1
|
Zou XF, Zhang BZ, Qian WW, Cheng FM. Bone marrow mesenchymal stem cells in treatment of peripheral nerve injury. World J Stem Cells 2024; 16:799-810. [PMID: 39219723 PMCID: PMC11362854 DOI: 10.4252/wjsc.v16.i8.799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Peripheral nerve injury (PNI) is a common neurological disorder and complete functional recovery is difficult to achieve. In recent years, bone marrow mesenchymal stem cells (BMSCs) have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous transplantation ability. This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI. The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury. BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors, extracellular matrix molecules, and adhesion molecules. Additionally, BMSCs release pro-angiogenic factors to promote the formation of new blood vessels. They modulate cytokine expression and regulate macrophage polarization, leading to immunomodulation. Furthermore, BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration, thereby promoting neuronal repair and regeneration. Moreover, this review explores methods of applying BMSCs in PNI treatment, including direct cell transplantation into the injured neural tissue, implantation of BMSCs into nerve conduits providing support, and the application of genetically modified BMSCs, among others. These findings confirm the potential of BMSCs in treating PNI. However, with the development of this field, it is crucial to address issues related to BMSC therapy, including establishing standards for extracting, identifying, and cultivating BMSCs, as well as selecting application methods for BMSCs in PNI such as direct transplantation, tissue engineering, and genetic engineering. Addressing these issues will help translate current preclinical research results into clinical practice, providing new and effective treatment strategies for patients with PNI.
Collapse
Affiliation(s)
- Xiong-Fei Zou
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Bao-Zhong Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing 100730, China.
| | - Wen-Wei Qian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Florence Mei Cheng
- College of Nursing, The Ohio State University, Ohio, OH 43210, United States
| |
Collapse
|
2
|
Timotius IK, Roelofs RF, Richmond-Hacham B, Noldus LPJJ, von Hörsten S, Bikovski L. CatWalk XT gait parameters: a review of reported parameters in pre-clinical studies of multiple central nervous system and peripheral nervous system disease models. Front Behav Neurosci 2023; 17:1147784. [PMID: 37351154 PMCID: PMC10284348 DOI: 10.3389/fnbeh.2023.1147784] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Automated gait assessment tests are used in studies of disorders characterized by gait impairment. CatWalk XT is one of the first commercially available automated systems for analyzing the gait of rodents and is currently the most used system in peer-reviewed publications. This automated gait analysis system can generate a large number of gait parameters. However, this creates a new challenge in selecting relevant parameters that describe the changes within a particular disease model. Here, for the first time, we performed a multi-disorder review on published CatWalk XT data. We identify commonly reported CatWalk XT gait parameters derived from 91 peer-reviewed experimental studies in mice, covering six disorders of the central nervous system (CNS) and peripheral nervous system (PNS). The disorders modeled in mice were traumatic brain injury (TBI), stroke, sciatic nerve injury (SNI), spinal cord injury (SCI), Parkinson's disease (PD), and ataxia. Our review consisted of parameter selection, clustering, categorization, statistical evaluation, and data visualization. It suggests that certain gait parameters serve as potential indicators of gait dysfunction across multiple disease models, while others are specific to particular models. The findings also suggest that the more site-specific the injury is, the fewer parameters are reported to characterize its gait abnormalities. This study strives to present a clearly organized picture of gait parameters used in each one of the different mouse models, potentially helping novel CatWalk XT users to apply this information to similar or related mouse models they are working on.
Collapse
Affiliation(s)
- Ivanna K. Timotius
- Department of Electronics Engineering, Satya Wacana Christian University, Salatiga, Indonesia
- Department of Experimental Therapy, University Hospital Erlangen and Preclinical Experimental Animal Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Bar Richmond-Hacham
- Myers Neuro-Behavioral Core Facility, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Lucas P. J. J. Noldus
- Noldus Information Technology BV, Wageningen, Netherlands
- Donders Center for Neuroscience, Radboud University, Nijmegen, Netherlands
| | - Stephan von Hörsten
- Department of Experimental Therapy, University Hospital Erlangen and Preclinical Experimental Animal Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Lior Bikovski
- Myers Neuro-Behavioral Core Facility, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
- School of Behavioral Sciences, Netanya Academic College, Netanya, Israel
| |
Collapse
|
3
|
Liu K, Ma W, Yang J, Liu W, Zhang S, Zhu K, Liu J, Xiang X, Wang G, Wu H, Guo J, Li L. Integrative Analysis Reveals the Expression Pattern of SOX9 in Satellite Glial Cells after Sciatic Nerve Injury. Brain Sci 2023; 13:brainsci13020281. [PMID: 36831824 PMCID: PMC9954651 DOI: 10.3390/brainsci13020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/10/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Several complex cellular and gene regulatory processes are involved in peripheral nerve repair. This study uses bioinformatics to analyze the differentially expressed genes (DEGs) in the satellite glial cells of mice following sciatic nerve injury. METHODS R software screens differentially expressed genes, and the WebGestalt functional enrichment analysis tool conducts Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomics (KEGG) pathway analysis. The Search Tool for the Retrieval of Interacting Genes/Proteins constructs protein interaction networks, and the cytoHubba plug-in in the Cytoscape software predicts core genes. Subsequently, the sciatic nerve injury model of mice was established and the dorsal root ganglion satellite glial cells were isolated and cultured. Satellite glial cells-related markers were verified by immunofluorescence staining. Real-time polymerase chain reaction assay and Western blotting assay were used to detect the mRNA and protein expression of Sox9 in satellite glial cells. RESULTS A total of 991 DEGs were screened, of which 383 were upregulated, and 508 were downregulated. The GO analysis revealed the processes of biosynthesis, negative regulation of cell development, PDZ domain binding, and other biological processes were enriched in DEGs. According to the KEGG pathway analysis, DEGs are primarily involved in steroid biosynthesis, hedgehog signaling pathway, terpenoid backbone biosynthesis, American lateral skeleton, and melanoma pathways. According to various cytoHubba algorithms, the common core genes in the protein-protein interaction network are Atf3, Mmp2, and Sox9. Among these, Sox9 was reported to be involved in the central nervous system and the generation and development of astrocytes and could mediate the transformation between neurogenic and glial cells. The experimental results showed that satellite glial cell marker GS were co-labeled with Sox9; stem cell characteristic markers Nestin and p75NTR were labeled satellite glial cells. The mRNA and protein expression of Sox9 in satellite glial cells were increased after sciatic nerve injury. CONCLUSIONS In this study, bioinformatics was used to analyze the DEGs of satellite glial cells after sciatic nerve injury, and transcription factors related to satellite glial cells were screened, among which Sox9 may be associated with the fate of satellite glial cells.
Collapse
Affiliation(s)
- Kuangpin Liu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Wei Ma
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Jinwei Yang
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming 650032, China
| | - Wei Liu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Sijia Zhang
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Kewei Zhu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Jie Liu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Xianglin Xiang
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Guodong Wang
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Hongjie Wu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Jianhui Guo
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming 650032, China
| | - Liyan Li
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
- Correspondence: ; Tel.: +86-137-5940-6017
| |
Collapse
|
4
|
Sakowski SA, Chen KS. Stem cell therapy for central nervous system disorders: Metabolic interactions between transplanted cells and local microenvironments. Neurobiol Dis 2022; 173:105842. [PMID: 35988874 PMCID: PMC10117179 DOI: 10.1016/j.nbd.2022.105842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022] Open
Abstract
Stem cell therapy is a promising and rapidly advancing treatment strategy for a multitude of neurologic disorders. Yet, while early phase clinical trials are being pursued in many disorders, the mechanism of action often remains unclear. One important potential mechanism by which stem cells provide neuroprotection is through metabolic signaling with diseased neurons, glia, and other cell types in the nervous system microenvironment. Early studies exploring such interactions report normalization of glucose metabolism, induction of protective mitochondrial genes, and even interactions with supportive neurovasculature. Local metabolic conditions also impact stem cell biology, which can have a large impact on transplant viability and efficacy. Epigenetic changes that occur in the donor prior to collection of stem cells, and even during in vitro culture conditions, may have effects on stem cell biology that are carried into the host upon stem cell transplantation. Transplanted stem cells also face potentially toxic metabolic microenvironments at the targeted transplant site. Novel approaches for metabolically "preconditioning" stem cells prior to transplant harness metabolic machinery to optimize stem cell survival upon transplant. Ultimately, an improved understanding of the metabolic cross-talk between implanted stem cells and the local nervous system environment, in both disease and injury states, will increase the likelihood of success in translating stem cell therapy to early trials in neurological disease.
Collapse
Affiliation(s)
- Stacey A Sakowski
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| | - Kevin S Chen
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; Department of Neurosurgery, University of Michigan, 1500 E. Medical Center Dr, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Gastrodin promotes the regeneration of peripheral nerves by regulating miR-497/BDNF axis. BMC Complement Med Ther 2022; 22:45. [PMID: 35177060 PMCID: PMC8855574 DOI: 10.1186/s12906-021-03483-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/08/2021] [Indexed: 01/12/2023] Open
Abstract
Background Gastrodin (GAS), is a kind of phenolic compound extracted from the traditional Chinese herbal medicine Gastrodia elata Blume (GEB). This study was aimed at probing into the protective effect of GAS on peripheral nerve injury (PNI) and the underlying mechanism. Methods A rat model with PNI was established, followed by intraperitoneal injection of GAS (20 mg/kg/day). Sciatic nerve function index (SFI) was used to analyze the function of sciatic nerve. The amplitude and latency of compound muscle action potential (CMAP) were examined by electrophysiology. Schwann cells (SCs) were isolated from fetal rats and treated with GAS 200 μg/mL, and H2O2-induced model of oxidative stress injury was established. EdU and Transwell assays were adopted to detect the viability and migration of SCs. Dual-luciferase reporter gene assays were applied to verify the binding site between miR-497 and brain-derived neurotrophic factor (BDNF) 3’UTR. MiR-497 expression was probed by quantitative real-time polymerase chain reaction (qRT-PCR). BDNF, neurofilament-200 (NF-200) and myelin basic protein (MBP) expression levels were detected by Western blotting. Malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, glutathione content (GSH) and catalase (CAT) activity in SCs were also measured. Results GAS treatment could significantly increase the SFI and amplitude of CMAP, shorten the refractory period, and ameliorate muscle atrophy of the rats with PNI. GAS treatment could markedly restrain miR-497 expression and increase the expression levels of BDNF, NF-200 and MBP in SCs. BDNF was confirmed as the target of miR-497 and BDNF overexpression could reverse the impacts of miR-497 overexpression on the proliferation, migration, and oxidative stress response of SCs. Conclusions GAS promotes the recovery of PNI via modulating miR-497 / BDNF axis and inhibiting oxidative stress. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03483-z.
Collapse
|
6
|
Lopes B, Sousa P, Alvites R, Branquinho M, Sousa AC, Mendonça C, Atayde LM, Luís AL, Varejão ASP, Maurício AC. Peripheral Nerve Injury Treatments and Advances: One Health Perspective. Int J Mol Sci 2022; 23:ijms23020918. [PMID: 35055104 PMCID: PMC8779751 DOI: 10.3390/ijms23020918] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Peripheral nerve injuries (PNI) can have several etiologies, such as trauma and iatrogenic interventions, that can lead to the loss of structure and/or function impairment. These changes can cause partial or complete loss of motor and sensory functions, physical disability, and neuropathic pain, which in turn can affect the quality of life. This review aims to revisit the concepts associated with the PNI and the anatomy of the peripheral nerve is detailed to explain the different types of injury. Then, some of the available therapeutic strategies are explained, including surgical methods, pharmacological therapies, and the use of cell-based therapies alone or in combination with biomaterials in the form of tube guides. Nevertheless, even with the various available treatments, it is difficult to achieve a perfect outcome with complete functional recovery. This review aims to enhance the importance of new therapies, especially in severe lesions, to overcome limitations and achieve better outcomes. The urge for new approaches and the understanding of the different methods to evaluate nerve regeneration is fundamental from a One Health perspective. In vitro models followed by in vivo models are very important to be able to translate the achievements to human medicine.
Collapse
Affiliation(s)
- Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Mariana Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana Catarina Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Carla Mendonça
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Luís Miguel Atayde
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana Lúcia Luís
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Artur S. P. Varejão
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
- CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-91-9071286
| |
Collapse
|
7
|
Ki SM, Jeong HS, Lee JE. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front Neurosci 2021; 15:736888. [PMID: 34658775 PMCID: PMC8514955 DOI: 10.3389/fnins.2021.736888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases have been associated with defects in primary cilia, which are cellular organelles involved in diverse cellular processes and homeostasis. Several types of glial cells in both the central and peripheral nervous systems not only support the development and function of neurons but also play significant roles in the mechanisms of neurological disease. Nevertheless, most studies have focused on investigating the role of primary cilia in neurons. Accordingly, the interest of recent studies has expanded to elucidate the role of primary cilia in glial cells. Correspondingly, several reports have added to the growing evidence that most glial cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases. In this review, we aimed to understand the regulatory mechanisms of cilia formation and the disease-related functions of cilia, which are common or specific to each glial cell. Moreover, we have paid close attention to the signal transduction and pathological mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally, we expect that this field of research will clarify the mechanisms involved in the formation and function of glial cilia to provide novel insights and ideas for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
8
|
Isvoranu G, Manole E, Neagu M. Gait Analysis Using Animal Models of Peripheral Nerve and Spinal Cord Injuries. Biomedicines 2021; 9:1050. [PMID: 34440252 PMCID: PMC8392642 DOI: 10.3390/biomedicines9081050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
The present review discusses recent data regarding rodent models of spinal cord and peripheral nerve injuries in terms of gait analysis using the CatWalk system (CW), an automated and exceptionally reliable system for assessing gait abnormalities and motor coordination. CW is a good tool for both studying improvements in the walking of animals after suffering a peripheral nerve and spinal cord lesion and to select the best therapies and procedures after tissue destruction, given that it provides objective and quantifiable data. Most studies using CW for gait analysis that were published in recent years focus on injuries inflicted in the peripheral nerve, spinal cord, and brain. CW has been used in the assessment of rodent motor function through high-resolution videos, whereby specialized software was used to measure several aspects of the animal's gait, and the main characteristics of the automated system are presented here. CW was developed to assess footfall and gait changes, and it can calculate many parameters based on footprints and time. However, given the multitude of parameters, it is necessary to evaluate which are the most important under the employed experimental circumstances. By selecting appropriate animal models and evaluating peripheral nerve and spinal cord lesion regeneration using standardized methods, suggestions for new therapies can be provided, which represents the translation of this methodology into clinical application.
Collapse
Affiliation(s)
- Gheorghita Isvoranu
- Husbandry Unit, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania;
| | - Emilia Manole
- Laboratory of Cellular Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Pathology Department, Colentina University Hospital, 19-21 Sos. Stefan cel Mare, 020125 Bucharest, Romania;
| | - Monica Neagu
- Pathology Department, Colentina University Hospital, 19-21 Sos. Stefan cel Mare, 020125 Bucharest, Romania;
- Immunology Laboratory, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, 91-93 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
9
|
Heinzel J, Längle G, Oberhauser V, Hausner T, Kolbenschlag J, Prahm C, Grillari J, Hercher D. Use of the CatWalk gait analysis system to assess functional recovery in rodent models of peripheral nerve injury – a systematic review. J Neurosci Methods 2020; 345:108889. [DOI: 10.1016/j.jneumeth.2020.108889] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
|
10
|
Buckingham M, Tzahor E. In remembrance of David Yaffe. Skelet Muscle 2020; 10:31. [PMID: 33099315 PMCID: PMC7585312 DOI: 10.1186/s13395-020-00246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Margaret Buckingham
- CNRS UMR3738, Department of Developmental and Stem Cell Biology, Pasteur Institute, Paris, France.
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
11
|
Yablonka-Reuveni Z, Stockdale F, Nudel U, Israeli D, Blau HM, Shainberg A, Neuman S, Kessler-Icekson G, Krull EM, Paterson B, Fuchs OS, Greenberg D, Sarig R, Halevy O, Ozawa E, Katcoff DJ. Farewell to Professor David Yaffe - A pillar of the myogenesis field. Eur J Transl Myol 2020; 30:9306. [PMID: 33117511 PMCID: PMC7582454 DOI: 10.4081/ejtm.2020.9306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
It is with great sadness that we have learned about the passing of Professor David Yaffe (1929-2020, Israel). Yehi Zichro Baruch - May his memory be a blessing. David was a man of family, science and nature. A native of Israel, David grew up in the historic years that preceded the birth of the State of Israel. He was a member of the group that established Kibbutz Revivim in the Negev desert, and in 1948 participated in Israel's War of Independence. David and Ruth eventually joined Kibbutz Givat Brenner by Rehovot, permitting David to be both a kibbutz member and a life-long researcher at the Weizmann Institute of Science, where David received his PhD in 1959. David returned to the Institute after his postdoc at Stanford. Here, after several years of researching a number of tissues as models for studying the process of differentiation, David entered the myogenesis field and stayed with it to his last day. With his dedication to the field of myogenesis and his commitment to furthering the understanding of the People and the Land of Israel throughout the international scientific community, David organized the first ever myogenesis meeting that took place in Shoresh, Israel in 1975. This was followed by the 1980 myogenesis meeting at the same place and many more outstanding meetings, all of which brought together myogenesis, nature and scenery. Herein, through the preparation and publication of this current manuscript, we are meeting once again at a "David Yaffe myogenesis meeting". Some of us have been members of the Yaffe lab, some of us have known David as his national and international colleagues in the myology field. One of our contributors has also known (and communicates here) about David Yaffe's earlier years as a kibbutznick in the Negev. Our collective reflections are a tribute to Professor David Yaffe. We are fortunate that the European Journal of Translational Myology has provided us with tremendous input and a platform for holding this 2020 distance meeting "Farwell to Professor David Yaffe - A Pillar of the Myogenesis Field".
Collapse
Affiliation(s)
- Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Uri Nudel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Helen M. Blau
- Stanford University School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Department of Microbiology and Immunology, Clinical Sciences Research Center, Stanford, CA, USA
| | - Asher Shainberg
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Gania Kessler-Icekson
- Laboratory of Cellular and Molecular Cardiology, Felsenstein Medical Research Center, Rabin Medical Center, Petah-Tikva, and Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Bruce Paterson
- Laboratory of Biochemistry and Molecular Biology, National Institutes of Health, Bethesda, Maryland, USA
| | | | - David Greenberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Sarig
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Orna Halevy
- Faculty of Agriculture, The Hebrew University, Rehovot, Israel
| | - Eijiro Ozawa
- National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Don J. Katcoff
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
12
|
Vieira WF, Malange KF, de Magalhães SF, dos Santos GG, de Oliveira ALR, da Cruz-Höfling MA, Parada CA. Gait analysis correlates mechanical hyperalgesia in a model of streptozotocin-induced diabetic neuropathy: A CatWalk dynamic motor function study. Neurosci Lett 2020; 736:135253. [DOI: 10.1016/j.neulet.2020.135253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/02/2020] [Accepted: 07/14/2020] [Indexed: 01/03/2023]
|
13
|
Yin GN, Park SH, Ock J, Choi MJ, Limanjaya A, Ghatak K, Song KM, Kwon MH, Kim DK, Gho YS, Suh JK, Ryu JK. Pericyte-Derived Extracellular Vesicle-Mimetic Nanovesicles Restore Erectile Function by Enhancing Neurovascular Regeneration in a Mouse Model of Cavernous Nerve Injury. J Sex Med 2020; 17:2118-2128. [PMID: 32855091 DOI: 10.1016/j.jsxm.2020.07.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Extracellular vesicle (EV)-mimetic nanovesicles (NVs) from embryonic stem cells have been observed to stimulate neurovascular regeneration in the streptozotocin-induced diabetic mouse. Pericytes play important roles in maintaining penile erection, yet no previous studies have explored the effects of pericyte-derived NVs (PC-NVs) in neurovascular regeneration in the context of erectile dysfunction. AIM To investigate the potential effect of PC-NVs in neurovascular regeneration. METHODS PC-NVs were isolated from mouse cavernous pericytes, and neurovascular regeneration was evaluated in an in vitro study. Twelve-week-old C57BL/6J mice were used to prepare cavernous nerve injury model. Erectile function evaluation, histologic examination of the penis, and Western blots were assessed 2 weeks after model creation and PC-NVs treatment. OUTCOMES The main outcomes of this study are PC-NVs characterization, intracavernous pressure, neurovascular regeneration in the penis, and in vitro functional evaluation. RESULTS The PC-NVs were extracted and characterized by cryotransmission electron microscopy and EV-positive (Alix, TSG101, CD81) and EV-negative (GM130) markers. In the in vivo studies, PC-NVs successfully improved erectile function in cavernous nerve injury mice (∼82% of control values). Immunofluorescence staining showed significant increases in pericytes, endothelial cell, and neuronal contents. In the in vitro studies, PC-NVs significantly increased mouse cavernous endothelial cells tube formation, Schwann cell migration, and dorsal root ganglion and major pelvic ganglion neurite sprouting. Finally, Western blot analysis revealed that PC-NVs upregulated cell survival signaling (Akt and eNOS) and induced the expression of neurotrophic factors (brain-derived neurotrophic factor, neurotrophin-3, and nerve growth factor). CLINICAL IMPLICATIONS PC-NVs may be used as a strategy to treat erectile dysfunction after radical prostatectomy or in men with neurovascular diseases. STRENGTHS & LIMITATIONS We evaluated the effect of PC-NVs in vitro and in a mouse nerve injury model, cavernous nerve injury. Additional studies are necessary to determine the detailed mechanisms of neurovascular improvement. Further study is needed to test whether PC-NVs are also effective when given weeks or months after nerve injury. CONCLUSION PC-NVs significantly improved erectile function by enhancing neurovascular regeneration. Local treatment with PC-NVs may represent a promising therapeutic strategy for the treatment of neurovascular diseases. Yin GN, Park S-H, Ock J, et al. Pericyte-Derived Extracellular Vesicle-Mimetic Nanovesicles Restore Erectile Function by Enhancing Neurovascular Regeneration in a Mouse Model of Cavernous Nerve Injury. J Sex Med 2020;17:2118-2128.
Collapse
Affiliation(s)
- Guo Nan Yin
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Soo-Hwan Park
- Department of Urology, Kosin University College of Medicine, Busan, Republic of Korea
| | - Jiyeon Ock
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Min-Ji Choi
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Anita Limanjaya
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Kalyan Ghatak
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Kang-Moon Song
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Mi-Hye Kwon
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Do-Kyun Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyeongsangbuk-do, Republic of Korea
| | - Jun-Kyu Suh
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon, Republic of Korea.
| | - Ji-Kan Ryu
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon, Republic of Korea.
| |
Collapse
|
14
|
Interference with SRF expression in skeletal muscles reduces peripheral nerve regeneration in mice. Sci Rep 2020; 10:5281. [PMID: 32210317 PMCID: PMC7093445 DOI: 10.1038/s41598-020-62231-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/09/2020] [Indexed: 11/24/2022] Open
Abstract
Traumatic injury of peripheral nerves typically also damages nerve surrounding tissue including muscles. Hence, molecular and cellular interactions of neighboring damaged tissues might be decisive for successful axonal regeneration of injured nerves. So far, the contribution of muscles and muscle-derived molecules to peripheral nerve regeneration has only poorly been studied. Herein, we conditionally ablated SRF (serum response factor), an important myofiber transcription factor, in skeletal muscles of mice. Subsequently, the impact of this myofiber-restricted SRF deletion on peripheral nerve regeneration, i.e. facial nerve injury was analyzed. Quantification of facial nerve regeneration by retrograde tracer transport, inspection of neuromuscular junctions (NMJs) and recovery of whisker movement revealed reduced axonal regeneration upon muscle specific Srf deletion. In contrast, responses in brainstem facial motor neuron cell bodies such as regeneration-associated gene (RAG) induction of Atf3, synaptic stripping and neuroinflammation were not overly affected by SRF deficiency. Mechanistically, SRF in myofibers appears to stimulate nerve regeneration through regulation of muscular satellite cell (SC) proliferation. In summary, our data suggest a role of muscle cells and SRF expression within muscles for regeneration of injured peripheral nerves.
Collapse
|
15
|
Silva-Hucha S, Carrero-Rojas G, Fernández de Sevilla ME, Benítez-Temiño B, Davis-López de Carrizosa MA, Pastor AM, Morcuende S. Sources and lesion-induced changes of VEGF expression in brainstem motoneurons. Brain Struct Funct 2020; 225:1033-1053. [PMID: 32189115 DOI: 10.1007/s00429-020-02057-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/06/2020] [Indexed: 12/31/2022]
Abstract
Motoneurons of the oculomotor system show lesser vulnerability to neurodegeneration compared to other cranial motoneurons, as seen in amyotrophic lateral sclerosis (ALS). The overexpression of vascular endothelial growth factor (VEGF) is involved in motoneuronal protection. As previously shown, motoneurons innervating extraocular muscles present a higher amount of VEGF and its receptor Flk-1 compared to facial or hypoglossal motoneurons. Therefore, we aimed to study the possible sources of VEGF to brainstem motoneurons, such as glial cells and target muscles. We also studied the regulation of VEGF in response to axotomy in ocular, facial, and hypoglossal motor nuclei. Basal VEGF expression in astrocytes and microglial cells of the cranial motor nuclei was low. Although the presence of VEGF in the different target muscles for brainstem motoneurons was similar, the presynaptic element of the ocular neuromuscular junction showed higher amounts of Flk-1, which could result in greater efficiency in the capture of the factor by oculomotor neurons. Seven days after axotomy, a clear glial reaction was observed in all the brainstem nuclei, but the levels of the neurotrophic factor remained low in glial cells. Only the injured motoneurons of the oculomotor system showed an increase in VEGF and Flk-1, but such an increase was not detected in axotomized facial or hypoglossal motoneurons. Taken together, our findings suggest that the ocular motoneurons themselves upregulate VEGF expression in response to lesion. In conclusion, the low VEGF expression observed in glial cells suggests that these cells are not the main source of VEGF for brainstem motoneurons. Therefore, the higher VEGF expression observed in motoneurons innervating extraocular muscles is likely due either to the fact that this factor is more avidly taken up from the target muscles, in basal conditions, or is produced by these motoneurons themselves, and acts in an autocrine manner after axotomy.
Collapse
Affiliation(s)
- Silvia Silva-Hucha
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Génova Carrero-Rojas
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - Beatriz Benítez-Temiño
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sara Morcuende
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
16
|
Wen C, Huang C, Yang M, Fan C, Li Q, Zhao J, Gan D, Li A, Zhu L, Lu D. The Secretion from Bone Marrow Mesenchymal Stem Cells Pretreated with Berberine Rescues Neurons with Oxidative Damage Through Activation of the Keap1-Nrf2-HO-1 Signaling Pathway. Neurotox Res 2020; 38:59-73. [PMID: 32108297 DOI: 10.1007/s12640-020-00178-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/17/2019] [Accepted: 02/06/2020] [Indexed: 12/14/2022]
Abstract
Oxidative stress is a potential pathological mechanism of Alzheimer's disease (AD). Berberine (BBR) can improve antioxidative capacity and inhibit Aβ protein aggregation and tau protein hyperphosphorylation in AD, and stem cell therapy is also increasingly recognized as a therapy for AD. Bone marrow mesenchymal stem cells (BMSCs) have many advantages, as they exhibit antioxidant and anti-inflammatory activity and secrete a variety of neurotrophic factors, and play important roles in neurodegenerative disease treatment. In this study, we investigated the antioxidant effects of secretions from BMSCs pretreated with BBR on tert-butyl hydroperoxide (t-BHP)-damaged neurons. We demonstrated that BBR can enhance BMSC viability and the secretion of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), both of which are vital neurotrophic factors that maintain neuronal growth. Moreover, conditioned medium from BBR-treated BMSCs (BBR-BMSC-CM) reduced reactive oxygen species (ROS) production, attenuated a decrease in the mitochondrial membrane potential, and ameliorated neuronal apoptosis by decreasing levels of the apoptotic proteins Bax/Bcl-2, cytochrome c, and cleaved caspase-3/caspase-3. In addition, increased synaptophysin (SYP) and postsynaptic density protein 95 (PSD95) levels indicated that neuronal synaptic function was restored. Further study revealed that BBR-BMSC-CM activated the antioxidant proteins Keap1, Nrf2, and HO-1. In conclusion, our results showed that BBR-BMSC-CM attenuated apoptosis and oxidative damage in neurons by activating the Keap1-Nrf2-HO-1 signaling pathway. Taken together, these results also suggest BBR as a drug to stimulate the secretion of nutritional cytokines with the potential to treat AD.
Collapse
Affiliation(s)
- Caiyan Wen
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Cuiqin Huang
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Mei Yang
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chongzhu Fan
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qin Li
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jiayi Zhao
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Danhui Gan
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - An Li
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lihong Zhu
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
17
|
Ogden M, Karaca SB, Aydin G, Yuksel U, Dagli AT, Akkaya S, Bakar B. The Healing Effects of Thymoquinone and Dexpanthenol in Sciatic Nerve Compression Injury in Rats. J INVEST SURG 2019; 34:504-512. [PMID: 31462122 DOI: 10.1080/08941939.2019.1658831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Functional healing of peripheral nerve injuries is still difficult. In this study, potential healing effects of thymoquinone and dexpanthenol in sciatic nerve compression injury (SCI) were investigated. Method: Twenty-four male Wistar albino rats which were applied compression injury to their sciatic nerves were randomly separated into four groups as following: "control" group contained six rats administered no pharmacological agent; "TMK" group consisted of six rats administered 10 mg/kg intraperitoneal thymoquinone once a day for one week; "DXP" group contained six rats administered 50 mg/kg intraperitoneal dexpanthenol once a day for one week; and "TMK-DXP" group consisted of six rats administered separately 10 mg/kg intraperitoneal thymoquinone and 50 mg/kg intraperitoneal dexpenthanol once a day for one week. Four weeks later from SCI, sciatic nerve function index (SFI) was applied before sacrifice of all rats, and then their crushed sciatic nerves were histopathologically examined, in terms of "Schwann cell count", "axon and myelin degeneration", "axon shape/size differences", "fibrosis", and "neovascularisation". Results: "Schwann cell count" (p = 0.011), "axon and myelin degeneration" (p = 0.001), "axon shape/size differences" (p = 0.011), and "fibrosis and neovascularisation" (p = 0.026) scores were different between the control and TMK-DXP groups. SFI scores were different between the control and TMK groups (p = 0.002), between the control and TMK-DXP groups (p < 0.001), and between the DXP and TMK-DXP groups (p = 0.029). Conclusions: This study results revealed that these pharmacological agents used alone had no histopathological healing effect in rats with SCI, but thymoquinone could improve walking function. However, thymoquinone and dexpanthenol used together had a significant histopathological and functional healing effect.
Collapse
Affiliation(s)
- Mustafa Ogden
- Faculty of Medicine, Department of Neurosurgery, Kirikkale University, Kirikkale, Turkey
| | - Sahika Burcu Karaca
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Kirikkale University, Kirikkale, Turkey
| | - Gulcin Aydin
- Faculty of Medicine, Department of Anesthesiology and Reanimation, Kirikkale University, Kirikkale, Turkey
| | - Ulas Yuksel
- Department of Neurosurgery, Yildirim Beyazit University Yenimahalle Training and Research Hospital, Ankara, Turkey
| | - Ahmet Turan Dagli
- Faculty of Medicine, Department of Neurosurgery, Hitit University, Çorum, Turkey
| | - Suleyman Akkaya
- Faculty of Medicine, Department of Neurosurgery, Kirikkale University, Kirikkale, Turkey
| | - Bulent Bakar
- Faculty of Medicine, Department of Neurosurgery, Kirikkale University, Kirikkale, Turkey
| |
Collapse
|