1
|
Zhang HM, Li JF, Zhao JW, Shao J. The Involvement of the Ventral Tegmental Area in the Electroacupuncture Alleviation of Anxiety-Like Behaviors Induced by Chronic Restraint Stress in Mice. Neurochem Res 2024; 49:3131-3142. [PMID: 39190121 DOI: 10.1007/s11064-024-04229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Emotional stress is a significant environmental risk factor for various mental health disabilities, such as anxiety. Electroacupuncture (EA) has been demonstrated to have pronounced anxiolytic effects. However, the neural mechanisms underlying these effects and their contribution to behavioral deficits remain poorly understood. Here, we addressed these issues using a classical mouse anxiety model induced by chronic restraint stress (CRS).Anxiety-like behaviors were evaluated with the open field test and elevated plus maze. Neuronal activation in various brain regions was marked using c-Fos, followed by calculations of interregional correlation to characterize a network that became functionally active following EA at the HT7 acupoint (EA-HT7). We selected the hub regions and further investigated their functions and connections in regulating anxiety-like behaviors by using a combination of chemogenetic manipulations and behavioral testing. CRS exposure induced anxiety-like behaviors. Interestingly, EA-HT7 mitigated these behavioral abnormalities. The c-Fos expression in 30 brain areas revealed a vital brain network for acupuncture responsiveness in naïve mice. Neural activity in the NAcSh (nucleus accumbens shell), BNST (bed nucleus of the stria terminalis), VMH (Ventromedial Hypothalamus), ARC (arcuate nucleus), dDG (dorsal dentate gyrus), and VTA (ventral tegmental area) was significantly altered following acupuncture. Notably, both c-Fos immunostaining and brain functional connectivity analysis revealed the significant activation of VTA following EA-HT7. Interestingly, blocking the VTA eliminated the anxiolytic effects of EA-HT7, whereas chemogenetic activation of the VTA replicated the therapeutic effects of EA-HT7. EA-HT7 has demonstrated benefits in treating anxiety and enhances brain functional connectivity. The VTA is functionally associated with the anxiolytic effects of EA-HT7.
Collapse
Affiliation(s)
- Hua-Min Zhang
- Department of Geriatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19, Renmin Road, Jinshui District, Zhengzhou, Henan Province, 450000, P.R. China
| | - Jiang-Fan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Jing-Wei Zhao
- Department of Geriatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19, Renmin Road, Jinshui District, Zhengzhou, Henan Province, 450000, P.R. China
| | - Jing Shao
- Department of Geriatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19, Renmin Road, Jinshui District, Zhengzhou, Henan Province, 450000, P.R. China.
| |
Collapse
|
2
|
Li XL, Li F, Zhu XY, Wang XD, Kou ZZ, Liu SQ, Li H. Whole-brain mapping of monosynaptic afferent inputs to the CRH neurons in the medial prefrontal cortex of mice. J Anat 2024; 244:527-536. [PMID: 38009263 PMCID: PMC10862190 DOI: 10.1111/joa.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023] Open
Abstract
Corticotropin-releasing hormone (CRH) neurons are densely distributed in the medial prefrontal cortex (mPFC), which plays a crucial role in integrating and processing emotional and cognitive inputs from other brain regions. Therefore, it is important to know the neural afferent patterns of mPFCCRH neurons, which are still unclear. Here, we utilized a rabies virus-based monosynaptic retrograde tracing system to map the presynaptic afferents of the mPFCCRH neurons throughout the entire brain. The results show that the mPFCCRH neurons receive inputs from three main groups of brain regions: (1) the cortex, primarily the orbital cortex, somatomotor areas, and anterior cingulate cortex; (2) the thalamus, primarily the anteromedial nucleus, mediodorsal thalamic nucleus, and central medial thalamic nucleus; and (3) other brain regions, primarily the basolateral amygdala, hippocampus, and dorsal raphe nucleus. Taken together, our results are valuable for further investigations into the roles of the mPFCCRH neurons in normal and neurological disease states. These investigations can shed light on various aspects such as cognitive processing, emotional modulation, motivation, sociability, and pain.
Collapse
Affiliation(s)
- Xiao-Lan Li
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, China
| | - Fei Li
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, China
| | - Xin-Yi Zhu
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, China
| | - Xiao-Dong Wang
- Department of Emergency Medicine, Inner Mongolia Armed Police Corps Hospital, Hohhot, China
| | - Zhen-Zhen Kou
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, China
| | - Shang-Qing Liu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
- School of International Education and Cooperation, North Sichuan Medical College, Nanchong, China
| | - Hui Li
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Xue M, Chen QY, Shi W, Zhou Z, Li X, Xu F, Bi G, Yang X, Lu JS, Zhuo M. Whole-brain mapping of afferents to the anterior cingulate cortex in adult mice. Mol Pain 2024; 20:17448069241300990. [PMID: 39614717 DOI: 10.1177/17448069241300990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
The anterior cingulate cortex (ACC) is critical for pain perception, emotion and cognition. Previous studies showed that the ACC has a complex network architecture, which can receive some projection fibers from many brain regions, including the thalamus, the cerebral cortex and other brain regions. However, there was still a lack of whole-brain mapping of the ACC in adult mice. In the present study, we utilized a rabies virus-based retrograde trans-monosynaptic tracing system to map whole-brain afferents to the unilateral ACC in adult mice. We also combined with a new high-throughput, high-speed and high-resolution VISoR imaging technique to generate a three-dimensional whole-brain reconstruction. Our results showed that several principal groups of brain structures send direct monosynaptic inputs to the ACC, including the cerebral cortex, amygdala, striatum, the thalamus, and the brainstem. We also found that cortical neurons in the ACC mainly receive ipsilateral monosynaptic projections. Some cortical areas and forebrain regions also bilaterally projected to the ACC. These findings provide a complete analysis of the afferents to the ACC in adult mice, and whole-brain mapping of ACC afferents would provide important anatomic evidence for the study of pain, memory, and cognition.
Collapse
Affiliation(s)
- Man Xue
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qi-Yu Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Wantong Shi
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhaoxiang Zhou
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xuhui Li
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fang Xu
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Guoqiang Bi
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jing-Shan Lu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Min Zhuo
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Local production of corticotropin-releasing hormone in prefrontal cortex modulates male-specific novelty exploration. Proc Natl Acad Sci U S A 2022; 119:e2211454119. [PMID: 36442105 PMCID: PMC9894189 DOI: 10.1073/pnas.2211454119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neuromodulatory substances can be released from distal afferents for communication between brain structures or produced locally to modulate neighboring circuit elements. Corticotropin-releasing hormone (CRH) from long-range neurons in the hypothalamus projecting to the medial prefrontal cortex (mPFC) has been shown to induce anxiety-like behaviors. However, the role of CRH produced in the mPFC has not been investigated. Here we demonstrate that a specific class of mPFC interneurons that express CRH (CrhINs) releases CRH upon high-frequency stimulation to enhance excitability of layer 2/3 pyramidal cells (L2/3 PCs) expressing the CRH receptors. When stimulated at low frequency, CrhINs release GABA resulting in the inhibition of oxytocin receptor-expressing interneurons (OxtrINs) and L2/3 PCs. Conditional deletion of CRH in mPFC CrhINs and chemogenetic activation of CrhINs have opposite effects on novelty exploration in male but not in female mice, and do not affect anxiety-related behaviors in either males or females. Our data reveal that CRH produced by local interneurons in the mPFC is required for sex-specific novelty exploration and suggest that our understanding of complex behaviors may require knowledge of local and remote neuromodulatory action.
Collapse
|
5
|
Qi M, Li C, Li J, Zhu XN, Lu C, Luo H, Feng Y, Cai F, Sun X, Li ST, Hu J, Luo Y. Fluoxetine reverses hyperactivity of anterior cingulate cortex and attenuates chronic stress-induced hyperalgesia. Neuropharmacology 2022; 220:109259. [PMID: 36126726 DOI: 10.1016/j.neuropharm.2022.109259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Somatic symptom disorder (SSD), which occurs in about 5-7 percent of the adult population, involves heightened physical and emotional sensitivity to pain. However, its neural mechanism remains elusive and thus hinders effective clinical intervention. In this study, we employed chronic restraint stress (CRS)-induced hyperalgesia as a mouse model to investigate the neural mechanism underlying SSD and its pharmacological treatment. We found that CRS induced hyperactivity of anterior cingulate cortex (ACC), whereas chemogenetic inhibition of such hyperactivity could prevent CRS-induced hyperalgesia. Systematic application and ACC local infusion of fluoxetine alleviated CRS-induced hyperalgesia. Moreover, we found that fluoxetine exerted its anti-hyperalgesic effects through inhibiting the hyperactivity of ACC and upregulating 5-HT1A receptors. Our study thus uncovers the functional role of 5-HT signaling in modulating pain sensation and provides a neural basis for developing precise clinical intervention for SSD.
Collapse
Affiliation(s)
- Meiru Qi
- Department of Psychological Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chenglin Li
- Department of Psychological Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jie Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Xiao-Na Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chen Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huoqing Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yifan Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Fang Cai
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xia Sun
- Department of Psychological Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shi-Ting Li
- Xinhua Hospital Shanghai Jiao Tong University 1665# Kongjiang Road Yangpu District, Shanghai, 200092, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Yanli Luo
- Department of Psychological Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
6
|
Zheng Y, Tao S, Liu Y, Liu J, Sun L, Zheng Y, Tian Y, Su P, Zhu X, Xu F. Basal Forebrain-Dorsal Hippocampus Cholinergic Circuit Regulates Olfactory Associative Learning. Int J Mol Sci 2022; 23:ijms23158472. [PMID: 35955605 PMCID: PMC9368792 DOI: 10.3390/ijms23158472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
The basal forebrain, an anatomically heterogeneous brain area containing multiple distinct subregions and neuronal populations, innervates many brain regions including the hippocampus (HIP), a key brain region responsible for learning and memory. Although recent studies have revealed that basal forebrain cholinergic neurons (BFCNs) are involved in olfactory associative learning and memory, the potential neural circuit is not clearly dissected yet. Here, using an anterograde monosynaptic tracing strategy, we revealed that BFCNs in different subregions projected to many brain areas, but with significant differentiations. Our rabies virus retrograde tracing results found that the dorsal HIP (dHIP) received heavy projections from the cholinergic neurons in the nucleus of the horizontal limb of the diagonal band (HDB), magnocellular preoptic nucleus (MCPO), and substantia innominate (SI) brain regions, which are known as the HMS complex (HMSc). Functionally, fiber photometry showed that cholinergic neurons in the HMSc were significantly activated in odor-cued go/no-go discrimination tasks. Moreover, specific depletion of the HMSc cholinergic neurons innervating the dHIP significantly decreased the performance accuracies in odor-cued go/no-go discrimination tasks. Taken together, these studies provided detailed information about the projections of different BFCN subpopulations and revealed that the HMSc-dHIP cholinergic circuit plays a crucial role in regulating olfactory associative learning.
Collapse
Affiliation(s)
- Yingwei Zheng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (Y.Z.); (L.S.); (Y.Z.)
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (S.T.); (Y.L.); (Y.T.)
| | - Sijue Tao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (S.T.); (Y.L.); (Y.T.)
| | - Yue Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (S.T.); (Y.L.); (Y.T.)
| | - Jingjing Liu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (J.L.); (P.S.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Sun
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (Y.Z.); (L.S.); (Y.Z.)
| | - Yawen Zheng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (Y.Z.); (L.S.); (Y.Z.)
| | - Yu Tian
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (S.T.); (Y.L.); (Y.T.)
| | - Peng Su
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (J.L.); (P.S.)
| | - Xutao Zhu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (J.L.); (P.S.)
- Correspondence: (X.Z.); (F.X.)
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (S.T.); (Y.L.); (Y.T.)
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (J.L.); (P.S.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (X.Z.); (F.X.)
| |
Collapse
|
7
|
Fernandes ACA, de Oliveira FP, Fernandez G, da Guia Vieira L, Rosa CG, do Nascimento T, de Castro França S, Donato J, Vella KR, Antunes-Rodrigues J, Mecawi AS, Perello M, Elias LLK, Rorato R. Arcuate AgRP, but not POMC neurons, modulate paraventricular CRF synthesis and release in response to fasting. Cell Biosci 2022; 12:118. [PMID: 35902915 PMCID: PMC9331576 DOI: 10.1186/s13578-022-00853-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The activation of the hypothalamic-pituitary-adrenal (HPA) axis is essential for metabolic adaptation in response to fasting. However, the neurocircuitry connecting changes in the peripheral energy stores to the activity of hypothalamic paraventricular corticotrophin-releasing factor (CRFPVN) neurons, the master controller of the HPA axis activity, is not completely understood. Our main goal was to determine if hypothalamic arcuate nucleus (ARC) POMC and AgRP neurons can communicate fasting-induced changes in peripheral energy stores, associated to a fall in plasma leptin levels, to CRFPVN neurons to modulate the HPA axis activity in mice. RESULTS We observed increased plasma corticosterone levels associate with increased CRFPVN mRNA expression and increased CRFPVN neuronal activity in 36 h fasted mice. These responses were associated with a fall in plasma leptin levels and changes in the mRNA expression of Agrp and Pomc in the ARC. Fasting-induced decrease in plasma leptin partially modulated these responses through a change in the activity of ARC neurons. The chemogenetic activation of POMCARC by DREADDs did not affect fasting-induced activation of the HPA axis. DREADDs inhibition of AgRPARC neurons reduced the content of CRFPVN and increased its accumulation in the median eminence but had no effect on corticosterone secretion induced by fasting. CONCLUSION Our data indicate that AgRPARC neurons are part of the neurocircuitry involved in the coupling of PVNCRF activity to changes in peripheral energy stores induced by prolonged fasting.
Collapse
Affiliation(s)
| | - Franciane Pereira de Oliveira
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, São Paulo, SP, CEP 04023-062, Brazil
| | - Gimena Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, 403, Buenos Aires, Argentina
| | - Luane da Guia Vieira
- Department of Biotechnology, University of Ribeirao Preto, Ribeirão Prêto, SP, 14096-900, Brazil
| | - Cristiane Gugelmin Rosa
- Department of Biotechnology, University of Ribeirao Preto, Ribeirão Prêto, SP, 14096-900, Brazil
| | - Taís do Nascimento
- Department of Biotechnology, University of Ribeirao Preto, Ribeirão Prêto, SP, 14096-900, Brazil
| | - Suzelei de Castro França
- Department of Biotechnology, University of Ribeirao Preto, Ribeirão Prêto, SP, 14096-900, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, SP, 05508-000, Brazil
| | - Kristen R Vella
- Department of Endocrinology, Diabetes and Metabolism and the Weill Center for Metabolic Health, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Jose Antunes-Rodrigues
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Prêto, SP, 14049-900, Brazil
| | - André Souza Mecawi
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, São Paulo, SP, CEP 04023-062, Brazil
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata, La Plata, 403, Buenos Aires, Argentina
| | - Lucila Leico Kagohara Elias
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Prêto, SP, 14049-900, Brazil
| | - Rodrigo Rorato
- Department of Biotechnology, University of Ribeirao Preto, Ribeirão Prêto, SP, 14096-900, Brazil. .,Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, São Paulo, SP, CEP 04023-062, Brazil.
| |
Collapse
|
8
|
Xue M, Shi W, Zhou S, Li Y, Wu F, Chen QY, Liu RH, Zhou Z, Zhang YX, Chen Y, Xu F, Bi G, Li X, Lu J, Zhuo M. Mapping thalamic-anterior cingulate monosynaptic inputs in adult mice. Mol Pain 2022; 18:17448069221087034. [PMID: 35240879 PMCID: PMC9009153 DOI: 10.1177/17448069221087034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The anterior cingulate cortex (ACC) is located in the frontal part of the
cingulate cortex, and plays important roles in pain perception and emotion. The
thalamocortical pathway is the major sensory input to the ACC. Previous studies
have show that several different thalamic nuclei receive projection fibers from
spinothalamic tract, that in turn send efferents to the ACC by using neural
tracers and optical imaging methods. Most of these studies were performed in
monkeys, cats, and rats, few studies were reported systematically in adult mice.
Adult mice, especially genetically modified mice, have provided molecular and
synaptic mechanisms for cortical plasticity and modulation in the ACC. In the
present study, we utilized rabies virus-based retrograde tracing system to map
thalamic-anterior cingulate monosynaptic inputs in adult mice. We also combined
with a new high-throughput VISoR imaging technique to generate a
three-dimensional whole-brain reconstruction, especially the thalamus. We found
that cortical neurons in the ACC received direct projections from different
sub-nuclei in the thalamus, including the anterior, ventral, medial, lateral,
midline, and intralaminar thalamic nuclei. These findings provide key anatomic
evidences for the connection between the thalamus and ACC.
Collapse
Affiliation(s)
- Man Xue
- 12480Xi'an Jiaotong University
| | | | - Sibo Zhou
- 528996Xi'an Jiaotong University Frontier Institute of Science and Technology
| | | | | | | | | | | | | | | | | | | | | | | | - Min Zhuo
- Qingdao International Academician Park
| |
Collapse
|
9
|
Wu J, Liu P, Mao X, Qiu F, Gong L, Wu J, Wang D, He M, Li A. Ablation of microRNAs in VIP + interneurons impairs olfactory discrimination and decreases neural activity in the olfactory bulb. Acta Physiol (Oxf) 2022; 234:e13767. [PMID: 34981885 DOI: 10.1111/apha.13767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/18/2021] [Accepted: 01/01/2022] [Indexed: 12/29/2022]
Abstract
AIM MicroRNAs (miRNAs) are abundantly expressed in vasoactive intestinal peptide expressing (VIP+ ) interneurons and are indispensable for their functional maintenance and survival. Here, we blocked miRNA biogenesis in postmitotic VIP+ interneurons in mice by selectively ablating Dicer, an enzyme essential for miRNA maturation, to study whether ablation of VIP+ miRNA affects olfactory function and neural activity in olfactory centres such as the olfactory bulb, which contains a large number of VIP+ interneurons. METHODS A go/no-go odour discrimination task and a food-seeking test were used to assess olfactory discrimination and olfactory detection. In vivo electrophysiological techniques were used to record single units and local field potentials. RESULTS Olfactory detection and olfactory discrimination behaviours were impaired in VIP+ -specific Dicer-knockout mice. In vivo electrophysiological recordings in awake, head-fixed mice showed that both spontaneous and odour-evoked firing rates were decreased in mitral/tufted cells in knockout mice. The power of ongoing and odour-evoked beta local field potentials response of the olfactory bulb and anterior piriform cortex were dramatically decreased. Furthermore, the coherence of theta oscillations between the olfactory bulb and anterior piriform cortex was decreased. Importantly, Dicer knockout restricted to olfactory bulb VIP+ interneurons recapitulated the behavioural and electrophysiological results of the global knockout. CONCLUSIONS VIP+ miRNAs are an important factor in sensory processing, affecting olfactory function and olfactory neural activity.
Collapse
Affiliation(s)
- Jing Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Xingfeng Mao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Fang Qiu
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science Zhongshan Hospital Fudan University Shanghai China
- Department of Anesthesiology Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Shenzhen China
| | - Ling Gong
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science Zhongshan Hospital Fudan University Shanghai China
| | - Jinyun Wu
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science Zhongshan Hospital Fudan University Shanghai China
| | - Dejuan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Miao He
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science Zhongshan Hospital Fudan University Shanghai China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| |
Collapse
|
10
|
Chen J, Li C, Lu Z, Zhan C. Optimal Timing of a Commonly-Used Rabies Virus for Neural Recording and Manipulation. Neurosci Bull 2022; 38:548-552. [PMID: 35091996 PMCID: PMC9106770 DOI: 10.1007/s12264-022-00819-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022] Open
Affiliation(s)
- Jing Chen
- School of Sport Science, Beijing Sport University, Beijing, 100084, China
| | - Chunli Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Zhonghua Lu
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518055, China
| | - Cheng Zhan
- National Institute of Biological Sciences, Beijing, 102206, China. .,Department of Hematology, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
11
|
Toll-Like Receptor 4 Regulates Rabies Virus-Induced Humoral Immunity through Recruitment of Conventional Type 2 Dendritic Cells to Lymph Organs. J Virol 2021; 95:e0082921. [PMID: 34613801 DOI: 10.1128/jvi.00829-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rabies, caused by rabies virus (RABV), is fatal to both humans and animals around the world. Effective clinical therapy for rabies has not been achieved, and vaccination is the most effective means of preventing and controlling rabies. Although different vaccines, such as live attenuated and inactivated vaccines, can induce different immune responses, different expressions of pattern recognition receptors (PRRs) also cause diverse immune responses. Toll-like receptor 4 (TLR4) is a pivotal PRR that induces cytokine production and bridges innate and adaptive immunity. Importantly, TLR4 recognizes various virus-derived pathogen-associated molecular patterns (PAMPs) and virus-induced damage-associated molecular patterns (DAMPs), usually leading to the activation of immune cells. However, the role of TLR4 in the humoral immune response induced by RABV has not yet been revealed. Based on TLR4-deficient (TLR4-/-) and wild-type (WT) mouse models, we report that TLR4-dependent recruitment of the conventional type 2 dendritic cells (CD8α- CD11b+ cDC2) into secondary lymph organs (SLOs) is critical for antigen presentation. cDC2-initiated differentiation of follicular helper T (Tfh) cells promotes the proliferation of germinal center (GC) B cells, the formation of GCs, and the production of plasma cells (PCs), all of which contribute to the production of RABV-specific IgG and virus-neutralizing antibodies (VNAs). Collectively, our work demonstrates that TLR4 is necessary for the recruitment of cDC2 and for the induction of RABV-induced humoral immunity, which is regulated by the cDC2-Tfh-GC B axis. IMPORTANCE Vaccination is the most efficient method to prevent rabies. TLR4, a well-known immune sensor, plays a critical role in initiating innate immune response. Here, we found that TLR4-deficient (TLR4-/-) mice suppressed the induction of humoral immune response after immunization with rabies virus (RABV), including reduced production of VNAs and RABV-specific IgG compared to that occurred in wild-type (WT) mice. As a consequence, TLR4-/- mice exhibited higher mortality than that of WT mice after challenge with virulent RABV. Importantly, further investigation found that TLR4 signaling promoted the recruitment of cDC2 (CD8α+ CD11b-), a subset of cDCs known to induce CD4+ T-cell immunity through their MHC-II presentation machinery. Our results imply that TLR4 is indispensable for an efficient humoral response to rabies vaccine, which provides new insight into the development of novel rabies vaccines.
Collapse
|
12
|
Pouchelon G, Dwivedi D, Bollmann Y, Agba CK, Xu Q, Mirow AMC, Kim S, Qiu Y, Sevier E, Ritola KD, Cossart R, Fishell G. The organization and development of cortical interneuron presynaptic circuits are area specific. Cell Rep 2021; 37:109993. [PMID: 34758329 PMCID: PMC8832360 DOI: 10.1016/j.celrep.2021.109993] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/17/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Parvalbumin and somatostatin inhibitory interneurons gate information flow in discrete cortical areas that compute sensory and cognitive functions. Despite the considerable differences between areas, individual interneuron subtypes are genetically invariant and are thought to form canonical circuits regardless of which area they are embedded in. Here, we investigate whether this is achieved through selective and systematic variations in their afferent connectivity during development. To this end, we examined the development of their inputs within distinct cortical areas. We find that interneuron afferents show little evidence of being globally stereotyped. Rather, each subtype displays characteristic regional connectivity and distinct developmental dynamics by which this connectivity is achieved. Moreover, afferents dynamically regulated during development are disrupted by early sensory deprivation and in a model of fragile X syndrome. These data provide a comprehensive map of interneuron afferents across cortical areas and reveal the logic by which these circuits are established during development.
Collapse
Affiliation(s)
- Gabrielle Pouchelon
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA; Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA 02142, USA
| | - Deepanjali Dwivedi
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA; Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA 02142, USA
| | - Yannick Bollmann
- Aix Marseille University, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Chimuanya K Agba
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA; Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA 02142, USA
| | - Qing Xu
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Andrea M C Mirow
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | - Sehyun Kim
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | - Yanjie Qiu
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA; Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA 02142, USA
| | - Elaine Sevier
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA; Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA 02142, USA
| | - Kimberly D Ritola
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Rosa Cossart
- Aix Marseille University, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Gord Fishell
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA; Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Chaves T, Fazekas CL, Horváth K, Correia P, Szabó A, Török B, Bánrévi K, Zelena D. Stress Adaptation and the Brainstem with Focus on Corticotropin-Releasing Hormone. Int J Mol Sci 2021; 22:ijms22169090. [PMID: 34445795 PMCID: PMC8396605 DOI: 10.3390/ijms22169090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Stress adaptation is of utmost importance for the maintenance of homeostasis and, therefore, of life itself. The prevalence of stress-related disorders is increasing, emphasizing the importance of exploratory research on stress adaptation. Two major regulatory pathways exist: the hypothalamic–pituitary–adrenocortical axis and the sympathetic adrenomedullary axis. They act in unison, ensured by the enormous bidirectional connection between their centers, the paraventricular nucleus of the hypothalamus (PVN), and the brainstem monoaminergic cell groups, respectively. PVN and especially their corticotropin-releasing hormone (CRH) producing neurons are considered to be the centrum of stress regulation. However, the brainstem seems to be equally important. Therefore, we aimed to summarize the present knowledge on the role of classical neurotransmitters of the brainstem (GABA, glutamate as well as serotonin, noradrenaline, adrenaline, and dopamine) in stress adaptation. Neuropeptides, including CRH, might be co-localized in the brainstem nuclei. Here we focused on CRH as its role in stress regulation is well-known and widely accepted and other CRH neurons scattered along the brain may also complement the function of the PVN. Although CRH-positive cells are present on some parts of the brainstem, sometimes even in comparable amounts as in the PVN, not much is known about their contribution to stress adaptation. Based on the role of the Barrington’s nucleus in micturition and the inferior olivary complex in the regulation of fine motoric—as the main CRH-containing brainstem areas—we might assume that these areas regulate stress-induced urination and locomotion, respectively. Further studies are necessary for the field.
Collapse
Affiliation(s)
- Tiago Chaves
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Csilla Lea Fazekas
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Krisztina Horváth
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Pedro Correia
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Adrienn Szabó
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Bibiána Török
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Krisztina Bánrévi
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
| | - Dóra Zelena
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
14
|
Abulimiti A, Lai MSL, Chang RCC. Applications of adeno-associated virus vector-mediated gene delivery for neurodegenerative diseases and psychiatric diseases: Progress, advances, and challenges. Mech Ageing Dev 2021; 199:111549. [PMID: 34352323 DOI: 10.1016/j.mad.2021.111549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 12/19/2022]
Abstract
Neurodegeneration is the most common disease in the elderly population due to its slowly progressive nature of neuronal deterioration, eventually leading to executive dysfunction. The pathological markers of neurological disorders are relatively well-established, however, detailed molecular mechanisms of progression and therapeutic targets are needed to develop novel treatments in human patients. Treating known therapeutic targets of neurological diseases has been aided by recent advancements in adeno-associated virus (AAV) technology. AAVs are known for their low-immunogenicity, blood-brain barrier (BBB) penetrating ability, selective neuronal tropism, stable transgene expression, and pleiotropy. In addition, the usage of AAVs has enormous potential to be optimized. Therefore, AAV can be a powerful tool used to uncover the underlying pathophysiology of neurological disorders and to increase the success in human gene therapy. This review summarizes different optimization approaches of AAV vectors with their current applications in disease modeling, neural tracing and gene therapy, hence exploring progressive mechanisms of neurodegenerative diseases as well as effective therapy. Lastly, this review discusses the limitations and future perspectives of the AAV-mediated transgene delivery system.
Collapse
Affiliation(s)
- Amina Abulimiti
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Michael Siu-Lun Lai
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
15
|
Zhao N, Mu L, Chang X, Zhu L, Geng Y, Li G. Effects of varying intensities of heat stress on neuropeptide Y and proopiomelanocortin mRNA expression in rats. Biomed Rep 2020; 13:39. [PMID: 32934812 DOI: 10.3892/br.2020.1346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate the effects of varying intensities of heat stress on the mRNA expression levels of neuropeptide Y (NPY), proopiomelanocortin (POMC) and stress hormones in rats. To establish a rat model of heat stress, the temperature and time were adjusted in a specialized heating chamber. Sprague-Dawley (SD) rats were randomly divided into four groups; control (CN; temperature, 24±1˚C); moderate strength 6 h (MS6; temperature, 32±1˚C time, 6 h), moderate strength 24 h (MS24; temperature, 32±1˚C; time, 24 h) and high strength 6 h (HS6; temperature, 38±1˚C; time, 6 h) groups. SD rats were exposed to heat for 14 consecutive days. The levels of heat stress-related factors, including corticotropin-releasing hormone (CRH), cortisol (COR), epinephrine (EPI) and heat shock protein 70 (HSP70), were measured in the rat blood using ELISA. In addition, the weight of the spleen, thymus, hypophysis and hypothalamus were determined. The mRNA expressions levels of NPY and POMC were detected using quantitative PCR. The results showed that the CRH, COR and HSP70 levels were increased in the three heat stress groups compared with the CN group. Notably, the levels of CRH, EPI and HSP70 were increased in the HS6 group compared with the CN and MS6 groups (P<0.05). Furthermore, the weights of the hypophysis and hypothalamus in the HS6 group were significantly lower compared with the CN group (P<0.05). In addition, NPY and POMC expression levels were downregulated in the MS24 group compared with the CN group. The mRNA expression levels of NPY and POMC were altered in response to different intensities of heat stress. Therefore, their levels were downregulated and upregulated following long-time and moderate-time heat exposure, respectively. The results of the present study suggested that the reduced mRNA expression levels of NPY may be partially responsible for the heat-induced injuries in rats following long-time heat exposure.
Collapse
Affiliation(s)
- Nan Zhao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China.,Institute of Translational Medicine, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Le Mu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiaoyu Chang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Lingqing Zhu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yao Geng
- School of Nursing, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Guanghua Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China.,School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
16
|
Long-range inputome of cortical neurons containing corticotropin-releasing hormone. Sci Rep 2020; 10:12209. [PMID: 32699360 PMCID: PMC7376058 DOI: 10.1038/s41598-020-68115-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/12/2020] [Indexed: 12/31/2022] Open
Abstract
Dissection of the neural circuits of the cerebral cortex is essential for studying mechanisms underlying brain function. Herein, combining a retrograde rabies tracing system with fluorescent micro-optical sectional tomography, we investigated long-range input neurons of corticotropin-releasing hormone containing neurons in the six main cortical areas, including the prefrontal, somatosensory, motor, auditory, and visual cortices. The whole brain distribution of input neurons showed similar patterns to input neurons distributed mainly in the adjacent cortical areas, thalamus, and basal forebrain. Reconstruction of continuous three-dimensional datasets showed the anterior and middle thalamus projected mainly to the rostral cortex whereas the posterior and lateral projected to the caudal cortex. In the basal forebrain, immunohistochemical staining showed these cortical areas received afferent information from cholinergic neurons in the substantia innominata and lateral globus pallidus, whereas cholinergic neurons in the diagonal band nucleus projected strongly to the prefrontal and visual cortex. Additionally, dense neurons in the zona incerta and ventral hippocampus were found to project to the prefrontal cortex. These results showed general patterns of cortical input circuits and unique connection patterns of each individual area, allowing for valuable comparisons among the organisation of different cortical areas and new insight into cortical functions.
Collapse
|
17
|
Corticotropin Releasing Factor Type 1 and 2 Receptor Signaling in the Medial Prefrontal Cortex Modulates Binge-Like Ethanol Consumption in C57BL/6J Mice. Brain Sci 2019; 9:brainsci9070171. [PMID: 31330967 PMCID: PMC6680756 DOI: 10.3390/brainsci9070171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Corticotropin releasing factor (CRF) signaling via limbic CRF1 and 2 receptors (CRF1R and CRF2R, respectively) is known to modulate binge-like ethanol consumption in rodents. Though CRF signaling in the medial prefrontal cortex (mPFC) has been shown to modulate anxiety-like behavior and ethanol seeking, its role in binge ethanol intake is unknown. Here, we used “drinking-in-the-dark” (DID) procedures in male and female C57BL/6J mice to address this gap in the literature. First, the role of CRF1R and CRF2R signaling in the mPFC on ethanol consumption was evaluated through site-directed pharmacology. Next, we evaluated if CRF1R antagonist reduction of binge-intake was modulated in part through CRF2R activation by co-administration of a CRF1R and CRF2R antagonist. Intra-mPFC inhibition of CRF1R and activation of CRF2R resulted in decreased binge-like ethanol intake. Further, the inhibitory effect of the CRF1R antagonist was attenuated by co-administration of a CRF2R antagonist. We provide novel evidence that (1) inhibition of CRF1R or activation of CRF2R in the mPFC reduces binge-like ethanol intake; and (2) the effect of CRF1R antagonism may be mediated via enhanced CRF2R activation. These observations provide the first direct behavioral pharmacological evidence that CRF receptor activity in the mPFC modulates binge-like ethanol consumption.
Collapse
|