life ScienceNanjing UniversityNanjing210002China
| | - Huiming Cai
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life ScienceNanjing UniversityNanjing210002China
| | - Yingjia Li
- Department of Medicine UltrasonicsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hao Pan
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing University305 Zhongshan Road East, XuanwuNanjing210002China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing University305 Zhongshan Road East, XuanwuNanjing210002China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis WayHelios138667Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR)61 Biopolis Drive, ProteosSingapore138673Singapore
| | - Guangming Lu
- Department of Radiology, Jinling Hospital, The First School of Clinical MedicineSouthern Medical University305 Zhongshan Road East, XuanwuNanjing210002China
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing University305 Zhongshan Road East, XuanwuNanjing210002China
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210002China
| |
Collapse
|
2
|
Badaoui M, Chanson M. Intercellular Communication in Airway Epithelial Cell Regeneration: Potential Roles of Connexins and Pannexins. Int J Mol Sci 2023; 24:16160. [PMID: 38003349 PMCID: PMC10671439 DOI: 10.3390/ijms242216160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Connexins and pannexins are transmembrane proteins that can form direct (gap junctions) or indirect (connexons, pannexons) intercellular communication channels. By propagating ions, metabolites, sugars, nucleotides, miRNAs, and/or second messengers, they participate in a variety of physiological functions, such as tissue homeostasis and host defense. There is solid evidence supporting a role for intercellular signaling in various pulmonary inflammatory diseases where alteration of connexin/pannexin channel functional expression occurs, thus leading to abnormal intercellular communication pathways and contributing to pathophysiological aspects, such as innate immune defense and remodeling. The integrity of the airway epithelium, which is the first line of defense against invading microbes, is established and maintained by a repair mechanism that involves processes such as proliferation, migration, and differentiation. Here, we briefly summarize current knowledge on the contribution of connexins and pannexins to necessary processes of tissue repair and speculate on their possible involvement in the shaping of the airway epithelium integrity.
Collapse
Affiliation(s)
| | - Marc Chanson
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| |
Collapse
|
3
|
Helwer R, Chen VC. Integrated Network Discovery Using Multi-Proteomic Data. Methods Mol Biol 2022; 2456:173-183. [PMID: 35612742 DOI: 10.1007/978-1-0716-2124-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A fundamental goal of systems biology is to seek a better understanding of the cell's molecular mechanisms. Experimentalists most frequently rely upon reductionist methods to isolate and analyze discrete signaling compartments, including subcellular domains, organelles, and protein-protein interactions. Among the systems-biology community, there is a growing need to integrate multiple datasets to resolve complex cellular networks. In this chapter, we share our procedures for the discovery of integrated signaling networks, across multi-proteomic data. Demonstrating these procedures, we provide an integrated analysis of the cellular proteome and extracellular (secretome) of human glioma LN229.
Collapse
Affiliation(s)
- Rafe Helwer
- Department of Chemistry, Brandon University, Brandon, MB, Canada
| | - Vincent C Chen
- Department of Chemistry, Brandon University, Brandon, MB, Canada.
| |
Collapse
|
4
|
Prolonged sub-lethal exposure to galaxolide (HHCB) and tonalide (AHTN) promotes the metastatic potential of glioblastoma tumor spheroids. Neurotoxicology 2021; 87:219-230. [PMID: 34687775 DOI: 10.1016/j.neuro.2021.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023]
Abstract
Galaxolide and tonalide are well-known polycyclic musks whose intensive use without limitations in numerous cleaning, hygiene, and personal care products has resulted in widespread direct human exposure via absorption, inhalation, and oral ingestion. Latest data shows that long-term, low-dose exposure to toxic chemicals can induce unpredictable harmful effects in a variety of living systems, however, interactions between synthetic musks and brain tumours remain largely unexplored. Glioblastoma (GB) accounts for nearly half of all tumours of the central nervous system and is characterized by very poor prognosis. The aims of this study were (1) to investigate the potential effect of long-term (20-generation) single and combined application of galaxolide and tonalide at sub-lethal doses (5-2.5 u M) on the angiogenesis, invasion, and migration of human U87 cells or tumour spheroids, and (2) to explore the underlying molecular mechanisms. Random amplified polymorphic DNA assays revealed significant DNA damage and increased total mutation load in galaxolide- and/or tonalide-treated U87 cells. In those same groups, we also detected remarkable tumour spheroid invasion and up-regulation of both HIF1-α/VEGF/MMP9 and IL6/JAK2/STAT3 signals, known to have important roles in hypoxia-related angiogenesis and/or proliferation. Prolonged musk treatment further altered angio-miRNA expression in a manner consistent with poor prognosis in GB. We also detected significant over-expression of the genes Slug, Snail, ZEB1, and Vimentin, which are biomarkers of epithelial to mesenchymal transition. In addition, matrigel, transwell, and wound healing assays clearly showed that long-term sub-lethal exposure to galaxolide and/or tonalide induced invasion and migration proposing a high metastatic potential. Our results suggest that assessing expression of HIF-1a, VEGF, STAT3, and the miR-17-92 cluster in biopsy samples of GB patients who have a history of possible long-term exposure to galaxolide or tonalide could be beneficial for deciding a therapy regime. Additionally, we recommend that extensively-used hygiene and cleaning materials be selected from synthetic musk-free products, especially when used in palliative care processes for GB patients.
Collapse
|
5
|
Connexin 43 and Sonic Hedgehog Pathway Interplay in Glioblastoma Cell Proliferation and Migration. BIOLOGY 2021; 10:biology10080767. [PMID: 34439999 PMCID: PMC8389699 DOI: 10.3390/biology10080767] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Glioblastoma is the product of accumulated genetic and epigenetic alteration where tumor cells support each other through cellular communication mechanisms and deregulated signalling processes. The autocrine and paracrine pathways between the intracellular and extracellular milieu is mediated by connexin 43, the main gap junction-forming protein driving glioblastoma progression. In this scenario, sonic hedgehog pathway, a key deregulated pathway involved in cell network signalling may affect connexin 43 expression, promoting glioblastoma pathobiology. In this study, we sought to explore how the modulation of the sonic hedgehog affects connexin 43 inducing glioblastoma hallmarks. To do this we evaluated biological effects of sonic hedgehog pathway modulation by purmorphamine and cyclopamine, a smoothened agonist and antagonist, respectively. We revealed that cell migration and proliferation are associated with connexin 43 expression upon sonic hedgehog modulation. Our study suggests that sonic hedgehog and connexin 43 axis may represent a potential therapeutic strategy for glioblastoma. Abstract Glioblastoma (GBM) represents the most common primary brain tumor within the adult population. Current therapeutic options are still limited by high rate of recurrences and signalling axes that promote GBM aggressiveness. The contribution of gap junctions (GJs) to tumor growth and progression has been proven by experimental evidence. Concomitantly, tumor microenvironment has received increasing interest as a critical process in dysregulation and homeostatic escape, finding a close link between molecular mechanisms involved in connexin 43 (CX43)-based intercellular communication and tumorigenesis. Moreover, evidence has come to suggest a crucial role of sonic hedgehog (SHH) signalling pathway in GBM proliferation, cell fate and differentiation. Herein, we used two human GBM cell lines, modulating SHH signalling and CX43-based intercellular communication in in vitro models using proliferation and migration assays. Our evidence suggests that modulation of the SHH effector smoothened (SMO), by using a known agonist (i.e., purmorphamine) and a known antagonist (i.e., cyclopamine), affects the CX43 expression levels and therefore the related functions. Moreover, SMO activation also increased cell proliferation and migration. Importantly, inhibition of CX43 channels was able to prevent SMO-induced effects. SHH pathway and CX43 interplay acts inducing tumorigenic program and supporting cell migration, likely representing druggable targets to develop new therapeutic strategies for GBM.
Collapse
|
6
|
Chang CH, Lin YL, Tyan YS, Chiu YH, Liang YH, Chen CP, Wu JC, Wang HS. Interleukin-1β-induced matrix metalloproteinase-3 via ERK1/2 pathway to promote mesenchymal stem cell migration. PLoS One 2021; 16:e0252163. [PMID: 34019587 PMCID: PMC8139494 DOI: 10.1371/journal.pone.0252163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
Human umbilical cord Wharton’s jelly derived mesenchymal stem cells (hUCMSCs), a source of cell therapy, have received a great deal of attention due to their homing or migrating ability in response to signals emanating from damaged sites. It has been found that IL-1β possesses the ability to induce the expression of matrix metalloproteinase-3 (MMP-3) in bone marrow MSCs. MMP-3 is involved in cell migration in various types of cells, including glioblastoma, vascular smooth muscle, and adult neural progenitor cells. In this study, we proposed that IL-1β influences hUCMSCs migration involving MMP-3. The expression level of MMP-3 in IL-1β-induced hUCMSCs was verified using cDNA microarray analysis, quantitative real-time PCR, ELISA and Western blot. Wound-healing and trans-well assay were used to investigate the cell migration and invasion ability of IL-1β-treated hUCMSCs. In addition, we pre-treated hUCMSCs with interleukin-1 receptor antagonist, MMP-3 inhibitors (ALX-260-165, UK 356618), or transfected with MMP-3 siRNA to confirm the role of MMP3 in IL-1β-induced cell migration. Our results showed that IL-1β induced MMP-3 expression is related to the migration of hUCMSCs. Moreover, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) inhibitor U0126, p38 inhibitor SB205380, JNK inhibitor SP600125 and Akt inhibitor GSK 690693 decreased IL-1β-induced MMP-3 mRNA and protein expression. The migration and invasion ability analyses showed that these inhibitors attenuated the IL-1β-induced migration and invasion ability of hUCMSCs. In conclusion, we have found that IL-1β induces the expression of MMP-3 through ERK1/2, JNK, p38 MAPK and Akt signaling pathways to enhance the migration of hUCMSCs. These results provide further understanding of the mechanisms in IL-1β-induced hUCMSCs migration to injury sites.
Collapse
Affiliation(s)
- Chun-Hao Chang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yun-Li Lin
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yeu-Sheng Tyan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Yun-Hsuan Chiu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ya-Han Liang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chie-Pein Chen
- Division of High Risk Pregnancy, Mackay Memorial Hospital, Taipei, Taiwan, ROC
| | - Jiahn-Chun Wu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Hwai-Shi Wang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
7
|
Temozolomide Induces the Acquisition of Invasive Phenotype by O6-Methylguanine-DNA Methyltransferase (MGMT) + Glioblastoma Cells in a Snail-1/Cx43-Dependent Manner. Int J Mol Sci 2021; 22:ijms22084150. [PMID: 33923767 PMCID: PMC8073161 DOI: 10.3390/ijms22084150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma multiforme (GBM) recurrences after temozolomide (TMZ) treatment result from the expansion of drug-resistant and potentially invasive GBM cells. This process is facilitated by O6-Methylguanine-DNA Methyltransferase (MGMT), which counteracts alkylating TMZ activity. We traced the expansion of invasive cell lineages under persistent chemotherapeutic stress in MGMTlow (U87) and MGMThigh (T98G) GBM populations to look into the mechanisms of TMZ-induced microevolution of GBM invasiveness. TMZ treatment induced short-term, pro-invasive phenotypic shifts of U87 cells, in the absence of Snail-1 activation. They were illustrated by a transient induction of their motility and followed by the hypertrophy and the signs of senescence in scarce U87 sub-populations that survived long-term TMZ stress. In turn, MGMThigh T98G cells reacted to the long-term TMZ treatment with the permanent induction of invasiveness. Ectopic Snail-1 down-regulation attenuated this effect, whereas its up-regulation augmented T98G invasiveness. MGMTlow and MGMThigh cells both reacted to the long-term TMZ stress with the induction of Cx43 expression. However, only in MGMThigh T98G populations, Cx43 was directly involved in the induction of invasiveness, as manifested by the induction of T98G invasiveness after ectopic Cx43 up-regulation and by the opposite effect after Cx43 down-regulation. Collectively, Snail-1/Cx43-dependent signaling participates in the long-term TMZ-induced microevolution of the invasive GBM front. High MGMT activity remains a prerequisite for this process, even though MGMT-related GBM chemoresistance is not necessary for its initiation.
Collapse
|
8
|
Yu X, Jin J, Zheng Y, Zhu H, Xu H, Ma J, Lan Q, Zhuang Z, Chen CC, Li M. GBP5 drives malignancy of glioblastoma via the Src/ERK1/2/MMP3 pathway. Cell Death Dis 2021; 12:203. [PMID: 33608513 PMCID: PMC7896088 DOI: 10.1038/s41419-021-03492-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Guanylate binding proteins (GBPs), a family of interferon-inducible large GTPase, play a pivotal role in cell-autonomous immunity and tumor malignant transformation. Glioblastoma (GBM) is the most prevalent and lethal primary brain tumor in adults. Here we show that GBP5 was highly expressed in GBM cell lines and in clinical samples, especially in the mesenchymal subtype. The expression levels of GBP5 were negatively correlated with the prognosis of GBM patients. Overexpression of GBP5 promoted the proliferation, migration, and invasion of GBM cells in vitro and in vivo. In contrast, silencing GBP5 by RNA interference exhibited the opposite effects. Consequently, targeting GBP5 in GBM cells resulted in impaired tumor growth and prolonged survival time of mice with GBM tumors. We further identified that the Src/ERK1/2/MMP3 axis was essential for GBP5-promoted GBM aggressiveness. These findings suggest that GBP5 may represent a novel target for GBM intervention.
Collapse
Affiliation(s)
- Xiaoting Yu
- Central Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jing Jin
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yanwen Zheng
- Central Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hua Zhu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| | - Hui Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jun Ma
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhixiang Zhuang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA.
| | - Ming Li
- Central Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Poole AT, Sitko CA, Le C, Naus CC, Hill BM, Bushnell EAC, Chen VC. Examination of sulfonamide-based inhibitors of MMP3 using the conditioned media of invasive glioma cells. J Enzyme Inhib Med Chem 2020; 35:672-681. [PMID: 32156166 PMCID: PMC7144313 DOI: 10.1080/14756366.2020.1715387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the deadliest and the most common primary malignant brain tumour. The median survival for patients with GBM is around one year due to the nature of glioma cells to diffusely invade that make the complete surgical resection of tumours difficult. Based upon the connexin43 (Cx43) model of glioma migration we have developed a computational framework to evaluate MMP inhibition in materials relevant to GBM. Using the ilomastat Leu-Trp backbone, we have synthesised novel sulphonamides and monitored the performance of these compounds in conditioned media expressing MMP3. From the results discussed herein we demonstrate the performance of sulfonamide based MMPIs included AP-3, AP-6, and AP-7.
Collapse
Affiliation(s)
- Alisha T Poole
- Department of Chemistry, Brandon University, Brandon, Canada
| | | | - Caitlin Le
- Department of Chemistry, Brandon University, Brandon, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Science Institute, Vancouver, Canada
| | - Bryan M Hill
- Department of Chemistry, Brandon University, Brandon, Canada
| | | | - Vincent C Chen
- Department of Chemistry, Brandon University, Brandon, Canada
| |
Collapse
|
10
|
Tishchenko A, Azorín DD, Vidal-Brime L, Muñoz MJ, Arenas PJ, Pearce C, Girao H, Ramón y Cajal S, Aasen T. Cx43 and Associated Cell Signaling Pathways Regulate Tunneling Nanotubes in Breast Cancer Cells. Cancers (Basel) 2020; 12:E2798. [PMID: 33003486 PMCID: PMC7601615 DOI: 10.3390/cancers12102798] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Connexin 43 (Cx43) forms gap junctions that mediate the direct intercellular diffusion of ions and small molecules between adjacent cells. Cx43 displays both pro- and anti-tumorigenic properties, but the mechanisms underlying these characteristics are not fully understood. Tunneling nanotubes (TNTs) are long and thin membrane projections that connect cells, facilitating the exchange of not only small molecules, but also larger proteins, organelles, bacteria, and viruses. Typically, TNTs exhibit increased formation under conditions of cellular stress and are more prominent in cancer cells, where they are generally thought to be pro-metastatic and to provide growth and survival advantages. Cx43 has been described in TNTs, where it is thought to regulate small molecule diffusion through gap junctions. Here, we developed a high-fidelity CRISPR/Cas9 system to knockout (KO) Cx43. We found that the loss of Cx43 expression was associated with significantly reduced TNT length and number in breast cancer cell lines. Notably, secreted factors present in conditioned medium stimulated TNTs more potently when derived from Cx43-expressing cells than from KO cells. Moreover, TNT formation was significantly induced by the inhibition of several key cancer signaling pathways that both regulate Cx43 and are regulated by Cx43, including RhoA kinase (ROCK), protein kinase A (PKA), focal adhesion kinase (FAK), and p38. Intriguingly, the drug-induced stimulation of TNTs was more potent in Cx43 KO cells than in wild-type (WT) cells. In conclusion, this work describes a novel non-canonical role for Cx43 in regulating TNTs, identifies key cancer signaling pathways that regulate TNTs in this setting, and provides mechanistic insight into a pro-tumorigenic role of Cx43 in cancer.
Collapse
Affiliation(s)
- Alexander Tishchenko
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
| | - Daniel D. Azorín
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
| | - Laia Vidal-Brime
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
| | - María José Muñoz
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
| | - Pol Jiménez Arenas
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
| | - Christopher Pearce
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
| | - Henrique Girao
- Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, CACC, 3000-548 Coimbra, Portugal
| | - Santiago Ramón y Cajal
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
- Anatomía Patológica, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- CIBER de Cáncer (CIBERONC), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Trond Aasen
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
- CIBER de Cáncer (CIBERONC), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 3-5, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
11
|
|