1
|
Marquez VE. 3-Deazaneplanocin A (DZNep): A Drug That Deserves a Second Look. J Med Chem 2024; 67:17964-17979. [PMID: 39392180 DOI: 10.1021/acs.jmedchem.4c01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The emerging data compiled during the past five years on 3-deazaneplanocin (DZNep) provide compelling evidence to reevaluate this drug as a better alternative over the specific catalytic inhibitors of histone methyl transferases (HTMs). The indirect mechanism of DZNep via inhibition of AdoHcy-ase, once considered a liability due to possible side effects, has now shown to be rather beneficial as additional pathways targeted by DZNep are important contributors to its superior anticancer properties. Furthermore, DZNep has demonstrated the ability to induce proteasomal degradation of its target and reduce toxicity in combination with well-established antitumor therapies in animal models. In addition, DZNep has shown important effects in suppressing fibrosis and inflammation in liver, kidney, peritoneum, and airways. Finally, inhibition of mRNA m6A methylation by DZNep suppresses the synthesis of the viral genome in SARS-Cov-2 infection and promises to have important therapeutic value when combined with its potent antiviral efficacy and anti-inflammatory effects.
Collapse
Affiliation(s)
- Victor E Marquez
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
2
|
Leng XY, Yang J, Fan H, Chen QY, Cheng BJ, He HX, Gao F, Zhu F, Yu T, Liu YJ. JMJD3/H3K27me3 epigenetic modification regulates Th17/Treg cell differentiation in ulcerative colitis. Int Immunopharmacol 2022; 110:109000. [PMID: 35777266 DOI: 10.1016/j.intimp.2022.109000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/05/2022]
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory bowel disease characterized by chronic inflammation and ulceration of the colonic mucosa, frequent relapse, and cancerization that is difficult to cure. In recent years, the incidence of UC has increased. However, its etiology and pathogenesis are still not completely clear. In this study, dextran sodium sulfate (DSS) was used to induce the model, and GSK-J1 and dexamethasone were administered to the mice. A variety of molecular biology and immunological techniques, such as immunofluorescence, PCR and chromatin immunoprecipitation (ChIP), were used to examine JMJD3/H3K27me3-mediated regulation of Th17/Treg cell differentiation in UC by targeting histone modification. This study will provide an important theoretical basis for understanding the pathogenesis and potential therapeutic targets of UC.
Collapse
Affiliation(s)
- Xue-Yuan Leng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China; Department of Endocrinology, The Third People's Hospital of Hubei Province, Wuhan, Hubei 430030, PR China
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Qian-Yun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China.
| | - Bing-Jie Cheng
- Department of Endocrinology, The Third People's Hospital of Hubei Province, Wuhan, Hubei 430030, PR China
| | - Hong-Xia He
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China
| | - Fei Gao
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Ting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Yu-Jin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| |
Collapse
|
3
|
Murillo-Rodríguez E, Arankowsky-Sandoval G, Budde H, Imperatori C, Machado S, Yamamoto T, Yadollahpour A, Torterolo P. In vivo brain levels of acetylcholine and 5-hydroxytryptamine after oleoylethanolamide or palmitoylethanolamide administrations are mediated by PPARα engagement. Eur J Neurosci 2021; 54:5932-5950. [PMID: 34396611 DOI: 10.1111/ejn.15409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/06/2021] [Accepted: 07/25/2021] [Indexed: 11/29/2022]
Abstract
The peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear receptor that has been linked to the modulation of several physiological functions, including the sleep-wake cycle. The PPARα recognizes as endogenous ligands the lipids oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), which in turn, if systemically injected, they exert wake-promoting effects. Moreover, the activation of PPARα by the administration of OEA or PEA increases the extracellular contents of neurotransmitters linked to the control of wakefulness; however, the role of PPARα activated by OEA or PEA on additional biochemicals related to waking regulation, such as acetylcholine (ACh) and 5-hydroxytryptamine (5-HT), has not been fully studied. Here, we have investigated the effects of treatments of OEA or PEA on the contents of ACh and 5-HT by using in vivo microdialysis techniques coupled to HPLC means. For this purpose, OEA or PEA were systemically injected (5, 10 or 30 mg/kg; i.p.), and the levels of ACh and 5-HT were collected from the basal forebrain, a wake-related brain area. These pharmacological treatments significantly increased the contents of ACh and 5-HT as determined by HPLC procedures. Interestingly, PPARα antagonist MK-886 (30 mg/kg; i.p.) injected before the treatments of OEA or PEA blocked these outcomes. Our data suggest that the activation of PPARα by OEA or PEA produces significant changes on ACh and 5-HT levels measured from the basal forebrain and support the conclusion that PPARα is a suitable molecular element involved in the regulation of wake-related neurotransmitters.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico.,Intercontinental Neuroscience Research Group
| | - Gloria Arankowsky-Sandoval
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Henning Budde
- Intercontinental Neuroscience Research Group.,Institute for Systems Medicine, Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
| | - Claudio Imperatori
- Intercontinental Neuroscience Research Group.,Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Rome, Italy
| | - Sérgio Machado
- Intercontinental Neuroscience Research Group.,Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil.,Laboratory of Physical Activity Neuroscience, Neurodiversity Institute, Queimados, Brazil
| | - Tetsuya Yamamoto
- Intercontinental Neuroscience Research Group.,Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Ali Yadollahpour
- Intercontinental Neuroscience Research Group.,Department of Psychology, University of Sheffield, Sheffield, UK
| | - Pablo Torterolo
- Intercontinental Neuroscience Research Group.,Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
4
|
Murillo-Rodríguez E, Millán-Aldaco D, Palomero-Rivero M, Morales-Lara D, Mechoulam R, Drucker-Colín R. Cannabidiol Partially Blocks the Excessive Sleepiness in Hypocretindeficient Rats: Preliminary Data. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:705-712. [PMID: 31642794 DOI: 10.2174/1871527318666191021143300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/05/2019] [Accepted: 09/13/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Excessive daytime sleepiness and cataplexy are among the symptoms of narcolepsy, a sleep disorder caused by the loss of hypocretin/orexin (HCRT/OX) neurons placed into the Hypothalamus (LH). Several treatments for managing narcolepsy include diverse drugs to induce alertness, such as antidepressants, amphetamine, or modafinil, etc. Recent evidence has shown that cannabidiol (CBD), a non-psychotropic derived from Cannabis sativa, shows positive therapeutic effects in neurodegenerative disorders, including Parkinson´s disease. Furthermore, CBD provokes alertness and enhances wake-related neurochemicals in laboratory animals. Thus, it is plausible to hypothesize that excessive somnolence observed in narcolepsy might be blocked by CBD. OBJECTIVE Here, we determined whether the systemic injection of CBD (5mg/kg, i.p.) would block the excessive sleepiness in a narcoleptic model. METHODS To test this idea, the neurotoxin hypocretin-2-saporin (HCRT2/SAP) was bilaterally injected into the LH of rats to eliminate HCRT leading to the establishment of narcoleptic-like behavior. Since excessive somnolence in HCRT2/SAP lesioned rats has been observed during the lights-off period, CBD was administered at the beginning of the dark phase. RESULTS Hourly analysis of sleep data showed that CBD blocked the sleepiness during the lights-off period across 7h post-injection in lesioned rats. CONCLUSION Taking together, these preliminary findings suggest that CBD might prevent sleepiness in narcolepsy.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico.,Intercontinental Neuroscience Research Group, Merida, Yucatán, Mexico
| | - Diana Millán-Aldaco
- Depto. de Neurociencia Cognitiva, División de Neurociencias, Instituto de Fisiología Celular. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marcela Palomero-Rivero
- Depto. de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Daniela Morales-Lara
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico.,Intercontinental Neuroscience Research Group, Merida, Yucatán, Mexico
| | - Raphael Mechoulam
- Institute for Drug Research, Medical Faculty, Hebrew University, Jerusalem, Israel
| | - René Drucker-Colín
- Depto. de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
5
|
The retinoid X receptor: a nuclear receptor that modulates the sleep-wake cycle in rats. Psychopharmacology (Berl) 2020; 237:2055-2073. [PMID: 32472163 DOI: 10.1007/s00213-020-05518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
RATIONALE The nuclear receptor retinoid X receptor (RXR) belongs to a nuclear receptor superfamily that modulates diverse functions via homodimerization with itself or several other nuclear receptors, including PPARα. While the activation of PPARα by natural or synthetic agonists regulates the sleep-wake cycle, the role of RXR in the sleep modulation is unknown. OBJECTIVES We investigated the effects of bexarotene (Bexa, a RXR agonist) or UVI 3003 (UVI, a RXR antagonist) on sleep, sleep homeostasis, levels of neurochemical related to sleep modulation, and c-Fos and NeuN expression. METHODS The sleep-wake cycle and sleep homeostasis were analyzed after application of Bexa or UVI. Moreover, we also evaluated whether Bexa or UVI could induce effects on dopamine, serotonin, norepinephrine epinephrine, adenosine, and acetylcholine contents, collected from either the nucleus accumbens or basal forebrain. In addition, c-Fos and NeuN expression in the hypothalamus was determined after Bexa or UVI treatments. RESULTS Systemic application of Bexa (1 mM, i.p.) attenuated slow-wave sleep and rapid eye movement sleep. In addition, Bexa increased the levels of dopamine, serotonin, norepinephrine epinephrine, adenosine, and acetylcholine sampled from either the nucleus accumbens or basal forebrain. Moreover, Bexa blocked the sleep rebound period after total sleep deprivation, increased in the hypothalamus the expression of c-Fos, and decreased NeuN activity. Remarkably, UVI 3003 (1 mM, i.p.) induced opposite effects in sleep, sleep homeostasis, neurochemicals levels, and c-Fos and NeuN activity. CONCLUSIONS The administration of RXR agonist or antagonist significantly impaired the sleep-wake cycle and exerted effects on the levels of neurochemicals related to sleep modulation. Moreover, Bexa or UVI administration significantly affected c-Fos and NeuN expression in the hypothalamus. Our findings highlight the neurobiological role of RXR on sleep modulation.
Collapse
|
6
|
Macías-Triana L, Romero-Cordero K, Tatum-Kuri A, Vera-Barrón A, Millán-Aldaco D, Arankowsky-Sandoval G, Piomelli D, Murillo-Rodríguez E. Exposure to the cannabinoid agonist WIN 55, 212–2 in adolescent rats causes sleep alterations that persist until adulthood. Eur J Pharmacol 2020; 874:172911. [DOI: 10.1016/j.ejphar.2020.172911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/10/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
|
7
|
Murillo-Rodríguez E, Arankowsky-Sandoval G, Pertwee RG, Parker L, Mechoulam R. Sleep and neurochemical modulation by cannabidiolic acid methyl ester in rats. Brain Res Bull 2020; 155:166-173. [DOI: 10.1016/j.brainresbull.2019.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/25/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
|