1
|
Lendemeijer B, Unkel M, Smeenk H, Mossink B, Hijazi S, Gordillo-Sampedro S, Shpak G, Slump DE, van den Hout MCGN, van IJcken WFJ, Bindels EMJ, Hoogendijk WJG, Nadif Kasri N, de Vrij FMS, Kushner SA. Human Pluripotent Stem Cell-Derived Astrocyte Functionality Compares Favorably with Primary Rat Astrocytes. eNeuro 2024; 11:ENEURO.0148-24.2024. [PMID: 39227152 PMCID: PMC11404293 DOI: 10.1523/eneuro.0148-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024] Open
Abstract
Astrocytes are essential for the formation and maintenance of neural networks. However, a major technical challenge for investigating astrocyte function and disease-related pathophysiology has been the limited ability to obtain functional human astrocytes. Despite recent advances in human pluripotent stem cell (hPSC) techniques, primary rodent astrocytes remain the gold standard in coculture with human neurons. We demonstrate that a combination of leukemia inhibitory factor (LIF) and bone morphogenetic protein-4 (BMP4) directs hPSC-derived neural precursor cells to a highly pure population of astroglia in 28 d. Using single-cell RNA sequencing, we confirm the astroglial identity of these cells and highlight profound transcriptional adaptations in cocultured hPSC-derived astrocytes and neurons, consistent with their further maturation. In coculture with human neurons, multielectrode array recordings revealed robust network activity of human neurons in a coculture with hPSC-derived or rat astrocytes [3.63 ± 0.44 min-1 (hPSC-derived), 2.86 ± 0.64 min-1 (rat); p = 0.19]. In comparison, we found increased spike frequency within network bursts of human neurons cocultured with hPSC-derived astrocytes [56.31 ± 8.56 Hz (hPSC-derived), 24.77 ± 4.04 Hz (rat); p < 0.01], and whole-cell patch-clamp recordings revealed an increase of postsynaptic currents [2.76 ± 0.39 Hz (hPSC-derived), 1.07 ± 0.14 Hz (rat); p < 0.001], consistent with a corresponding increase in synapse density [14.90 ± 1.27/100 μm2 (hPSC-derived), 8.39 ± 0.63/100 μm2 (rat); p < 0.001]. Taken together, we show that hPSC-derived astrocytes compare favorably with rat astrocytes in supporting human neural network activity and maturation, providing a fully human platform for investigating astrocyte function and neuronal-glial interactions.
Collapse
Affiliation(s)
- Bas Lendemeijer
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
- Department of Psychiatry, Columbia University, New York, New York 10027
- Stavros Niarchos Foundation (SNF) Center for Precision Psychiatry & Mental Health, Columbia University, New York, New York 10027
| | - Maurits Unkel
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Hilde Smeenk
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Britt Mossink
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Sara Hijazi
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Sara Gordillo-Sampedro
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Guy Shpak
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Denise E Slump
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Mirjam C G N van den Hout
- Department of Cell Biology, Center for Biomics, Erasmus University Medical Center, Rotterdam 3015AA, The Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Center for Biomics, Erasmus University Medical Center, Rotterdam 3015AA, The Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015AA, The Netherlands
| | - Witte J G Hoogendijk
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam 3015AA, The Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 AA, The Netherlands
- Department of Psychiatry, Columbia University, New York, New York 10027
- Stavros Niarchos Foundation (SNF) Center for Precision Psychiatry & Mental Health, Columbia University, New York, New York 10027
| |
Collapse
|
2
|
Kraskovskaya N, Koltsova A, Parfenova P, Shatrova A, Yartseva N, Nazarov V, Devyatkina E, Khotin M, Mikhailova N. Dermal Fibroblast Cell Line from a Patient with the Huntington's Disease as a Promising Model for Studying Disease Pathogenesis: Production and Characterization. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1239-1250. [PMID: 39218021 DOI: 10.1134/s000629792407006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 09/04/2024]
Abstract
Huntington's disease (HD) is an incurable hereditary disease caused by expansion of the CAG repeats in the HTT gene encoding the mutant huntingtin protein (mHTT). Despite numerous studies in cellular and animal models, the mechanisms underlying the biological role of mHTT and its toxicity to striatal neurons have not yet been established and no effective therapy for HD patients has been developed so far. We produced and characterized a new line of dermal fibroblasts (HDDF, Huntington's disease dermal fibroblasts) from a patient with a confirmed HD diagnosis. We also studied the growth characteristics of HDDF cells, stained them for canonical markers, karyotyped these cells, and investigated their phenotype. HDDF cells was successfully reprogrammed into induced striatal neurons via transdifferentiation. The new fibroblast line can be used as a cell model to study the biological role of mHTT and manifestations of HD pathogenesis in both fibroblasts and induced neuronal cells obtained from them by reprogramming techniques.
Collapse
Affiliation(s)
- Nina Kraskovskaya
- Institute of Cytology, Russian Academy of Science, St. Petersburg, 194064, Russia.
| | - Anna Koltsova
- Institute of Cytology, Russian Academy of Science, St. Petersburg, 194064, Russia
| | - Polina Parfenova
- Institute of Cytology, Russian Academy of Science, St. Petersburg, 194064, Russia
| | - Alla Shatrova
- Institute of Cytology, Russian Academy of Science, St. Petersburg, 194064, Russia
| | - Natalya Yartseva
- Institute of Cytology, Russian Academy of Science, St. Petersburg, 194064, Russia
| | - Vladimir Nazarov
- Pavlov First St. Petersburg State Medical University, St. Petersburg, 197022, Russia
| | - Ekaterina Devyatkina
- Pavlov First St. Petersburg State Medical University, St. Petersburg, 197022, Russia
| | - Mikhail Khotin
- Institute of Cytology, Russian Academy of Science, St. Petersburg, 194064, Russia
| | - Natalia Mikhailova
- Institute of Cytology, Russian Academy of Science, St. Petersburg, 194064, Russia
| |
Collapse
|
3
|
Takahashi K, Sato K. The Conventional and Breakthrough Tool for the Study of L-Glutamate Transporters. MEMBRANES 2024; 14:77. [PMID: 38668105 PMCID: PMC11052088 DOI: 10.3390/membranes14040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
In our recent report, we clarified the direct interaction between the excitatory amino acid transporter (EAAT) 1/2 and polyunsaturated fatty acids (PUFAs) by applying electrophysiological and molecular biological techniques to Xenopus oocytes. Xenopus oocytes have a long history of use in the scientific field, but they are still attractive experimental systems for neuropharmacological studies. We will therefore summarize the pharmacological significance, advantages (especially in the study of EAAT2), and experimental techniques that can be applied to Xenopus oocytes; our new findings concerning L-glutamate (L-Glu) transporters and PUFAs; and the significant outcomes of our data. The data obtained from electrophysiological and molecular biological studies of Xenopus oocytes have provided us with further important questions, such as whether or not some PUFAs can modulate EAATs as allosteric modulators and to what extent docosahexaenoic acid (DHA) affects neurotransmission and thereby affects brain functions. Xenopus oocytes have great advantages in the studies about the interactions between molecules and functional proteins, especially in the case when the expression levels of the proteins are small in cell culture systems without transfections. These are also proper to study the mechanisms underlying the interactions. Based on the data collected in Xenopus oocyte experiments, we can proceed to the next step, i.e., the physiological roles of the compounds and their significances. In the case of EAAT2, the effects on the neurotransmission should be examined by electrophysiological approach using acute brain slices. For new drug development, pharmacokinetics pharmacodynamics (PKPD) data and blood brain barrier (BBB) penetration data are also necessary. In order not to miss the promising candidate compounds at the primary stages of drug development, we should reconsider using Xenopus oocytes in the early phase of drug development.
Collapse
Grants
- a Research Grant on Regulatory Harmonization and Evaluation of Pharmaceuticals, Medical Devices, Regenerative and Cellular Therapy Products, Gene Therapy Products, and Cosmetics from AMED, Japan Japan Agency for Medical Research and Development
- KAKENHI 18700373, 21700422, 17K08330 Ministry of Education, Culture, Sports, Science and Technology
- a Grant for the Program for Promotion of Fundamental Studies in Health Sciences of NIBIO National Institute of Biomedical Innovation, Health and Nutrition
- a grant for Research on Risks of Chemicals, a Labor Science Research Grant for Research on New Drug Development MHLW
- a Grant-in-Aid from Hoansha Foundation Hoansha Foundation
Collapse
Affiliation(s)
| | - Kaoru Sato
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan;
| |
Collapse
|
4
|
Binda CS, Lelos MJ, Rosser AE, Massey TH. Using gene or cell therapies to treat Huntington's disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:193-215. [PMID: 39341655 DOI: 10.1016/b978-0-323-90120-8.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Huntington's disease is caused by a CAG repeat expansion in the first exon of the HTT gene, leading to the production of gain-of-toxic-function mutant huntingtin protein species and consequent transcriptional dysregulation and disrupted cell metabolism. The brunt of the disease process is borne by the striatum from the earliest disease stages, with striatal atrophy beginning approximately a decade prior to the onset of neurologic signs. Although the expanded CAG repeat in the HTT gene is necessary and sufficient to cause HD, other genes can influence the age at onset of symptoms and how they progress. Many of these modifier genes have roles in DNA repair and are likely to modulate the stability of the CAG repeat in somatic cells. Currently, there are no disease-modifying treatments for HD that can be prescribed to patients and few symptomatic treatments, but there is a lot of interest in therapeutics that can target the pathogenic pathways at the DNA and RNA levels, some of which have reached the stage of human studies. In contrast, cell therapies aim to replace key neural cells lost to the disease process and/or to support the host vulnerable striatum by direct delivery of cells to the brain. Ultimately it may be possible to combine gene and cell therapies to both slow disease processes and provide some level of neural repair. In this chapter we consider the current status of these therapeutic strategies along with their prospects and challenges.
Collapse
Affiliation(s)
- Caroline S Binda
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom; UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, United Kingdom
| | - Mariah J Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom; BRAIN Unit, Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom.
| | - Thomas H Massey
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom; UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
5
|
Stöberl N, Donaldson J, Binda CS, McAllister B, Hall-Roberts H, Jones L, Massey TH, Allen ND. Mutant huntingtin confers cell-autonomous phenotypes on Huntington's disease iPSC-derived microglia. Sci Rep 2023; 13:20477. [PMID: 37993517 PMCID: PMC10665390 DOI: 10.1038/s41598-023-46852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a dominantly inherited CAG repeat expansion in the huntingtin gene (HTT). Neuroinflammation and microglia have been implicated in HD pathology, however it has been unclear if mutant HTT (mHTT) expression has an adverse cell-autonomous effect on microglial function, or if they are only activated in response to the neurodegenerative brain environment in HD. To establish a human cell model of HD microglia function, we generated isogenic controls for HD patient-derived induced pluripotent stem cells (iPSC) with 109 CAG repeats (Q109). Q109 and isogenic Q22 iPSC, as well as non-isogenic Q60 and Q33 iPSC lines, were differentiated to iPSC-microglia. Our study supports a model of basal microglia dysfunction in HD leading to elevated pro-inflammatory cytokine production together with impaired phagocytosis and endocytosis capacity, in the absence of immune stimulation. These findings are consistent with early microglia activation observed in pre-manifest patients and indicate that mHTT gene expression affects microglia function in a cell-autonomous way.
Collapse
Affiliation(s)
- Nina Stöberl
- School of Biosciences, Cardiff University, Cardiff, UK.
| | - Jasmine Donaldson
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Caroline S Binda
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Branduff McAllister
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Hazel Hall-Roberts
- UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, UK
| | - Lesley Jones
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Thomas H Massey
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
6
|
Yuan WQ, Huang WP, Jiang YC, Xu H, Duan CS, Chen NH, Liu YJ, Fu XM. The function of astrocytes and their role in neurological diseases. Eur J Neurosci 2023; 58:3932-3961. [PMID: 37831013 DOI: 10.1111/ejn.16160] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
Astrocytes have countless links with neurons. Previously, astrocytes were only considered a scaffold of neurons; in fact, astrocytes perform a variety of functions, including providing support for neuronal structures and energy metabolism, offering isolation and protection and influencing the formation, function and elimination of synapses. Because of these functions, astrocytes play an critical role in central nervous system (CNS) diseases. The regulation of the secretiory factors, receptors, channels and pathways of astrocytes can effectively inhibit the occurrence and development of CNS diseases, such as neuromyelitis optica (NMO), multiple sclerosis, Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease. The expression of aquaporin 4 in AS is directly related to NMO and indirectly involved in the clearance of Aβ and tau proteins in AD. Connexin 43 has a bidirectional effect on glutamate diffusion at different stages of stroke. Interestingly, astrocytes reduce the occurrence of PD through multiple effects such as secretion of related factors, mitochondrial autophagy and aquaporin 4. Therefore, this review is focused on the structure and function of astrocytes and the correlation between astrocytes and CNS diseases and drug treatment to explore the new functions of astrocytes with the astrocytes as the target. This, in turn, would provide a reference for the development of new drugs to protect neurons and promote the recovery of nerve function.
Collapse
Affiliation(s)
- Wen-Qin Yuan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wei-Peng Huang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Pharmacy, Minzu University of China, Beijing, China
| | - Yang-Chao Jiang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hao Xu
- College of Economics and Management, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Chong-Shen Duan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying-Jiao Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiao-Mei Fu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
7
|
Chen H, Zheng K, Qiu M, Yang J. Preparation of astrocytes by directed differentiation of pluripotent stem cells and somatic cell transdifferentiation. Dev Neurobiol 2023; 83:282-292. [PMID: 37789524 DOI: 10.1002/dneu.22929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/01/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Astrocytes (ACs) are the most widely distributed cells in the mammalian central nervous system, which are essential for the function and homeostasis of nervous system. Increasing evidence indicates that ACs also participate in the development of many neurological diseases and repair after nerve injury. ACs cultured in vitro provide a cellular model for studying astrocytic development, function, and the pathogenesis of associated diseases. The preparation of primary ACs (pACs) faces many limitations, so it is important to obtain high-quality ACs by the differentiation of pluripotent stem cell (PSC) or somatic cell transdifferentiation. Initially, researchers mainly tried to induce embryonic stem cells to differentiate into ACs via embryoid body (EB) and then turned to employ induced PSCs as seed cells to explore more simple and efficient directed differentiation strategies, and serum-free culture was delved to improve the quality of induced ACs. While exploring the induction of ACs by the overexpression of AC-specific transcription factors, researchers also began to investigate small molecule-mediated somatic cell transdifferentiation. Here, we provide an updated review on the research progresses in this field.
Collapse
Affiliation(s)
- Hangjie Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Kang Zheng
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junlin Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Patani R, Hardingham GE, Liddelow SA. Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration. Nat Rev Neurol 2023; 19:395-409. [PMID: 37308616 DOI: 10.1038/s41582-023-00822-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Despite advances in uncovering the mechanisms that underlie neuroinflammation and neurodegenerative disease, therapies that prevent neuronal loss remain elusive. Targeting of disease-defining markers in conditions such as Alzheimer disease (amyloid-β and tau) or Parkinson disease (α-synuclein) has been met with limited success, suggesting that these proteins do not act in isolation but form part of a pathological network. This network could involve phenotypic alteration of multiple cell types in the CNS, including astrocytes, which have a major neurosupportive, homeostatic role in the healthy CNS but adopt reactive states under acute or chronic adverse conditions. Transcriptomic studies in human patients and disease models have revealed the co-existence of many putative reactive sub-states of astrocytes. Inter-disease and even intra-disease heterogeneity of reactive astrocytic sub-states are well established, but the extent to which specific sub-states are shared across different diseases is unclear. In this Review, we highlight how single-cell and single-nuclei RNA sequencing and other 'omics' technologies can enable the functional characterization of defined reactive astrocyte states in various pathological scenarios. We provide an integrated perspective, advocating cross-modal validation of key findings to define functionally important sub-states of astrocytes and their triggers as tractable therapeutic targets with cross-disease relevance.
Collapse
Affiliation(s)
- Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, Human Stem Cells and Neurodegeneration Laboratory, London, UK
| | - Giles E Hardingham
- Euan MacDonald Centre for MND, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Yan YW, Qian ES, Woodard LE, Bejoy J. Neural lineage differentiation of human pluripotent stem cells: Advances in disease modeling. World J Stem Cells 2023; 15:530-547. [PMID: 37424945 PMCID: PMC10324500 DOI: 10.4252/wjsc.v15.i6.530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 06/20/2023] Open
Abstract
Brain diseases affect 1 in 6 people worldwide. These diseases range from acute neurological conditions such as stroke to chronic neurodegenerative disorders such as Alzheimer’s disease. Recent advancements in tissue-engineered brain disease models have overcome many of the different shortcomings associated with the various animal models, tissue culture models, and epidemiologic patient data that are commonly used to study brain disease. One innovative method by which to model human neurological disease is via the directed differentiation of human pluripotent stem cells (hPSCs) to neural lineages including neurons, astrocytes, and oligodendrocytes. Three-dimensional models such as brain organoids have also been derived from hPSCs, offering more physiological relevance due to their incorporation of various cell types. As such, brain organoids can better model the pathophysiology of neural diseases observed in patients. In this review, we will emphasize recent developments in hPSC-based tissue culture models of neurological disorders and how they are being used to create neural disease models.
Collapse
Affiliation(s)
- Yuan-Wei Yan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Eddie S Qian
- Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Lauren E Woodard
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Julie Bejoy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| |
Collapse
|
10
|
Purushotham SS, Buskila Y. Astrocytic modulation of neuronal signalling. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1205544. [PMID: 37332623 PMCID: PMC10269688 DOI: 10.3389/fnetp.2023.1205544] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Neuronal signalling is a key element in neuronal communication and is essential for the proper functioning of the CNS. Astrocytes, the most prominent glia in the brain play a key role in modulating neuronal signalling at the molecular, synaptic, cellular, and network levels. Over the past few decades, our knowledge about astrocytes and their functioning has evolved from considering them as merely a brain glue that provides structural support to neurons, to key communication elements. Astrocytes can regulate the activity of neurons by controlling the concentrations of ions and neurotransmitters in the extracellular milieu, as well as releasing chemicals and gliotransmitters that modulate neuronal activity. The aim of this review is to summarise the main processes through which astrocytes are modulating brain function. We will systematically distinguish between direct and indirect pathways in which astrocytes affect neuronal signalling at all levels. Lastly, we will summarize pathological conditions that arise once these signalling pathways are impaired focusing on neurodegeneration.
Collapse
Affiliation(s)
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- The MARCS Institute, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
11
|
Temple S. Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell 2023; 30:512-529. [PMID: 37084729 PMCID: PMC10201979 DOI: 10.1016/j.stem.2023.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/23/2023]
Abstract
Cell-based therapies are being developed for various neurodegenerative diseases that affect the central nervous system (CNS). Concomitantly, the roles of individual cell types in neurodegenerative pathology are being uncovered by genetic and single-cell studies. With a greater understanding of cellular contributions to health and disease and with the arrival of promising approaches to modulate them, effective therapeutic cell products are now emerging. This review examines how the ability to generate diverse CNS cell types from stem cells, along with a deeper understanding of cell-type-specific functions and pathology, is advancing preclinical development of cell products for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA.
| |
Collapse
|
12
|
Hernandez SJ, Lim RG, Onur T, Dane MA, Smith R, Wang K, Jean GEH, Reyes-Ortiz A, Devlin K, Miramontes R, Wu J, Casale M, Kilburn D, Heiser LM, Korkola JE, Van Vactor D, Botas J, Thompson-Peer KL, Thompson LM. An altered extracellular matrix-integrin interface contributes to Huntington's disease-associated CNS dysfunction in glial and vascular cells. Hum Mol Genet 2023; 32:1483-1496. [PMID: 36547263 PMCID: PMC10117161 DOI: 10.1093/hmg/ddac303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Astrocytes and brain endothelial cells are components of the neurovascular unit that comprises the blood-brain barrier (BBB) and their dysfunction contributes to pathogenesis in Huntington's disease (HD). Defining the contribution of these cells to disease can inform cell-type-specific effects and uncover new disease-modifying therapeutic targets. These cells express integrin (ITG) adhesion receptors that anchor the cells to the extracellular matrix (ECM) to maintain the integrity of the BBB. We used HD patient-derived induced pluripotent stem cell (iPSC) modeling to study the ECM-ITG interface in astrocytes and brain microvascular endothelial cells and found ECM-ITG dysregulation in human iPSC-derived cells that may contribute to the dysfunction of the BBB in HD. This disruption has functional consequences since reducing ITG expression in glia in an HD Drosophila model suppressed disease-associated CNS dysfunction. Since ITGs can be targeted therapeutically and manipulating ITG signaling prevents neurodegeneration in other diseases, defining the role of ITGs in HD may provide a novel strategy of intervention to slow CNS pathophysiology to treat HD.
Collapse
Affiliation(s)
- Sarah J Hernandez
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Ryan G Lim
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Tarik Onur
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark A Dane
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
| | - Rebecca Smith
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
| | - Keona Wang
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Grace En-Hway Jean
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Andrea Reyes-Ortiz
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Kaylyn Devlin
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
| | - Ricardo Miramontes
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Malcolm Casale
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - David Kilburn
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
- OHSU Knight Cancer Institute, Portland, OR 97239, USA
| | - James E Korkola
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
- OHSU Knight Cancer Institute, Portland, OR 97239, USA
| | - David Van Vactor
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katherine L Thompson-Peer
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Reeve-Irvine Research Center, University of California, Irvine, CA 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
13
|
Lange J, Gillham O, Flower M, Ging H, Eaton S, Kapadia S, Neueder A, Duchen MR, Ferretti P, Tabrizi SJ. PolyQ length-dependent metabolic alterations and DNA damage drive human astrocyte dysfunction in Huntington’s disease. Prog Neurobiol 2023; 225:102448. [PMID: 37023937 DOI: 10.1016/j.pneurobio.2023.102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/03/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023]
Abstract
Huntington's Disease (HD) is a neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the Huntingtin gene. Astrocyte dysfunction is known to contribute to HD pathology, however our understanding of the molecular pathways involved is limited. Transcriptomic analysis of patient-derived PSC (pluripotent stem cells) astrocyte lines revealed that astrocytes with similar polyQ lengths shared a large number of differentially expressed genes (DEGs). Notably, weighted correlation network analysis (WGCNA) modules from iPSC derived astrocytes showed significant overlap with WGCNA modules from two post-mortem HD cohorts. Further experiments revealed two key elements of astrocyte dysfunction. Firstly, expression of genes linked to astrocyte reactivity, as well as metabolic changes were polyQ length-dependent. Hypermetabolism was observed in shorter polyQ length astrocytes compared to controls, whereas metabolic activity and release of metabolites were significantly reduced in astrocytes with increasing polyQ lengths. Secondly, all HD astrocytes showed increased DNA damage, DNA damage response and upregulation of mismatch repair genes and proteins. Together our study shows for the first time polyQ-dependent phenotypes and functional changes in HD astrocytes providing evidence that increased DNA damage and DNA damage response could contribute to HD astrocyte dysfunction.
Collapse
|
14
|
Lawson J, LaVancher E, DeAlmeida M, Black BJ. Electrically-evoked oscillating calcium transients in mono- and co-cultures of iPSC glia and sensory neurons. Front Cell Neurosci 2023; 17:1094070. [PMID: 37006467 PMCID: PMC10060658 DOI: 10.3389/fncel.2023.1094070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
Activated glia are known to exhibit either neuroprotective or neurodegenerative effects, depending on their phenotype, while participating in chronic pain regulation. Until recently, it has been believed that satellite glial cells and astrocytes are electrically slight and process stimuli only through intracellular calcium flux that triggers downstream signaling mechanisms. Though glia do not exhibit action potentials, they do express both voltage- and ligand-gated ion channels that facilitate measurable calcium transients, a measure of their own phenotypic excitability, and support and modulate sensory neuron excitability through ion buffering and secretion of excitatory or inhibitory neuropeptides (i.e., paracrine signaling). We recently developed a model of acute and chronic nociception using co-cultures of iPSC sensory neurons (SN) and spinal astrocytes on microelectrode arrays (MEAs). Until recently, only neuronal extracellular activity has been recorded using MEAs with a high signal-to-noise ratio and in a non-invasive manner. Unfortunately, this method has limited compatibility with simultaneous calcium transient imaging techniques, which is the most common method for monitoring the phenotypic activity of astrocytes. Moreover, both dye-based and genetically encoded calcium indicator imaging rely on calcium chelation, affecting the culture’s long-term physiology. Therefore, it would be ideal to allow continuous and simultaneous direct phenotypic monitoring of both SNs and astrocytes in a high-to-moderate throughput non-invasive manner and would significantly advance the field of electrophysiology. Here, we characterize astrocytic oscillating calcium transients (OCa2+Ts) in mono- and co-cultures of iPSC astrocytes as well as iPSC SN-astrocyte co-cultures on 48 well plate MEAs. We demonstrate that astrocytes exhibit OCa2+Ts in an electrical stimulus amplitude- and duration-dependent manner. We show that OCa2+Ts can be pharmacologically inhibited with the gap junction antagonist, carbenoxolone (100 μM). Most importantly, we demonstrate that both neurons and glia can be phenotypically characterized in real time, repeatedly, over the duration of the culture. In total, our findings suggest that calcium transients in glial populations may serve as a stand-alone or supplemental screening technique for identifying potential analgesics or compounds targeting other glia-mediated pathologies.
Collapse
|
15
|
Reyes-Ortiz AM, Abud EM, Burns MS, Wu J, Hernandez SJ, McClure N, Wang KQ, Schulz CJ, Miramontes R, Lau A, Michael N, Miyoshi E, Van Vactor D, Reidling JC, Blurton-Jones M, Swarup V, Poon WW, Lim RG, Thompson LM. Single-nuclei transcriptome analysis of Huntington disease iPSC and mouse astrocytes implicates maturation and functional deficits. iScience 2023; 26:105732. [PMID: 36590162 PMCID: PMC9800269 DOI: 10.1016/j.isci.2022.105732] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/13/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by expanded CAG repeats in the huntingtin gene that alters cellular homeostasis, particularly in the striatum and cortex. Astrocyte signaling that establishes and maintains neuronal functions are often altered under pathological conditions. We performed single-nuclei RNA-sequencing on human HD patient-induced pluripotent stem cell (iPSC)-derived astrocytes and on striatal and cortical tissue from R6/2 HD mice to investigate high-resolution HD astrocyte cell state transitions. We observed altered maturation and glutamate signaling in HD human and mouse astrocytes. Human HD astrocytes also showed upregulated actin-mediated signaling, suggesting that some states may be cell-autonomous and human specific. In both species, astrogliogenesis transcription factors may drive HD astrocyte maturation deficits, which are supported by rescued climbing deficits in HD drosophila with NFIA knockdown. Thus, dysregulated HD astrocyte states may induce dysfunctional astrocytic properties, in part due to maturation deficits influenced by astrogliogenesis transcription factor dysregulation.
Collapse
Affiliation(s)
- Andrea M. Reyes-Ortiz
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92617, USA
| | - Edsel M. Abud
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Mara S. Burns
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92617, USA
| | - Sarah J. Hernandez
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Nicolette McClure
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
| | - Keona Q. Wang
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Corey J. Schulz
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
| | - Ricardo Miramontes
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Alice Lau
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Neethu Michael
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Emily Miyoshi
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - David Van Vactor
- Harvard Medical School, Department of Cell Biology, Boston, MA 02115, USA
| | - John C. Reidling
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Vivek Swarup
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Wayne W. Poon
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Ryan G. Lim
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Leslie M. Thompson
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92617, USA
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| |
Collapse
|
16
|
Novelli G, Spitalieri P, Murdocca M, Centanini E, Sangiuolo F. Organoid factory: The recent role of the human induced pluripotent stem cells (hiPSCs) in precision medicine. Front Cell Dev Biol 2023; 10:1059579. [PMID: 36699015 PMCID: PMC9869172 DOI: 10.3389/fcell.2022.1059579] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
During the last decades, hiPSC-derived organoids have been extensively studied and used as in vitro models for several applications among which research studies. They can be considered as organ and tissue prototypes, especially for those difficult to obtain. Moreover, several diseases can be accurately modeled and studied. Hence, patient-derived organoids (PDOs) can be used to predict individual drug responses, thus paving the way toward personalized medicine. Lastly, by applying tissue engineering and 3D printing techniques, organoids could be used in the future to replace or regenerate damaged tissue. In this review, we will focus on hiPSC-derived 3D cultures and their ability to model human diseases with an in-depth analysis of gene editing applications, as well as tumor models. Furthermore, we will highlight the state-of-the-art of organoid facilities that around the world offer know-how and services. This is an increasing trend that shed the light on the need of bridging the publicand the private sector. Hence, in the context of drug discovery, Organoid Factories can offer biobanks of validated 3D organoid models that can be used in collaboration with pharmaceutical companies to speed up the drug screening process. Finally, we will discuss the limitations and the future development that will lead hiPSC-derived technology from bench to bedside, toward personalized medicine, such as maturity, organoid interconnections, costs, reproducibility and standardization, and ethics. hiPSC-derived organoid technology is now passing from a proof-of-principle to real applications in the clinic, also thanks to the applicability of techniques, such as CRISPR/Cas9 genome editing system, material engineering for the scaffolds, or microfluidic systems. The benefits will have a crucial role in the advance of both basic biological and translational research, particularly in the pharmacological field and drug development. In fact, in the near future, 3D organoids will guide the clinical decision-making process, having validated patient-specific drug screening platforms. This is particularly important in the context of rare genetic diseases or when testing cancer treatments that could in principle have severe side effects. Therefore, this technology has enabled the advancement of personalized medicine in a way never seen before.
Collapse
Affiliation(s)
- Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Paola Spitalieri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Michela Murdocca
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Centanini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
17
|
Yang Z, Gong M, Yang C, Chen C, Zhang K. Applications of Induced Pluripotent Stem Cell-Derived Glia in Brain Disease Research and Treatment. Handb Exp Pharmacol 2023; 281:103-140. [PMID: 37735301 DOI: 10.1007/164_2023_697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Glia are integral components of neural networks and are crucial in both physiological functions and pathological processes of the brain. Many brain diseases involve glial abnormalities, including inflammatory changes, mitochondrial damage, calcium signaling disturbance, hemichannel opening, and loss of glutamate transporters. Induced pluripotent stem cell (iPSC)-derived glia provide opportunities to study the contributions of glia in human brain diseases. These cells have been used for human disease modeling as well as generating new therapies. This chapter introduces glial involvement in brain diseases, then summarizes different methods of generating iPSC-derived glia disease models of these cells. Finally, strategies for treating disease using iPSC-derived glia are discussed. The goal of this chapter is to provide an overview and shed light on the applications of iPSC-derived glia in brain disease research and treatment.
Collapse
Affiliation(s)
- Zhiqi Yang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Mingyue Gong
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Chuanyan Yang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Chunhai Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China.
| |
Collapse
|
18
|
Kang KR, Kim CY, Kim J, Ryu B, Lee SG, Baek J, Kim YJ, Lee JM, Lee Y, Choi SO, Woo DH, Park IH, Chung HM. Establishment of Neurotoxicity Assessment Using Microelectrode Array (MEA) with hiPSC-Derived Neurons and Evaluation of New Psychoactive Substances (NPS). Int J Stem Cells 2022; 15:258-269. [PMID: 35769054 PMCID: PMC9396014 DOI: 10.15283/ijsc21217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Currently, safety pharmacological tests for the central nervous system depend on animal behavioral analysis. However, due to the subjectivity of behavioral analysis and differences between species, there is a limit to appropriate nervous system toxicity assessment, therefore a new neurotoxicity assessment that can simulate the human central nervous system is required. Methods and Results In our study, we developed an in vitro neurotoxicity assessment focusing on neuronal function. To minimize the differences between species and fast screening, hiPSC-derived neurons and a microelectrode array (MEA) that could simultaneously measure the action potentials of the neuronal networks were used. After analyzing the molecular and electrophysiological characters of our neuronal network, we conducted a neurotoxicity assessment on neurotransmitters, neurotoxicants, illicit drugs, and new psychoactive substances (NPS). We found that most substances used in our experiments responded more sensitively to our MEA-based neurotoxicity assessment than to the conventional neurotoxicity assessment. Also, this is the first paper that evaluates various illicit drugs and NPS using MEA-based neurotoxicity assessment using hiPSC-derived neurons. Conclusions Our study expanded the scope of application of neurotoxicity assessment using hiPSC-derived neurons to NPS, and accumulated evaluation data of various toxic substances for hiPSC-derived neurons.
Collapse
Affiliation(s)
- Kyu-Ree Kang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea.,Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Jieun Baek
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Ye-Ji Kim
- Drug Abuse Research Group, Research Center of Convergence Toxicology, Korea Institute of Toxicology, Daejeon, Korea
| | - Jin-Moo Lee
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Yootmo Lee
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Sun-Ok Choi
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Dong Ho Woo
- Drug Abuse Research Group, Research Center of Convergence Toxicology, Korea Institute of Toxicology, Daejeon, Korea
| | - Il Hwan Park
- Departments of Thoracis and Cardiovascular Surgery, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
19
|
Molecular Pathophysiological Mechanisms in Huntington's Disease. Biomedicines 2022; 10:biomedicines10061432. [PMID: 35740453 PMCID: PMC9219859 DOI: 10.3390/biomedicines10061432] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease is an inherited neurodegenerative disease described 150 years ago by George Huntington. The genetic defect was identified in 1993 to be an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 4. In the following almost 30 years, a considerable amount of research, using mainly animal models or in vitro experiments, has tried to unravel the complex molecular cascades through which the transcription of the mutant protein leads to neuronal loss, especially in the medium spiny neurons of the striatum, and identified excitotoxicity, transcriptional dysregulation, mitochondrial dysfunction, oxidative stress, impaired proteostasis, altered axonal trafficking and reduced availability of trophic factors to be crucial contributors. This review discusses the pathogenic cascades described in the literature through which mutant huntingtin leads to neuronal demise. However, due to the ubiquitous presence of huntingtin, astrocytes are also dysfunctional, and neuroinflammation may additionally contribute to Huntington’s disease pathology. The quest for therapies to delay the onset and reduce the rate of Huntington’s disease progression is ongoing, but is based on findings from basic research.
Collapse
|
20
|
Saba J, Couselo FL, Bruno J, Carniglia L, Durand D, Lasaga M, Caruso C. Neuroinflammation in Huntington's Disease: A Starring Role for Astrocyte and Microglia. Curr Neuropharmacol 2022; 20:1116-1143. [PMID: 34852742 PMCID: PMC9886821 DOI: 10.2174/1570159x19666211201094608] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder caused by a CAG repeat expansion in the huntingtin gene. HD causes motor, cognitive, and behavioral dysfunction. Since no existing treatment affects the course of this disease, new treatments are needed. Inflammation is frequently observed in HD patients before symptom onset. Neuroinflammation, characterized by the presence of reactive microglia, astrocytes and inflammatory factors within the brain, is also detected early. However, in comparison to other neurodegenerative diseases, the role of neuroinflammation in HD is much less known. Work has been dedicated to altered microglial and astrocytic functions in the context of HD, but less attention has been given to glial participation in neuroinflammation. This review describes evidence of inflammation in HD patients and animal models. It also discusses recent knowledge on neuroinflammation in HD, highlighting astrocyte and microglia involvement in the disease and considering anti-inflammatory therapeutic approaches.
Collapse
Affiliation(s)
- Julieta Saba
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico López Couselo
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Bruno
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lila Carniglia
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela Durand
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Lasaga
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carla Caruso
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina,Address correspondence to this author at the Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155 Piso 10, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, Tel: +54 11 5285 3380; E-mail:
| |
Collapse
|
21
|
Insights into Human-Induced Pluripotent Stem Cell-Derived Astrocytes in Neurodegenerative Disorders. Biomolecules 2022; 12:biom12030344. [PMID: 35327542 PMCID: PMC8945600 DOI: 10.3390/biom12030344] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Most neurodegenerative disorders have complex and still unresolved pathology characterized by progressive neuronal damage and death. Astrocytes, the most-abundant non-neuronal cell population in the central nervous system, play a vital role in these processes. They are involved in various functions in the brain, such as the regulation of synapse formation, neuroinflammation, and lactate and glutamate levels. The development of human-induced pluripotent stem cells (iPSCs) reformed the research in neurodegenerative disorders allowing for the generation of disease-relevant neuronal and non-neuronal cell types that can help in disease modeling, drug screening, and, possibly, cell transplantation strategies. In the last 14 years, the differentiation of human iPSCs into astrocytes allowed for the opportunity to explore the contribution of astrocytes to neurodegenerative diseases. This review discusses the development protocols and applications of human iPSC-derived astrocytes in the most common neurodegenerative conditions.
Collapse
|
22
|
Modeling and Targeting Neuroglial Interactions with Human Pluripotent Stem Cell Models. Int J Mol Sci 2022; 23:ijms23031684. [PMID: 35163606 PMCID: PMC8836094 DOI: 10.3390/ijms23031684] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 02/05/2023] Open
Abstract
Generation of relevant and robust models for neurological disorders is of main importance for both target identification and drug discovery. The non-cell autonomous effects of glial cells on neurons have been described in a broad range of neurodegenerative and neurodevelopmental disorders, pointing to neuroglial interactions as novel alternative targets for therapeutics development. Interestingly, the recent breakthrough discovery of human induced pluripotent stem cells (hiPSCs) has opened a new road for studying neurological and neurodevelopmental disorders “in a dish”. Here, we provide an overview of the generation and modeling of both neuronal and glial cells from human iPSCs and a brief synthesis of recent work investigating neuroglial interactions using hiPSCs in a pathophysiological context.
Collapse
|
23
|
Patient-Specific iPSCs-Based Models of Neurodegenerative Diseases: Focus on Aberrant Calcium Signaling. Int J Mol Sci 2022; 23:ijms23020624. [PMID: 35054808 PMCID: PMC8776084 DOI: 10.3390/ijms23020624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
The development of cell reprogramming technologies became a breakthrough in the creation of new models of human diseases, including neurodegenerative pathologies. The iPSCs-based models allow for the studying of both hereditary and sporadic cases of pathologies and produce deep insight into the molecular mechanisms underlying neurodegeneration. The use of the cells most vulnerable to a particular pathology makes it possible to identify specific pathological mechanisms and greatly facilitates the task of selecting the most effective drugs. To date, a large number of studies on patient-specific models of neurodegenerative diseases has been accumulated. In this review, we focused on the alterations of such a ubiquitous and important intracellular regulatory pathway as calcium signaling. Here, we reviewed and analyzed the data obtained from iPSCs-based models of different neurodegenerative disorders that demonstrated aberrant calcium signaling.
Collapse
|
24
|
Kim C, Yousefian-Jazi A, Choi SH, Chang I, Lee J, Ryu H. Non-Cell Autonomous and Epigenetic Mechanisms of Huntington's Disease. Int J Mol Sci 2021; 22:12499. [PMID: 34830381 PMCID: PMC8617801 DOI: 10.3390/ijms222212499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of CAG trinucleotide repeat located in the exon 1 of Huntingtin (HTT) gene in human chromosome 4. The HTT protein is ubiquitously expressed in the brain. Specifically, mutant HTT (mHTT) protein-mediated toxicity leads to a dramatic degeneration of the striatum among many regions of the brain. HD symptoms exhibit a major involuntary movement followed by cognitive and psychiatric dysfunctions. In this review, we address the conventional role of wild type HTT (wtHTT) and how mHTT protein disrupts the function of medium spiny neurons (MSNs). We also discuss how mHTT modulates epigenetic modifications and transcriptional pathways in MSNs. In addition, we define how non-cell autonomous pathways lead to damage and death of MSNs under HD pathological conditions. Lastly, we overview therapeutic approaches for HD. Together, understanding of precise neuropathological mechanisms of HD may improve therapeutic approaches to treat the onset and progression of HD.
Collapse
Affiliation(s)
- Chaebin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Ali Yousefian-Jazi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Seung-Hye Choi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Inyoung Chang
- Department of Biology, Boston University, Boston, MA 02215, USA;
| | - Junghee Lee
- Boston University Alzheimer’s Disease Research Center, Boston University, Boston, MA 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- VA Boston Healthcare System, Boston, MA 02130, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| |
Collapse
|
25
|
Wu YC, Sonninen TM, Peltonen S, Koistinaho J, Lehtonen Š. Blood-Brain Barrier and Neurodegenerative Diseases-Modeling with iPSC-Derived Brain Cells. Int J Mol Sci 2021; 22:7710. [PMID: 34299328 PMCID: PMC8307585 DOI: 10.3390/ijms22147710] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) regulates the delivery of oxygen and important nutrients to the brain through active and passive transport and prevents neurotoxins from entering the brain. It also has a clearance function and removes carbon dioxide and toxic metabolites from the central nervous system (CNS). Several drugs are unable to cross the BBB and enter the CNS, adding complexity to drug screens targeting brain disorders. A well-functioning BBB is essential for maintaining healthy brain tissue, and a malfunction of the BBB, linked to its permeability, results in toxins and immune cells entering the CNS. This impairment is associated with a variety of neurological diseases, including Alzheimer's disease and Parkinson's disease. Here, we summarize current knowledge about the BBB in neurodegenerative diseases. Furthermore, we focus on recent progress of using human-induced pluripotent stem cell (iPSC)-derived models to study the BBB. We review the potential of novel stem cell-based platforms in modeling the BBB and address advances and key challenges of using stem cell technology in modeling the human BBB. Finally, we highlight future directions in this area.
Collapse
Affiliation(s)
- Ying-Chieh Wu
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
| | - Tuuli-Maria Sonninen
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
| | - Sanni Peltonen
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
| | - Jari Koistinaho
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Šárka Lehtonen
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland; (Y.-C.W.); (T.-M.S.); (S.P.); (J.K.)
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
26
|
Monk R, Connor B. Cell Reprogramming to Model Huntington's Disease: A Comprehensive Review. Cells 2021; 10:cells10071565. [PMID: 34206228 PMCID: PMC8306243 DOI: 10.3390/cells10071565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder characterized by the progressive decline of motor, cognitive, and psychiatric functions. HD results from an autosomal dominant mutation that causes a trinucleotide CAG repeat expansion and the production of mutant Huntingtin protein (mHTT). This results in the initial selective and progressive loss of medium spiny neurons (MSNs) in the striatum before progressing to involve the whole brain. There are currently no effective treatments to prevent or delay the progression of HD as knowledge into the mechanisms driving the selective degeneration of MSNs has been hindered by a lack of access to live neurons from individuals with HD. The invention of cell reprogramming provides a revolutionary technique for the study, and potential treatment, of neurological conditions. Cell reprogramming technologies allow for the generation of live disease-affected neurons from patients with neurological conditions, becoming a primary technique for modelling these conditions in vitro. The ability to generate HD-affected neurons has widespread applications for investigating the pathogenesis of HD, the identification of new therapeutic targets, and for high-throughput drug screening. Cell reprogramming also offers a potential autologous source of cells for HD cell replacement therapy. This review provides a comprehensive analysis of the use of cell reprogramming to model HD and a discussion on recent advancements in cell reprogramming technologies that will benefit the HD field.
Collapse
|
27
|
Albert K, Niskanen J, Kälvälä S, Lehtonen Š. Utilising Induced Pluripotent Stem Cells in Neurodegenerative Disease Research: Focus on Glia. Int J Mol Sci 2021; 22:ijms22094334. [PMID: 33919317 PMCID: PMC8122303 DOI: 10.3390/ijms22094334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are a self-renewable pool of cells derived from an organism's somatic cells. These can then be programmed to other cell types, including neurons. Use of iPSCs in research has been two-fold as they have been used for human disease modelling as well as for the possibility to generate new therapies. Particularly in complex human diseases, such as neurodegenerative diseases, iPSCs can give advantages over traditional animal models in that they more accurately represent the human genome. Additionally, patient-derived cells can be modified using gene editing technology and further transplanted to the brain. Glial cells have recently become important avenues of research in the field of neurodegenerative diseases, for example, in Alzheimer's disease and Parkinson's disease. This review focuses on using glial cells (astrocytes, microglia, and oligodendrocytes) derived from human iPSCs in order to give a better understanding of how these cells contribute to neurodegenerative disease pathology. Using glia iPSCs in in vitro cell culture, cerebral organoids, and intracranial transplantation may give us future insight into both more accurate models and disease-modifying therapies.
Collapse
Affiliation(s)
- Katrina Albert
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Jonna Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (J.N.); (S.K.)
| | - Sara Kälvälä
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (J.N.); (S.K.)
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (J.N.); (S.K.)
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
- Correspondence:
| |
Collapse
|
28
|
Onur TS, Laitman A, Zhao H, Keyho R, Kim H, Wang J, Mair M, Wang H, Li L, Perez A, de Haro M, Wan YW, Allen G, Lu B, Al-Ramahi I, Liu Z, Botas J. Downregulation of glial genes involved in synaptic function mitigates Huntington's disease pathogenesis. eLife 2021; 10:64564. [PMID: 33871358 PMCID: PMC8149125 DOI: 10.7554/elife.64564] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/19/2021] [Indexed: 01/01/2023] Open
Abstract
Most research on neurodegenerative diseases has focused on neurons, yet glia help form and maintain the synapses whose loss is so prominent in these conditions. To investigate the contributions of glia to Huntington's disease (HD), we profiled the gene expression alterations of Drosophila expressing human mutant Huntingtin (mHTT) in either glia or neurons and compared these changes to what is observed in HD human and HD mice striata. A large portion of conserved genes are concordantly dysregulated across the three species; we tested these genes in a high-throughput behavioral assay and found that downregulation of genes involved in synapse assembly mitigated pathogenesis and behavioral deficits. To our surprise, reducing dNRXN3 function in glia was sufficient to improve the phenotype of flies expressing mHTT in neurons, suggesting that mHTT's toxic effects in glia ramify throughout the brain. This supports a model in which dampening synaptic function is protective because it attenuates the excitotoxicity that characterizes HD. When a neuron dies, through injury or disease, the body loses all communication that passes through it. The brain compensates by rerouting the flow of information through other neurons in the network. Eventually, if the loss of neurons becomes too great, compensation becomes impossible. This process happens in Alzheimer's, Parkinson's, and Huntington's disease. In the case of Huntington's disease, the cause is mutation to a single gene known as huntingtin. The mutation is present in every cell in the body but causes particular damage to parts of the brain involved in mood, thinking and movement. Neurons and other cells respond to mutations in the huntingtin gene by turning the activities of other genes up or down, but it is not clear whether all of these changes contribute to the damage seen in Huntington's disease. In fact, it is possible that some of the changes are a result of the brain trying to protect itself. So far, most research on this subject has focused on neurons because the huntingtin gene plays a role in maintaining healthy neuronal connections. But, given that all cells carry the mutated gene, it is likely that other cells are also involved. The glia are a diverse group of cells that support the brain, providing care and sustenance to neurons. These cells have a known role in maintaining the connections between neurons and may also have play a role in either causing or correcting the damage seen in Huntington's disease. The aim of Onur et al. was to find out which genes are affected by having a mutant huntingtin gene in neurons or glia, and whether severity of Huntington’s disease improved or worsened when the activity of these genes changed. First, Onur et al. identified genes affected by mutant huntingtin by comparing healthy human brains to the brains of people with Huntington's disease. Repeating the same comparison in mice and fruit flies identified genes affected in the same way across all three species, revealing that, in Huntington's disease, the brain dials down glial cell genes involved in maintaining neuronal connections. To find out how these changes in gene activity affect disease severity and progression, Onur et al. manipulated the activity of each of the genes they had identified in fruit flies that carried mutant versions of huntingtin either in neurons, in glial cells or in both cell types. They then filmed the flies to see the effects of the manipulation on movement behaviors, which are affected by Huntington’s disease. This revealed that purposely lowering the activity of the glial genes involved in maintaining connections between neurons improved the symptoms of the disease, but only in flies who had mutant huntingtin in their glial cells. This indicates that the drop in activity of these genes observed in Huntington’s disease is the brain trying to protect itself. This work suggests that it is important to include glial cells in studies of neurological disorders. It also highlights the fact that changes in gene expression as a result of a disease are not always bad. Many alterations are compensatory, and try to either make up for or protect cells affected by the disease. Therefore, it may be important to consider whether drugs designed to treat a condition by changing levels of gene activity might undo some of the body's natural protection. Working out which changes drive disease and which changes are protective will be essential for designing effective treatments.
Collapse
Affiliation(s)
- Tarik Seref Onur
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, United States
| | - Andrew Laitman
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - He Zhao
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Ryan Keyho
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Hyemin Kim
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Jennifer Wang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Megan Mair
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, United States
| | - Huilan Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Lifang Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Alma Perez
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Maria de Haro
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Ying-Wooi Wan
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Genevera Allen
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Departments of Electrical & Computer Engineering, Statistics and Computer Science, Rice University, Houston, United States
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, United States.,Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, United States
| |
Collapse
|
29
|
A high-throughput screening to identify small molecules that suppress huntingtin promoter activity or activate huntingtin-antisense promoter activity. Sci Rep 2021; 11:6157. [PMID: 33731741 PMCID: PMC7969751 DOI: 10.1038/s41598-021-85279-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/09/2021] [Indexed: 12/26/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in exon 1 of huntingtin (HTT). While there are currently no disease-modifying treatments for HD, recent efforts have focused on the development of nucleotide-based therapeutics to lower HTT expression. As an alternative to siRNA or oligonucleotide methods, we hypothesized that suppression of HTT expression might be accomplished by small molecules that either (1) directly decrease HTT expression by suppressing HTT promoter activity or (2) indirectly decrease HTT expression by increasing the promoter activity of HTT-AS, the gene antisense to HTT that appears to inhibit expression of HTT. We developed and employed a high-throughput screen for modifiers of HTT and HTT-AS promoter activity using luminescent reporter HEK293 cells; of the 52,041 compounds tested, we identified 898 replicable hits. We used a rigorous stepwise approach to assess compound toxicity and the capacity of the compounds to specifically lower huntingtin protein in 5 different cell lines, including HEK293 cells, HD lymphoblastoid cells, mouse primary neurons, HD iPSCs differentiated into cortical-like neurons, and HD hESCs. We found no compounds which were able to lower huntingtin without lowering cell viability in all assays, though the potential efficacy of a few compounds at non-toxic doses could not be excluded. Our results suggest that more specific targets may facilitate a small molecule approach to HTT suppression.
Collapse
|
30
|
Astrocyte-immune cell interactions in physiology and pathology. Immunity 2021; 54:211-224. [DOI: 10.1016/j.immuni.2021.01.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/29/2020] [Accepted: 01/15/2021] [Indexed: 12/23/2022]
|
31
|
Axenhus M, Winblad B, Tjernberg LO, Schedin-Weiss S. Huntingtin Levels are Elevated in Hippocampal Post-Mortem Samples of Alzheimer's Disease Brain. Curr Alzheimer Res 2021; 17:858-867. [PMID: 33272184 DOI: 10.2174/1567205017666201203125622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND We have recently identified Huntingtin (Htt), the pathogenic protein in Huntington's disease, as a mediator of Alzheimer's disease (AD) pathology in an amyloid precursor protein (APP) knock-in mouse model of AD. That finding prompted us to examine if Htt is accumulated in the brains of AD patients and in which cell type Htt is present in the AD brain. OBJECTIVE To investigate whether location and levels of Htt are affected in hippocampus and frontal cortex in AD. METHODS Brains from AD patients (n=11) and controls (n=11) were stained for Htt using immunohistochemistry and signal intensity of Htt was quantified and localized in subregions and neurons. Confocal microscopy was used to characterize neuronal Htt localisation and its relationship with tau tangles and astrocytes. RESULTS Htt levels were increased in neuronal cells in the granular layer of the dentate gyrus, in CA1 and CA3 in hippocampus and in layer III of the frontal cortex. Htt was found in the soma, perinuclear space, thin neurites and nucleus of pyramidal neurons. Htt was present in neurons containing tau tangles but did not colocalize with astrocytes. CONCLUSION Htt accumulates in pyramidal neuron-rich areas including hippocampal subregions associated with memory and frontal cortex layer III. The accumulation of Htt in AD shows distinct cellular and morphological patterns and is not present in astrocytes. Clearly, further research is warranted to elucidate the role of Htt as a mediator of AD pathology and the potential use of Htt as a target in future therapeutic strategies.
Collapse
Affiliation(s)
- Michael Axenhus
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
32
|
Franklin H, Clarke BE, Patani R. Astrocytes and microglia in neurodegenerative diseases: Lessons from human in vitro models. Prog Neurobiol 2020; 200:101973. [PMID: 33309801 PMCID: PMC8052192 DOI: 10.1016/j.pneurobio.2020.101973] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/06/2020] [Accepted: 12/06/2020] [Indexed: 12/16/2022]
Abstract
Astrocytes and microglia key fulfil homeostatic and immune functions in the CNS. Dysfunction of these cell types is implicated in neurodegenerative diseases. Understanding cellular autonomy and early pathogenic changes is a key goal. New human iPSC models will inform on disease mechanisms and therapy development.
Both astrocytes and microglia fulfil homeostatic and immune functions in the healthy CNS. Dysfunction of these cell types have been implicated in the pathomechanisms of several neurodegenerative diseases. Understanding the cellular autonomy and early pathological changes in these cell types may inform drug screening and therapy development. While animal models and post-mortem tissue have been invaluable in understanding disease processes, the advent of human in vitro models provides a unique insight into disease biology as a manipulable model system obtained directly from patients. Here, we discuss the different human in vitro models of astrocytes and microglia and outline the phenotypes that have been recapitulated in these systems.
Collapse
Affiliation(s)
- Hannah Franklin
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Benjamin E Clarke
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.
| |
Collapse
|
33
|
Glia in Neurodegeneration: The Housekeeper, the Defender and the Perpetrator. Int J Mol Sci 2020; 21:ijms21239188. [PMID: 33276471 PMCID: PMC7730416 DOI: 10.3390/ijms21239188] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/25/2022] Open
Abstract
Over the past decade, research has unveiled the intimate relationship between neuroinflammation and neurodegeneration. Microglia and astrocytes react to brain insult by setting up a multimodal inflammatory state and act as the primary defenders and executioners of neuroinflammatory structural and functional changes. Microglia and astrocytes also play critical roles in the maintenance of normal brain function. This intricate balance of homeostatic and neuroinflammatory functions can influence the onset and the course of neurodegenerative diseases. The emergent role of the microglial-astrocytic axis in neurodegenerative disease presents many druggable targets that may have broad therapeutic benefits across neurodegenerative disease. Here, we provide a brief review of the basal function of both microglia and astrocytes, how they are changed in disease states, the significant differences between mouse and human glia, and use of human induced pluripotent stem cells derived from patients to study cell autonomous changes in human astrocytes and microglia.
Collapse
|
34
|
Machiela E, Jeloka R, Caron NS, Mehta S, Schmidt ME, Baddeley HJE, Tom CM, Polturi N, Xie Y, Mattis VB, Hayden MR, Southwell AL. The Interaction of Aging and Cellular Stress Contributes to Pathogenesis in Mouse and Human Huntington Disease Neurons. Front Aging Neurosci 2020; 12:524369. [PMID: 33192449 PMCID: PMC7531251 DOI: 10.3389/fnagi.2020.524369] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/18/2020] [Indexed: 12/26/2022] Open
Abstract
Huntington disease (HD) is a fatal, inherited neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene. While mutant HTT is present ubiquitously throughout life, HD onset typically occurs in mid-life. Oxidative damage accumulates in the aging brain and is a feature of HD. We sought to interrogate the roles and interaction of age and oxidative stress in HD using primary Hu97/18 mouse neurons, neurons differentiated from HD patient induced pluripotent stem cells (iPSCs), and the brains of HD mice. We find that primary neurons must be matured in culture for canonical stress responses to occur. Furthermore, when aging is accelerated in mature HD neurons, mutant HTT accumulates and sensitivity to oxidative stress is selectively enhanced. Furthermore, we observe HD-specific phenotypes in neurons and mouse brains that have undergone accelerated aging, including a selective increase in DNA damage. These findings suggest a role for aging in HD pathogenesis and an interaction between the biological age of HD neurons and sensitivity to exogenous stress.
Collapse
Affiliation(s)
- Emily Machiela
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Ritika Jeloka
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Nicholas S. Caron
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Shagun Mehta
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mandi E. Schmidt
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Helen J. E. Baddeley
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Colton M. Tom
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nalini Polturi
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Yuanyun Xie
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Virginia B. Mattis
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michael R. Hayden
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Amber L. Southwell
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Troncoso-Escudero P, Sepulveda D, Pérez-Arancibia R, Parra AV, Arcos J, Grunenwald F, Vidal RL. On the Right Track to Treat Movement Disorders: Promising Therapeutic Approaches for Parkinson's and Huntington's Disease. Front Aging Neurosci 2020; 12:571185. [PMID: 33101007 PMCID: PMC7497570 DOI: 10.3389/fnagi.2020.571185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Movement disorders are neurological conditions in which patients manifest a diverse range of movement impairments. Distinct structures within the basal ganglia of the brain, an area involved in movement regulation, are differentially affected for every disease. Among the most studied movement disorder conditions are Parkinson's (PD) and Huntington's disease (HD), in which the deregulation of the movement circuitry due to the loss of specific neuronal populations in basal ganglia is the underlying cause of motor symptoms. These symptoms are due to the loss principally of dopaminergic neurons of the substantia nigra (SN) par compacta and the GABAergic neurons of the striatum in PD and HD, respectively. Although these diseases were described in the 19th century, no effective treatment can slow down, reverse, or stop disease progression. Available pharmacological therapies have been focused on preventing or alleviating motor symptoms to improve the quality of life of patients, but these drugs are not able to mitigate the progressive neurodegeneration. Currently, considerable therapeutic advances have been achieved seeking a more efficacious and durable therapeutic effect. Here, we will focus on the new advances of several therapeutic approaches for PD and HD, starting with the available pharmacological treatments to alleviate the motor symptoms in both diseases. Then, we describe therapeutic strategies that aim to restore specific neuronal populations or their activity. Among the discussed strategies, the use of Neurotrophic factors (NTFs) and genetic approaches to prevent the neuronal loss in these diseases will be described. We will highlight strategies that have been evaluated in both Parkinson's and Huntington's patients, and also the ones with strong preclinical evidence. These current therapeutic techniques represent the most promising tools for the safe treatment of both diseases, specifically those aimed to avoid neuronal loss during disease progression.
Collapse
Affiliation(s)
- Paulina Troncoso-Escudero
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Denisse Sepulveda
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Rodrigo Pérez-Arancibia
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Alejandra V. Parra
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Javiera Arcos
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Felipe Grunenwald
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| | - Rene L. Vidal
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, University of Chile, Santiago, Chile
| |
Collapse
|
36
|
Diaz-Castro B, Gangwani MR, Yu X, Coppola G, Khakh BS. Astrocyte molecular signatures in Huntington's disease. Sci Transl Med 2020; 11:11/514/eaaw8546. [PMID: 31619545 DOI: 10.1126/scitranslmed.aaw8546] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022]
Abstract
Astrocytes are implicated in neurodegenerative disorders and may contribute to striatal neuron loss or dysfunction in Huntington's disease (HD). Here, we assessed striatal astrocyte gene and protein signatures in two HD mouse models at three stages and compared our results to human HD data at four clinical grades and to mice exhibiting polyglutamine length-dependent pathology. We found disease-model and stage-specific alterations and discovered a core disease-associated astrocyte molecular signature comprising 62 genes that were conserved between mice and humans. Our results show little evidence of neurotoxic A1 astrocytes that have been proposed to be causal for neuronal death in neurodegenerative disorders such as HD. Furthermore, 61 of the 62-core gene expression changes within astrocytes were reversed in a HD mouse model by lowering astrocyte mutant huntingtin protein (mHTT) expression using zinc finger protein (ZFP) transcriptional repressors. Our findings indicate that HD astrocytes progressively lose essential normal functions, some of which can be remedied by lowering mHTT. The data have implications for neurodegenerative disease rescue and repair strategies as well as specific therapeutic relevance for mHTT reduction and contribute to a better understanding of fundamental astrocyte biology and its contributions to disease.
Collapse
Affiliation(s)
- Blanca Diaz-Castro
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Mohitkumar R Gangwani
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Xinzhu Yu
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Giovanni Coppola
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA.,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA.,Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Baljit S Khakh
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA. .,Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| |
Collapse
|
37
|
Stevenson R, Samokhina E, Rossetti I, Morley JW, Buskila Y. Neuromodulation of Glial Function During Neurodegeneration. Front Cell Neurosci 2020; 14:278. [PMID: 32973460 PMCID: PMC7473408 DOI: 10.3389/fncel.2020.00278] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Glia, a non-excitable cell type once considered merely as the connective tissue between neurons, is nowadays acknowledged for its essential contribution to multiple physiological processes including learning, memory formation, excitability, synaptic plasticity, ion homeostasis, and energy metabolism. Moreover, as glia are key players in the brain immune system and provide structural and nutritional support for neurons, they are intimately involved in multiple neurological disorders. Recent advances have demonstrated that glial cells, specifically microglia and astroglia, are involved in several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Epilepsy, Parkinson's disease (PD), Alzheimer's disease (AD), and frontotemporal dementia (FTD). While there is compelling evidence for glial modulation of synaptic formation and regulation that affect neuronal signal processing and activity, in this manuscript we will review recent findings on neuronal activity that affect glial function, specifically during neurodegenerative disorders. We will discuss the nature of each glial malfunction, its specificity to each disorder, overall contribution to the disease progression and assess its potential as a future therapeutic target.
Collapse
Affiliation(s)
- Rebecca Stevenson
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Evgeniia Samokhina
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Ilaria Rossetti
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - John W. Morley
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- International Centre for Neuromorphic Systems, The MARCS Institute for Brain, Behaviour and Development, Penrith, NSW, Australia
| |
Collapse
|
38
|
Salado-Manzano C, Perpiña U, Straccia M, Molina-Ruiz FJ, Cozzi E, Rosser AE, Canals JM. Is the Immunological Response a Bottleneck for Cell Therapy in Neurodegenerative Diseases? Front Cell Neurosci 2020; 14:250. [PMID: 32848630 PMCID: PMC7433375 DOI: 10.3389/fncel.2020.00250] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders such as Parkinson's (PD) and Huntington's disease (HD) are characterized by a selective detrimental impact on neurons in a specific brain area. Currently, these diseases have no cures, although some promising trials of therapies that may be able to slow the loss of brain cells are underway. Cell therapy is distinguished by its potential to replace cells to compensate for those lost to the degenerative process and has shown a great potential to replace degenerated neurons in animal models and in clinical trials in PD and HD patients. Fetal-derived neural progenitor cells, embryonic stem cells or induced pluripotent stem cells are the main cell sources that have been tested in cell therapy approaches. Furthermore, new strategies are emerging, such as the use of adult stem cells, encapsulated cell lines releasing trophic factors or cell-free products, containing an enriched secretome, which have shown beneficial preclinical outcomes. One of the major challenges for these potential new treatments is to overcome the host immune response to the transplanted cells. Immune rejection can cause significant alterations in transplanted and endogenous tissue and requires immunosuppressive drugs that may produce adverse effects. T-, B-lymphocytes and microglia have been recognized as the main effectors in striatal graft rejection. This review aims to summarize the preclinical and clinical studies of cell therapies in PD and HD. In addition, the precautions and strategies to ensure the highest quality of cell grafts, the lowest risk during transplantation and the reduction of a possible immune rejection will be outlined. Altogether, the wide-ranging possibilities of advanced therapy medicinal products (ATMPs) could make therapeutic treatment of these incurable diseases possible in the near future.
Collapse
Affiliation(s)
- Cristina Salado-Manzano
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Unai Perpiña
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | | | - Francisco J. Molina-Ruiz
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Emanuele Cozzi
- Department of Cardio-Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
- Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| | - Anne E. Rosser
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
39
|
Yousefi N, Abdollahii S, Kouhbanani MAJ, Hassanzadeh A. Induced pluripotent stem cells (iPSCs) as game-changing tools in the treatment of neurodegenerative disease: Mirage or reality? J Cell Physiol 2020; 235:9166-9184. [PMID: 32437029 DOI: 10.1002/jcp.29800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022]
Abstract
Based on investigations, there exist tight correlations between neurodegenerative diseases' incidence and progression and aberrant protein aggregreferates in nervous tissue. However, the pathology of these diseases is not well known, leading to an inability to find an appropriate therapeutic approach to delay occurrence or slow many neurodegenerative diseases' development. The accessibility of induced pluripotent stem cells (iPSCs) in mimicking the phenotypes of various late-onset neurodegenerative diseases presents a novel strategy for in vitro disease modeling. The iPSCs provide a valuable and well-identified resource to clarify neurodegenerative disease mechanisms, as well as prepare a promising human stem cell platform for drug screening. Undoubtedly, neurodegenerative disease modeling using iPSCs has established innovative opportunities for both mechanistic types of research and recognition of novel disease treatments. Most important, the iPSCs have been considered as a novel autologous cell origin for cell-based therapy of neurodegenerative diseases following differentiation to varied types of neural lineage cells (e.g. GABAergic neurons, dopamine neurons, cortical neurons, and motor neurons). In this review, we summarize iPSC-based disease modeling in neurodegenerative diseases including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Moreover, we discuss the efficacy of cell-replacement therapies for neurodegenerative disease.
Collapse
Affiliation(s)
- Niloufar Yousefi
- Department of Physiology and Pharmacology, Pasteur Instittableute of Iran, Tehran, Iran.,Stem Cell and Regenerative Medicine Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahla Abdollahii
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Stem Cell and Regenerative Medicine Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Stem Cell and Regenerative Medicine Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Sharma A, Sances S, Workman MJ, Svendsen CN. Multi-lineage Human iPSC-Derived Platforms for Disease Modeling and Drug Discovery. Cell Stem Cell 2020; 26:309-329. [PMID: 32142662 PMCID: PMC7159985 DOI: 10.1016/j.stem.2020.02.011] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) provide a powerful platform for disease modeling and have unlocked new possibilities for understanding the mechanisms governing human biology, physiology, and genetics. However, hiPSC-derivatives have traditionally been utilized in two-dimensional monocultures, in contrast to the multi-systemic interactions that influence cells in the body. We will discuss recent advances in generating more complex hiPSC-based systems using three-dimensional organoids, tissue-engineering, microfluidic organ-chips, and humanized animal systems. While hiPSC differentiation still requires optimization, these next-generation multi-lineage technologies can augment the biomedical researcher's toolkit and enable more realistic models of human tissue function.
Collapse
Affiliation(s)
- Arun Sharma
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Samuel Sances
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael J Workman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
41
|
de Majo M, Koontz M, Rowitch D, Ullian EM. An update on human astrocytes and their role in development and disease. Glia 2020; 68:685-704. [PMID: 31926040 DOI: 10.1002/glia.23771] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Human astrocytes provide trophic as well as structural support to the surrounding brain cells. Furthermore, they have been implicated in many physiological processes important for central nervous system function. Traditionally astrocytes have been considered to be a homogeneous class of cells, however, it has increasingly become more evident that astrocytes can have very different characteristics in different regions of the brain, or even within the same region. In this review we will discuss the features of human astrocytes, their heterogeneity, and their generation during neurodevelopment and the extraordinary progress that has been made to model these fascinating cells in vitro, mainly from induced pluripotent stem cells. Astrocytes' role in disease will also be discussed with a particular focus on their role in neurodegenerative disorders. As outlined here, astrocytes are important for the homeostasis of the central nervous system and understanding their regional specificity is a priority to elucidate the complexity of the human brain.
Collapse
Affiliation(s)
- Martina de Majo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - Mark Koontz
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | - David Rowitch
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.,Department of Pediatrics, University of California, San Francisco, San Francisco, California.,Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Erik M Ullian
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
42
|
Naphade S, Tshilenge KT, Ellerby LM. Modeling Polyglutamine Expansion Diseases with Induced Pluripotent Stem Cells. Neurotherapeutics 2019; 16:979-998. [PMID: 31792895 PMCID: PMC6985408 DOI: 10.1007/s13311-019-00810-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Polyglutamine expansion disorders, which include Huntington's disease, have expanded CAG repeats that result in polyglutamine expansions in affected proteins. How this specific feature leads to distinct neuropathies in 11 different diseases is a fascinating area of investigation. Most proteins affected by polyglutamine expansions are ubiquitously expressed, yet their mechanisms of selective neurotoxicity are unknown. Induced pluripotent stem cells have emerged as a valuable tool to model diseases, understand molecular mechanisms, and generate relevant human neural and glia subtypes, cocultures, and organoids. Ideally, this tool will generate specific neuronal populations that faithfully recapitulate specific polyglutamine expansion disorder phenotypes and mimic the selective vulnerability of a given disease. Here, we review how induced pluripotent technology is used to understand the effects of the disease-causing polyglutamine protein on cell function, identify new therapeutic targets, and determine how polyglutamine expansion affects human neurodevelopment and disease. We will discuss ongoing challenges and limitations in our use of induced pluripotent stem cells to model polyglutamine expansion diseases.
Collapse
Affiliation(s)
- Swati Naphade
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | | | - Lisa M Ellerby
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|