1
|
Shi X, Shi J, Zou F, Cao Q, Yan X, Liu S, Li Y, Lan X. Omics detection and treatment of syphilis. Clin Chim Acta 2025; 565:120008. [PMID: 39427935 DOI: 10.1016/j.cca.2024.120008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Treponema pallidum is the source of the chronic systemic sexually transmitted illness syphilis. T. pallidum can evade immunity and spread. A hard chancre, enlarged lymph nodes, and a syphilis rash are the primary clinical signs. The condition may affect the nervous or cardiovascular system and even become fatal after being neglected. Omics technology is a cutting-edge technique that maps the entire regulatory network of gene and protein metabolism using high-throughput sequencing and other techniques, such as transcriptomics, proteomics, metabolomics, and genomics, to perform more efficient and methodical research on biological samples. Owing to the diverse and intricate biological roles and gene expression of T. pallidum, a single omics study is frequently insufficient and limited. This review focused on and summarized the use of several omics methods for investigating T. pallidum by referencing several different studies in the literature.
Collapse
Affiliation(s)
- Xinyan Shi
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jiayin Shi
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fei Zou
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Qian Cao
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaoliang Yan
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuangquan Liu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yumeng Li
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Xiaopeng Lan
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Anderson BG, Popov P, Cicali AR, Nwamba A, Evans CR, Kennedy RT. In-Depth Chemical Analysis of the Brain Extracellular Space Using In Vivo Microdialysis with Liquid Chromatography-Tandem Mass Spectrometry. Anal Chem 2024; 96:16387-16396. [PMID: 39360623 DOI: 10.1021/acs.analchem.4c03806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Metabolomic analysis of samples acquired in vivo from the brain extracellular space by microdialysis sampling can provide insights into chemical underpinnings of a given brain state and how it changes over time. Small sample volumes and low physiological concentrations have limited the identification of compounds from this compartment, so at present, we have scant knowledge of its composition. As a result, most in vivo measurements have limited depth of analysis. Here, we describe an approach to (1) identify hundreds of compounds in brain dialysate and (2) routinely detect many of these compounds in 5 μL microdialysis samples to enable deep monitoring of brain chemistry in time-resolved studies. Dialysate samples collected over 12 h were concentrated 10-fold and then analyzed using liquid chromatography with iterative tandem mass spectrometry (LC-MS/MS). Using this approach on dialysate from the rat striatum with both reversed-phase and hydrophilic interaction liquid chromatography yielded 479 unique compound identifications. 60% of the identified compounds could be detected in 5 μL of dialysate without further concentration using a single 20 min LC-MS analysis, showing that once identified, most compounds can be detected using small sample volumes and shorter analysis times compatible with routine in vivo monitoring. To detect more neurochemicals, LC-MS analysis of dialysate derivatized with light and isotopically labeled benzoyl chloride was employed. 872 nondegenerate benzoylated features were detected with this approach, including most small-molecule neurotransmitters and several metabolites involved in dopamine metabolism. This strategy allows deeper annotation of the brain extracellular space than previously possible and provides a launching point for defining the chemistry underlying brain states.
Collapse
Affiliation(s)
- Brady G Anderson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pavlo Popov
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amanda R Cicali
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adanna Nwamba
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles R Evans
- Biomedical Research Core Facilities Metabolomics Core, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Plaatjie ON, van Furth AMT, van der Kuip M, Mason S. LC-MS metabolomics and lipidomics in cerebrospinal fluid from viral and bacterial CNS infections: a review. Front Neurol 2024; 15:1403312. [PMID: 39161867 PMCID: PMC11330781 DOI: 10.3389/fneur.2024.1403312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
There is compelling evidence that a dysregulated immune inflammatory response in neuroinfectious diseases results in modifications in metabolic processes and altered metabolites, directly or indirectly influencing lipid metabolism within the central nervous system (CNS). The challenges in differential diagnosis and the provision of effective treatment in many neuroinfectious diseases are, in part, due to limited understanding of the pathophysiology underlying the disease. Although there are numerous metabolomics studies, there remains a deficit in neurolipidomics research to provide a comprehensive understanding of the connection between altered metabolites and changes in lipid metabolism. The brain is an inherently high-lipid organ; hence, understanding neurolipidomics is the key to future breakthroughs. This review aims to provide an integrative summary of altered cerebrospinal fluid (CSF) metabolites associated with neurolipid metabolism in bacterial and viral CNS infections, with a particular focus on studies that used liquid chromatography-mass spectrometry (LC-MS). Lipid components (phospholipids) and metabolites (carnitine and tryptophan) appear to be the most significant indicators in both bacterial and viral infections. On the basis of our analysis of the literature, we recommend employing neurolipidomics in conjunction with existing neurometabolomics data as a prospective method to enhance our understanding of the cross link between dysregulated metabolites and lipid metabolism in neuroinfectious diseases.
Collapse
Affiliation(s)
- Ontefetse Neo Plaatjie
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - A. Marceline Tutu van Furth
- Department of Pediatric Infectious Diseases and Immunology, Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Center, Emma Children’s Hospital, Amsterdam, Netherlands
| | - Martijn van der Kuip
- Department of Pediatric Infectious Diseases and Immunology, Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Center, Emma Children’s Hospital, Amsterdam, Netherlands
| | - Shayne Mason
- Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
4
|
Li J, Ma J, Liu M, Li M, Zhang M, Yin W, Wu M, Li X, Zhang Q, Zhang H, Zheng H, Mao C, Sun J, Wang W, Lyu W, Yue X, Weng W, Li J, Chen F, Zhu Y, Leng L. Large-Scale Proteome Profiling Identifies Biomarkers Associated with Suspected Neurosyphilis Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307744. [PMID: 38380496 PMCID: PMC11040343 DOI: 10.1002/advs.202307744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Neurosyphilis (NS) is a central nervous system (CNS) infection caused by Treponema pallidum (T. pallidum). NS can occur at any stage of syphilis and manifests as a broad spectrum of clinical symptoms. Often referred to as "the great imitator," NS can be easily overlooked or misdiagnosed due to the absence of standard diagnostic tests, potentially leading to severe and irreversible organ dysfunction. In this study, proteomic and machine learning model techniques are used to characterize 223 cerebrospinal fluid (CSF) samples to identify diagnostic markers of NS and provide insights into the underlying mechanisms of the associated inflammatory responses. Three biomarkers (SEMA7A, SERPINA3, and ITIH4) are validated as contributors to NS diagnosis through multicenter verification of an additional 115 CSF samples. We anticipate that the identified biomarkers will become effective tools for assisting in diagnosis of NS. Our insights into NS pathogenesis in brain tissue may inform therapeutic strategies and drug discoveries for NS patients.
Collapse
Affiliation(s)
- Jun Li
- Department of Dermatology, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
- Stem cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jie Ma
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - MingJuan Liu
- Department of Dermatology, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Mansheng Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ming Zhang
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Wenhao Yin
- The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Zhejiang, 314001, China
| | - Mengyin Wu
- Department of Dermatology, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Xiao Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Qiyu Zhang
- Department of Dermatology, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
- Stem cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hanlin Zhang
- Department of Dermatology, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Heyi Zheng
- Department of Dermatology, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Chenhui Mao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, 100730, China
| | - Jian Sun
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenze Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wei Lyu
- Department of Infectious Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xueping Yue
- Department of Dermatology and Venereology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Wenjia Weng
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Juan Li
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Fengxin Chen
- Infections Disease Center, Beijing Ditan Hospital, Capital Medical University, Beijing, 100102, China
| | - Yunping Zhu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Basic Medical School, Anhui Medical University, Anhui, 230032, China
| | - Ling Leng
- Stem cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
5
|
Wu S, Ye F, Wang Y, Li D. Neurosyphilis: insights into its pathogenesis, susceptibility, diagnosis, treatment, and prevention. Front Neurol 2024; 14:1340321. [PMID: 38274871 PMCID: PMC10808744 DOI: 10.3389/fneur.2023.1340321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Background and aim Invasion of the central nervous system by Treponema pallidum can occur at any stage of syphilis. In the event that T. pallidum is not cleared promptly, certain individuals may experience progression to neurosyphilis, which manifests as cognitive and behavioral abnormalities, limb paralysis, and potentially fatal outcomes. Early identification or prevention of neurosyphilis is therefore crucial. The aim of this paper is to conduct a critical and narrative review of the latest information focusing exclusively to the pathogenesis and clinical management of neurosyphilis. Methodology To compile this review, we have conducted electronic literature searches from the PubMed database relating to neurosyphilis. Priority was given to studies published from the past 10 years (from 2013 to 2023) and other studies if they were of significant importance (from 1985 to 2012), including whole genome sequencing results, cell structure of T. pallidum, history of genotyping, and other related topics. These studies are classic or reflect a developmental process. Results Neurosyphilis has garnered global attention, yet susceptibility to and the pathogenesis of this condition remain under investigation. Cerebrospinal fluid examination plays an important role in the diagnosis of neurosyphilis, but lacks the gold standard. Intravenous aqueous crystalline penicillin G continues to be the recommended therapeutic approach for neurosyphilis. Considering its sustained prominence, it is imperative to develop novel public health tactics in order to manage the resurgence of neurosyphilis. Conclusion This review gives an updated narrative description of neurosyphilis with special emphasis on its pathogenesis, susceptibility, diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
| | | | | | - Dongdong Li
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Xiong S, Liu Z, Zhang X, Huang S, Ding X, Zhou J, Yao J, Li W, Liu S, Zhao F. Resurgence of syphilis: focusing on emerging clinical strategies and preclinical models. J Transl Med 2023; 21:917. [PMID: 38105236 PMCID: PMC10726518 DOI: 10.1186/s12967-023-04685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023] Open
Abstract
Syphilis, a sexually transmitted disease (STD) caused by Treponema pallidum (T. pallidum), has had a worldwide resurgence in recent years and remains a public health threat. As such, there has been a great deal of research into clinical strategies for the disease, including diagnostic biomarkers and possible strategies for treatment and prevention. Although serological testing remains the predominant laboratory diagnostic method for syphilis, it is worth noting that investigations pertaining to the DNA of T. pallidum, non-coding RNAs (ncRNAs), chemokines, and metabolites in peripheral blood, cerebrospinal fluid, and other bodily fluids have the potential to offer novel perspectives on the diagnosis of syphilis. In addition, the global spread of antibiotic resistance, such as macrolides and tetracyclines, has posed significant challenges for the treatment of syphilis. Fortunately, there is still no evidence of penicillin resistance. Hence, penicillin is the recommended course of treatment for syphilis, whereas doxycycline, tetracycline, ceftriaxone, and amoxicillin are viable alternative options. In recent years, efforts to discover a vaccine for syphilis have been reignited with better knowledge of the repertoire of T. pallidum outer membrane proteins (OMPs), which are the most probable syphilis vaccine candidates. However, research on therapeutic interventions and vaccine development for human subjects is limited due to practical and ethical considerations. Thus, the preclinical model is ideal for conducting research, and it plays an important role in clinical transformation. Different preclinical models have recently emerged, such as in vitro culture and mouse models, which will lay a solid foundation for clinical treatment and prevention of syphilis. This review aims to provide a comprehensive summary of the most recent syphilis tactics, including detection, drug resistance treatments, vaccine development, and preclinical models in clinical practice.
Collapse
Affiliation(s)
- Shun Xiong
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Zhaoping Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Xiaohong Zhang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Shaobin Huang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Xuan Ding
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Jie Zhou
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Jiangchen Yao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Weiwei Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Shuangquan Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, 421001, China.
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Institution of Microbiology and Infectious Diseases, Hengyang Medical College, University of South China, Hengyang, 421001, China.
| | - Feijun Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, 421001, China.
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Institution of Microbiology and Infectious Diseases, Hengyang Medical College, University of South China, Hengyang, 421001, China.
| |
Collapse
|
7
|
Liu L, Xu D, Chen F, Cai S, Wei J, Deng J, Zheng J, Jin Q, Lun W. Identification of potential biomarkers for diagnosis of syphilis from the cerebrospinal fluid based on untargeted metabolomic analysis. Mol Omics 2023. [PMID: 37185577 DOI: 10.1039/d3mo00026e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The infection rate of syphilis continues to rise globally, and the difficulty in diagnosis of neurosyphilis promptly needs to be resolved. More specific and sensitive diagnostic markers for latent syphilis and neurosyphilis should be found. Here the metabolic profiles of 88 cerebrospinal fluid samples from syphilis patients and controls were analyzed by LC/MS-based untargeted metabolomics. In total, 272 metabolites based on 3937 features obtained in ESI- mode and 252 metabolites based on 3799 features in ESI+ mode were identified. The experimental process was evaluated by principal component analysis, partial least squares discriminant analysis, and hierarchical cluster analysis. A clear separation between latent syphilis and neurosyphilis was found. Levels of lipid and linoleic acid metabolites, such as 9-oxo-octadecadienoic acid and 9,10,13-trihydroxyoctadecenoic acid, were increased in syphilis patients. In patients with neurosyphilis, significant changes in levels of 5-hydroxy-L-tryptophan (5-HTP) and acetyl-N-formyl-5-methoxykynurenamine (AFMK) in the tryptophan-kynurenine pathway were also detected. Only one metabolite, theophylline, differed significantly between symptomatic and asymptomatic neurosyphilis patients. Additionally, KEGG analysis revealed significant enrichment of tryptophan metabolism pathways, indicating a high correlation between tryptophan metabolism and syphilis symptoms. Levels of linoleic acid metabolites, 5-HTP, AFMK and theophylline were significantly altered in different patients. The role of these differential metabolites in the development of syphilis is worthy of further exploration. Our results may promote the development of biomarkers for diagnosis of latent syphilis from neurosyphilis, and for that of asymptomatic neurosyphilis from symptomatic neurosyphilis in the future.
Collapse
Affiliation(s)
- Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Dongmei Xu
- Department of Neurology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Fengxin Chen
- Infections Disease Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Shengnan Cai
- Department of infectious diseases, Yantai Qishan Hospital, Yantai, Shandong, 264001, China
| | - Jin Wei
- Department of dermatology and venereology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Jiaheng Deng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Jianhua Zheng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Wenhui Lun
- Department of dermatology and venereology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
8
|
Lin X, He S, Wu S, Zhang T, Gong S, Minjie T, Gao Y. Diagnostic biomarker panels of osteoarthritis: UPLC-QToF/MS-based serum metabolic profiling. PeerJ 2023; 11:e14563. [PMID: 36655043 PMCID: PMC9841907 DOI: 10.7717/peerj.14563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease in the world, characterized by pain and loss of joint function, which has led to a serious reduction in the quality of patients' lives. In this work, ultrahigh performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-QToF/MS) in conjunction with multivariate pattern recognition methods and an univariate statistical analysis scheme were applied to explore the serum metabolic signatures within OA group (n = 31), HC (healthy controls) group (n = 57) and non-OA group (n = 19) for early diagnosis and differential diagnosis of OA. Based on logistic regression analysis and receiver operating characteristic (ROC) curve analysis, seven metabolites, including phosphatidylcholine (18:0/22:6), p-cresol sulfate and so on, were identified as critical metabolites for the diagnosis of OA and HC and yielded an area under the curve (AUC) of 0.978. The other panel of unknown m/z 239.091, phosphatidylcholine (18:0/18:0) and phenylalanine were found to distinguish OA from non-OA and achieved an AUC of 0.888. These potential biomarkers are mainly involved in lipid metabolism, glucose metabolism and amino acid metabolism. It is expected to reveal new insight into OA pathogenesis from changed metabolic pathways.
Collapse
Affiliation(s)
- Xinxin Lin
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Shiqi He
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Suyu Wu
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Tianwen Zhang
- Fujian Fishery Resources Monitoring Center, Fuzhou, China
| | - Sisi Gong
- Department of Laboratory Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Tang Minjie
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yao Gao
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Gao ZX, Gou Y, Liu XQ, Peng LW. Advances in laboratory diagnostic methods for cerebrospinal fluid testing for neurosyphilis. Front Public Health 2022; 10:1030480. [PMID: 36452956 PMCID: PMC9703065 DOI: 10.3389/fpubh.2022.1030480] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Neurosyphilis is a chronic infectious disease caused by the invasion of Treponema pallidum into the central nervous system. In recent years, with the increase in the latent syphilis infection rate, the incidence of neurosyphilis has gradually increased, the typical symptoms of neurosyphilis have decreased, atypical manifestations have increased, and the clinical manifestations have become increasingly diverse. Cerebrospinal fluid testing plays an important role in the diagnosis of neurosyphilis. In recent years, there have been many advances in cerebrospinal fluid testing. This review focuses on the current and potential laboratory indicators of neurosyphilis in cerebrospinal fluid, aiming to provide a reference for clinical application and ideas for future experimental research of neurosyphilis.
Collapse
Affiliation(s)
- Zheng-Xiang Gao
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yu Gou
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xiao-Qin Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Lei-Wen Peng
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
10
|
Zhou J, Zhang H, Tang K, Liu R, Li J. An Updated Review of Recent Advances in Neurosyphilis. Front Med (Lausanne) 2022; 9:800383. [PMID: 36203756 PMCID: PMC9530046 DOI: 10.3389/fmed.2022.800383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Neurosyphilis is caused by Treponema pallidum invading the central nervous system, of which the incidence is increasing worldwide. Due to its variable clinical manifestations, diagnosis of neurosyphilis remains challenging, especially the asymptomatic form. This review focuses on recent advances in neurosyphilis, including epidemiology, clinical manifestations, laboratory findings, comorbidities, diagnosis, treatment, prognosis, and basic research. The expansion of men who have sex with men and the infection of human immunodeficiency virus mainly accounted for the increasing incidence of neurosyphilis. The rate of some historically described forms of neurosyphilis in the pre-antibiotic era declined significantly; atypical features are more prevalent. Neurosyphilis, regarded as a great mimicker for neuro-ophthalmic, audio-vestibular, and psychiatric disorders, often presents concomitantly with other diseases, including metabolic disorders. Studies on long non-coding RNAs, miRNAs, chemokines, and metabolites in peripheral blood and cerebrospinal fluid may facilitate exploring the pathogenesis and identifying novel biomarkers of neurosyphilis. The drug resistance of Treponema pallidum to penicillin has not been reported; ceftriaxone was proposed to be more effective than penicillin, whereas few randomized controlled trials supported this view. This study may pave the way for further research, especially the diagnosis and treatment of neurosyphilis.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Dermatology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hanlin Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Keyun Tang
- Department of Dermatology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Runzhu Liu
- Department of Dermatology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Li
- Department of Dermatology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Jun Li
| |
Collapse
|
11
|
Geographical discrimination and authentication of Chinese garlic based on multi-element, volatile and metabolomics profiling combined with chemometrics. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Ghosh T, Philtron D, Zhang W, Kechris K, Ghosh D. Reproducibility of mass spectrometry based metabolomics data. BMC Bioinformatics 2021; 22:423. [PMID: 34493210 PMCID: PMC8424977 DOI: 10.1186/s12859-021-04336-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 08/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Assessing the reproducibility of measurements is an important first step for improving the reliability of downstream analyses of high-throughput metabolomics experiments. We define a metabolite to be reproducible when it demonstrates consistency across replicate experiments. Similarly, metabolites which are not consistent across replicates can be labeled as irreproducible. In this work, we introduce and evaluate the use (Ma)ximum (R)ank (R)eproducibility (MaRR) to examine reproducibility in mass spectrometry-based metabolomics experiments. We examine reproducibility across technical or biological samples in three different mass spectrometry metabolomics (MS-Metabolomics) data sets. RESULTS We apply MaRR, a nonparametric approach that detects the change from reproducible to irreproducible signals using a maximal rank statistic. The advantage of using MaRR over model-based methods that it does not make parametric assumptions on the underlying distributions or dependence structures of reproducible metabolites. Using three MS Metabolomics data sets generated in the multi-center Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPD) study, we applied the MaRR procedure after data processing to explore reproducibility across technical or biological samples. Under realistic settings of MS-Metabolomics data, the MaRR procedure effectively controls the False Discovery Rate (FDR) when there was a gradual reduction in correlation between replicate pairs for less highly ranked signals. Simulation studies also show that the MaRR procedure tends to have high power for detecting reproducible metabolites in most situations except for smaller values of proportion of reproducible metabolites. Bias (i.e., the difference between the estimated and the true value of reproducible signal proportions) values for simulations are also close to zero. The results reported from the real data show a higher level of reproducibility for technical replicates compared to biological replicates across all the three different datasets. In summary, we demonstrate that the MaRR procedure application can be adapted to various experimental designs, and that the nonparametric approach performs consistently well. CONCLUSIONS This research was motivated by reproducibility, which has proven to be a major obstacle in the use of genomic findings to advance clinical practice. In this paper, we developed a data-driven approach to assess the reproducibility of MS-Metabolomics data sets. The methods described in this paper are implemented in the open-source R package marr, which is freely available from Bioconductor at http://bioconductor.org/packages/marr .
Collapse
Affiliation(s)
- Tusharkanti Ghosh
- Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Daisy Philtron
- Eberly College of Science, Penn State University, State College, USA
| | | | - Katerina Kechris
- Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Debashis Ghosh
- Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, USA
| |
Collapse
|
13
|
Song Z, Wang M, Zhu Z, Tang G, Liu Y, Chai Y. Optimization of pretreatment methods for cerebrospinal fluid metabolomics based on ultrahigh performance liquid chromatography/mass spectrometry. J Pharm Biomed Anal 2021; 197:113938. [PMID: 33621718 DOI: 10.1016/j.jpba.2021.113938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Sample pretreatment of cerebrospinal fluid (CSF) in metabolomics plays an important role in metabolic profiling study, especially for samples related to central nervous system diseases. However, there is few study about optimization of CSF metabolomics pretreatment. Therefore, it is an urgent need to optimize CSF pretreatment in order to promote the extraction efficiency of metabolites. In this study, CSF samples were separately subjected to nine different protein precipitation solvents and five different reconstitution solvents to establish the most effective pretreatment method before hydrophilic interaction (HILIC) and reverse-phase (RP) ultrahigh performance liquid chromatography mass spectrometry (UPLC/MS) analysis. The optimal conditions for different sample pretreatment methods were analyzed based on coverage (number of detected potential metabolites), stability (the relative standard deviation (RSD) distribution of metabolites) and the reproducibility of the data. Our results suggested that using EtOH or MeOH-EtOH-ACN (1:1:1, v/v/v) as the protein precipitation solvents and H2O-MeOH-ACN (2:1:1, v/v/v) as the reconstitution solvent were optimal methods for T3 column analysis. For HILIC column analysis, using EtOH to precipitate protein and H2O-MeOH-ACN (2:1:1, v/v/v) to reconstitute or MeOH to precipitate and 5 %ACN to reconstitute performed best. This developed UPLC/MS pretreatment method could provide better protein precipitation solvents and reconstitution solvents for global CSF metabolic analysis, potentially facilitating the comprehensive understanding of many central nervous system diseases.
Collapse
Affiliation(s)
- Zhiqiang Song
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Mian Wang
- Institute of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Zhenyu Zhu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Gusheng Tang
- Institute of Hematology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Yue Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Yifeng Chai
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| |
Collapse
|
14
|
Abstract
In recent years, mass spectrometry (MS)-based metabolomics has been extensively applied to characterize biochemical mechanisms, and study physiological processes and phenotypic changes associated with disease. Metabolomics has also been important for identifying biomarkers of interest suitable for clinical diagnosis. For the purpose of predictive modeling, in this chapter, we will review various supervised learning algorithms such as random forest (RF), support vector machine (SVM), and partial least squares-discriminant analysis (PLS-DA). In addition, we will also review feature selection methods for identifying the best combination of metabolites for an accurate predictive model. We conclude with best practices for reproducibility by including internal and external replication, reporting metrics to assess performance, and providing guidelines to avoid overfitting and to deal with imbalanced classes. An analysis of an example data will illustrate the use of different machine learning methods and performance metrics.
Collapse
Affiliation(s)
- Tusharkanti Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Weiming Zhang
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
15
|
Chen S, Yuan M, Feng W, Liu W, Zhang W, Xu H, Zheng X, Shen G, Guo C, Wang L. Catalytic degradation mechanism of sulfamethazine via photosynergy of monoclinic BiVO 4and microalgae under visible-light irradiation. WATER RESEARCH 2020; 185:116220. [PMID: 32736282 DOI: 10.1016/j.watres.2020.116220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
To improve the efficiency of antibiotic degradation, the photosynergistic performance of bismuth vanadate (BiVO4) with a microalga, Dictyosphaerium sp., was demonstrated under visible-light irradiation for the first time. Sulfamethazine (SM2) was selected as a representative sulfanilamide antibiotic, and the photocatalytic degradation mechanism of SM2 was evaluated in media via the BiVO4-algae system. The hydrothermally synthesized sample was characterized using X-ray powder diffraction, X-ray photoelectron spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller surface area, and Fourier transform infrared spectroscopy techniques. The results demonstrated that the prepared photocatalyst corresponded to phase-pure monoclinic scheelite BiVO4. The synthesized BiVO4 showed superior photocatalytic properties under irradiation with visible light, and more than 80% of photocatalytic degradation efficiency was obtained by the BiVO4-algae system. Based on quenching experiments, the photocatalytic degradation of SM2 in the BiVO4-algae system was primarily accomplished via the generation of triplet state dissolved organic matter, and hydroxyl radicals played a small role in the degradation process. The direct oxidation of holes made no contribution to the degradation. Metabolomics data showed that a total of 91 metabolites were significantly changed between the two comparison groups (algae-SM2 group vs algae group; algae-BiVO4-SM2 group vs algae-BiVO4 group). The glycometabolism pathways were increased and the tricarboxylic acid cycle was activated when BiVO4 was present. The study provides a distinctive approach to remove antibiotics using visible light in the aqueous environment.
Collapse
Affiliation(s)
- Shan Chen
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Mingzhe Yuan
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wenbo Feng
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wan Liu
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Zhang
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Houtao Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyan Zheng
- Shanghai Aquatic Environmental Engineering Co., Ltd, Shanghai 200090, China
| | - Genxiang Shen
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Chunxia Guo
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Liqing Wang
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
16
|
Clearing up the oxygen dip in HPAEC–PAD sugar analysis: Sodium sulfite as an oxygen scavenger. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1128:121759. [DOI: 10.1016/j.jchromb.2019.121759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 11/22/2022]
|