1
|
Cho HJ, Shi HW, Panyakaew P, Kassavetis P, Popa T, Wu T, Leodori G, Camacho T, Singh S, Meunier S, Hallett M. Differential induction of Parieto-motor plasticity in writer's cramp and cervical dystonia. Neurobiol Dis 2024:106724. [PMID: 39491631 DOI: 10.1016/j.nbd.2024.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVES To investigate the plastic effects of parieto-motor (PAR-MOT) cortico-cortical paired associative paired stimulation (cc-PAS) in patients with two forms of focal dystonia, writer's cramp and cervical dystonia, compared to healthy volunteers (HVs). METHODS We used cc-PAS to induce associative plasticity using repeated time-locked paired transcranial magnetic stimulation (TMS) pulses over the parietal and motor cortices in 16 patients with writer's cramp (WC), 13 patients with cervical dystonia (CD), and 23 healthy volunteers. We measured parieto-motor corticocortical connectivity using posterior parietal cortex (PPC) to primary motor cortex (M1) facilitation and input-output curves (IOC) of the motor-evoked potential (MEP) before and after PAR-MOT cc-PAS. The PAR-MOT cc-PAS consisted of 100 pairs of TMS pulses every 5 s, with the conditioning pulse applied to the left angular gyrus in the intraparietal sulcus and the test pulse applied to the M1 hotspot of the first dorsal interosseous muscle. RESULTS The cc-PAS increased the area under the IOC by increasing its maximum level in patients with WC but not in patients with CD or healthy volunteers. The cc-PAS had no significant effect on other IOC parameters. There were no significant differences in PPC to M1 facilitation changes after PAR-MOT cc-PAS among all groups. CONCLUSIONS This study suggests that PAR-MOT cc-PAS abnormally increases M1 excitability in patients with WC but not in those with CD. Additionally, this increased plastic response in patients with WC does not appear to be directly linked to PPC to M1 corticocortical connectivity.
Collapse
Affiliation(s)
- Hyun Joo Cho
- Division of Intramural Research, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Hae-Won Shi
- Division of Intramural Research, NINDS, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Pattamon Panyakaew
- Division of Intramural Research, NINDS, National Institutes of Health, Bethesda, MD, USA; Chulalongkorn Center of Excellence for Parkinson's Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Panagiotis Kassavetis
- Division of Intramural Research, NINDS, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, University of Utah Health, UT, USA
| | - Traian Popa
- Division of Intramural Research, NINDS, National Institutes of Health, Bethesda, MD, USA; Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Switzerland
| | - Tianxia Wu
- Division of Intramural Research, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Giorgio Leodori
- Division of Intramural Research, NINDS, National Institutes of Health, Bethesda, MD, USA; Department of Human Neurosciences, Sapienza University of Rome, Italy
| | - Terance Camacho
- Division of Intramural Research, NINDS, National Institutes of Health, Bethesda, MD, USA; University of Maryland School of Medicine, USA
| | - Shivangi Singh
- Division of Intramural Research, NINDS, National Institutes of Health, Bethesda, MD, USA; Columbia University Medical Center, NY, USA
| | - Sabine Meunier
- Division of Intramural Research, NINDS, National Institutes of Health, Bethesda, MD, USA; Sorbonne Université, France Institut du Cerveau - Paris Brain Institute - ICM, France Inserm, France CNRS, Paris, France
| | - Mark Hallett
- Division of Intramural Research, NINDS, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Brisson V, Tremblay P. Assessing the Impact of Transcranial Magnetic Stimulation on Speech Perception in Noise. J Cogn Neurosci 2024; 36:2184-2207. [PMID: 39023366 DOI: 10.1162/jocn_a_02224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Healthy aging is associated with reduced speech perception in noise (SPiN) abilities. The etiology of these difficulties remains elusive, which prevents the development of new strategies to optimize the speech processing network and reduce these difficulties. The objective of this study was to determine if sublexical SPiN performance can be enhanced by applying TMS to three regions involved in processing speech: the left posterior temporal sulcus, the left superior temporal gyrus, and the left ventral premotor cortex. The second objective was to assess the impact of several factors (age, baseline performance, target, brain structure, and activity) on post-TMS SPiN improvement. The results revealed that participants with lower baseline performance were more likely to improve. Moreover, in older adults, cortical thickness within the target areas was negatively associated with performance improvement, whereas this association was null in younger individuals. No differences between the targets were found. This study suggests that TMS can modulate sublexical SPiN performance, but that the strength and direction of the effects depend on a complex combination of contextual and individual factors.
Collapse
Affiliation(s)
- Valérie Brisson
- Université Laval, School of Rehabilitation Sciences, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
| | - Pascale Tremblay
- Université Laval, School of Rehabilitation Sciences, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
| |
Collapse
|
3
|
Shah M, Suresh S, Paddick J, Mellow ML, Rees A, Berryman C, Stanton TR, Smith AE. Age-related changes in responsiveness to non-invasive brain stimulation neuroplasticity paradigms: A systematic review with meta-analysis. Clin Neurophysiol 2024; 162:53-67. [PMID: 38579515 DOI: 10.1016/j.clinph.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVES We aimed to summarise and critically appraise the available evidence for the effect of age on responsiveness to non-invasive brain stimulation (NBS) paradigms delivered to the primary motor cortex. METHODS Four databases (Medline, Embase, PsycINFO and Scopus) were searched from inception to February 7, 2023. Studies investigating age group comparisons and associations between age and neuroplasticity induction from NBS paradigms were included. Only studies delivering neuroplasticity paradigms to the primary motor cortex and responses measured via motor-evoked potentials (MEPs) in healthy adults were considered. RESULTS 39 studies, encompassing 40 experiments and eight NBS paradigms were included: paired associative stimulation (PAS; n = 12), repetitive transcranial magnetic stimulation (rTMS; n = 2), intermittent theta burst stimulation (iTBS; n = 8), continuous theta burst stimulation (cTBS; n = 7), transcranial direct and alternating current stimulation ((tDCS; n = 7; tACS; n = 2)), quadripulse stimulation (QPS; n = 1) and i-wave periodic transcranial magnetic stimulation (iTMS; n = 1). Pooled findings from PAS paradigms suggested older adults have reduced post-paradigm responses, although there was considerable heterogeneity. Mixed results were observed across all other NBS paradigms and post-paradigm timepoints. CONCLUSIONS/SIGNIFICANCE Whilst age-dependent reduction in corticospinal excitability is possible, there is extensive inter- and intra-individual variability both within and between studies, making it difficult to draw meaningful conclusions from pooled analyses.
Collapse
Affiliation(s)
- Mahima Shah
- Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia
| | - Suraj Suresh
- Brain Stimulation, Imaging and Cognition Laboratory, The University of Adelaide, South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Johanna Paddick
- Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia; Persistent Pain Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI)
| | - Maddison L Mellow
- Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia
| | - Amy Rees
- Discipline of Physiology, School of Biomedicine. The University of Adelaide, Adelaide 5000, Australia
| | - Carolyn Berryman
- Brain Stimulation, Imaging and Cognition Laboratory, The University of Adelaide, South Australian Health and Medical Research Institute, Adelaide 5000, Australia; South Australian Health and Medical Research Institute (SAHMRI), North Tce, Adelaide 5000, Australia; IIMPACT in Health, University of South Australia, Adelaide 5000, Australia
| | - Tasha R Stanton
- Persistent Pain Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI); IIMPACT in Health, University of South Australia, Adelaide 5000, Australia
| | - Ashleigh E Smith
- Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia.
| |
Collapse
|
4
|
Cai G, Xu J, Ding Q, Lin T, Chen H, Wu M, Li W, Chen G, Xu G, Lan Y. Electroencephalography oscillations can predict the cortical response following theta burst stimulation. Brain Res Bull 2024; 208:110902. [PMID: 38367675 DOI: 10.1016/j.brainresbull.2024.110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/28/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Continuous theta burst stimulation and intermittent theta burst stimulation are clinically popular models of repetitive transcranial magnetic stimulation. However, they are limited by high variability between individuals in cortical excitability changes following stimulation. Although electroencephalography oscillations have been reported to modulate the cortical response to transcranial magnetic stimulation, their association remains unclear. This study aims to explore whether machine learning models based on EEG oscillation features can predict the cortical response to transcranial magnetic stimulation. METHOD Twenty-three young, healthy adults attended two randomly assigned sessions for continuous and intermittent theta burst stimulation. In each session, ten minutes of resting-state electroencephalography were recorded before delivering brain stimulation. Participants were classified as responders or non-responders based on changes in resting motor thresholds. Support vector machines and multi-layer perceptrons were used to establish predictive models of individual responses to transcranial magnetic stimulation. RESULT Among the evaluated algorithms, support vector machines achieved the best performance in discriminating responders from non-responders for intermittent theta burst stimulation (accuracy: 91.30%) and continuous theta burst stimulation (accuracy: 95.66%). The global clustering coefficient and global characteristic path length in the beta band had the greatest impact on model output. CONCLUSION These findings suggest that EEG features can serve as markers of cortical response to transcranial magnetic stimulation. They offer insights into the association between neural oscillations and variability in individuals' responses to transcranial magnetic stimulation, aiding in the optimization of individualized protocols.
Collapse
Affiliation(s)
- Guiyuan Cai
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013 China
| | - Jiayue Xu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013 China
| | - Qian Ding
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013 China; Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 519041 China
| | - Tuo Lin
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013 China
| | - Hongying Chen
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013 China
| | - Manfeng Wu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013 China
| | - Wanqi Li
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013 China
| | - Gengbin Chen
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013 China; Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, 510500 China
| | - Guangqing Xu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 519041 China.
| | - Yue Lan
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013 China; Guangzhou Key Laboratory of Aging Frailty and Neurorehabilitation, Guangzhou 510013, China.
| |
Collapse
|
5
|
Rostami M, Lee A, Frazer AK, Akalu Y, Siddique U, Pearce AJ, Tallent J, Kidgell DJ. Determining the corticospinal, intracortical and motor function responses to transcranial alternating current stimulation of the motor cortex in healthy adults: A systematic review and meta-analysis. Brain Res 2023; 1822:148650. [PMID: 39491217 DOI: 10.1016/j.brainres.2023.148650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
BACKGROUND Transcranial Alternating Current Stimulation (tACS) employs low-intensity sinusoidal currents to influence cortical plasticity and motor function. Despite extensive research, inconsistent results require a comprehensive review of tACS efficacy. OBJECTIVE This study systematically assesses tACS effects on corticospinal and intracortical excitability, and motor function over the motor cortex (M1), focusing on alpha, beta, and gamma frequencies. METHODS Relevant studies were identified through database searches and citations were tracked until July 10, 2023. The methodological quality of the included studies (29) was evaluated by Downs and Black. Data synthesis involved meta-analysis (n = 25) and best evidence synthesis (n = 5). RESULTS Meta-analysis revealed that alpha and beta tACS with intensities > 1 mA and tACS with individualized alpha frequency (IAF) increased corticospinal excitability (CSE). tACS over M1 improved motor function, irrespective of stimulation frequency and intensity. Sub-analysis showed that alpha and beta tACS with an intensity ≤ 1 mA led to improved motor function, while gamma tACS at 2 mA enhanced motor function. Additionally, beta tACS at a fixed frequency of 20 Hz, as well as both low gamma (30-55) and high gamma (55-80) tACS, resulted in improved motor function. A stimulation duration of 20 min led to improvements in both CSE and motor function, and tACS with electrode sizes smaller than 35 cm2 and an electrode montage over M1-supraorbital region (SOR) were found to enhance motor function. Notably, both online and offline tACS improved motor function, regardless of stimulation factors. CONCLUSION tACS modulates CSE and improves motor function, with outcomes dependent on stimulation parameters and timing.
Collapse
Affiliation(s)
- Mohamad Rostami
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Annemarie Lee
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Ashlyn K Frazer
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Yonas Akalu
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia; Department of Human Physiology, School of Medicine, University of Gondar, Ethiopia
| | - Ummatul Siddique
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Alan J Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne, Australia
| | - Jamie Tallent
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia; School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Dawson J Kidgell
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia.
| |
Collapse
|
6
|
Hernandez-Pavon JC, Schneider-Garces N, Begnoche JP, Miller LE, Raij T. Targeted Modulation of Human Brain Interregional Effective Connectivity With Spike-Timing Dependent Plasticity. Neuromodulation 2023; 26:745-754. [PMID: 36404214 PMCID: PMC10188658 DOI: 10.1016/j.neurom.2022.10.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The ability to selectively up- or downregulate interregional brain connectivity would be useful for research and clinical purposes. Toward this aim, cortico-cortical paired associative stimulation (ccPAS) protocols have been developed in which two areas are repeatedly stimulated with a millisecond-level asynchrony. However, ccPAS results in humans using bifocal transcranial magnetic stimulation (TMS) have been variable, and the mechanisms remain unproven. In this study, our goal was to test whether ccPAS mechanism is spike-timing-dependent plasticity (STDP). MATERIALS AND METHODS Eleven healthy participants received ccPAS to the left primary motor cortex (M1) → right M1 with three different asynchronies (5 milliseconds shorter, equal to, or 5 milliseconds longer than the 9-millisecond transcallosal conduction delay) in separate sessions. To observe the neurophysiological effects, single-pulse TMS was delivered to the left M1 before and after ccPAS while cortico-cortical evoked responses were extracted from the contralateral M1 using source-resolved electroencephalography. RESULTS Consistent with STDP mechanisms, the effects on synaptic strengths flipped depending on the asynchrony. Further implicating STDP, control experiments suggested that the effects were unidirectional and selective to the targeted connection. CONCLUSION The results support the idea that ccPAS induces STDP and may selectively up- or downregulate effective connectivity between targeted regions in the human brain.
Collapse
Affiliation(s)
- Julio C Hernandez-Pavon
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA; Legs + Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
| | | | | | - Lee E Miller
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Limb Motor Control Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Tommi Raij
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
7
|
Turrini S, Bevacqua N, Cataneo A, Chiappini E, Fiori F, Battaglia S, Romei V, Avenanti A. Neurophysiological Markers of Premotor-Motor Network Plasticity Predict Motor Performance in Young and Older Adults. Biomedicines 2023; 11:biomedicines11051464. [PMID: 37239135 DOI: 10.3390/biomedicines11051464] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Aging is commonly associated with a decline in motor control and neural plasticity. Tuning cortico-cortical interactions between premotor and motor areas is essential for controlling fine manual movements. However, whether plasticity in premotor-motor circuits predicts hand motor abilities in young and elderly humans remains unclear. Here, we administered transcranial magnetic stimulation (TMS) over the ventral premotor cortex (PMv) and primary motor cortex (M1) using the cortico-cortical paired-associative stimulation (ccPAS) protocol to manipulate the strength of PMv-to-M1 connectivity in 14 young and 14 elderly healthy adults. We assessed changes in motor-evoked potentials (MEPs) during ccPAS as an index of PMv-M1 network plasticity. We tested whether the magnitude of MEP changes might predict interindividual differences in performance in two motor tasks that rely on premotor-motor circuits, i.e., the nine-hole pegboard test and a choice reaction task. Results show lower motor performance and decreased PMv-M1 network plasticity in elderly adults. Critically, the slope of MEP changes during ccPAS accurately predicted performance at the two tasks across age groups, with larger slopes (i.e., MEP increase) predicting better motor performance at baseline in both young and elderly participants. These findings suggest that physiological indices of PMv-M1 plasticity could provide a neurophysiological marker of fine motor control across age-groups.
Collapse
Affiliation(s)
- Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Naomi Bevacqua
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Dipartimento di Psicologia, Sapienza Università di Roma, 00185 Rome, Italy
| | - Antonio Cataneo
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Emilio Chiappini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Institut für Klinische und Gesundheitspsychologie, Universität Wien, 1010 Vienna, Austria
| | - Francesca Fiori
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- NeXT: Unità di Ricerca di Neurofisiologia e Neuroingegneria dell'Interazione Uomo-Tecnologia, Dipartimento di Medicina, Università Campus Bio-Medico, 00128 Rome, Italy
| | - Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestriari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca 346000, Chile
| |
Collapse
|
8
|
Therrien-Blanchet JM, Ferland MC, Badri M, Rousseau MA, Merabtine A, Boucher E, Hofmann LH, Lepage JF, Théoret H. The neurophysiological aftereffects of brain stimulation in human primary motor cortex: a Sham-controlled comparison of three protocols. Cereb Cortex 2023:7030623. [PMID: 36749004 DOI: 10.1093/cercor/bhad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 02/08/2023] Open
Abstract
Paired associative stimulation (PAS), transcranial direct current stimulation (tDCS), and transcranial alternating current stimulation (tACS) are non-invasive brain stimulation methods that are used to modulate cortical excitability. Whether one technique is superior to the others in achieving this outcome and whether individuals that respond to one intervention are more likely to respond to another remains largely unknown. In the present study, the neurophysiological aftereffects of three excitatory neurostimulation protocols were measured with transcranial magnetic stimulation (TMS). Twenty minutes of PAS at an ISI of 25 ms, anodal tDCS, 20-Hz tACS, and Sham stimulation were administered to 31 healthy adults in a repeated measures design. Compared with Sham, none of the stimulation protocols significantly modulated corticospinal excitability (input/ouput curve and slope, TMS stimulator intensity required to elicit MEPs of 1-mV amplitude) or intracortical excitability (short- and long-interval intracortical inhibition, intracortical facilitation, cortical silent period). Sham-corrected responder analysis estimates showed that an average of 41 (PAS), 39 (tDCS), and 39% (tACS) of participants responded to the interventions with an increase in corticospinal excitability. The present data show that three stimulation protocols believed to increase cortical excitability are associated with highly heterogenous and variable aftereffects that may explain a lack of significant group effects.
Collapse
Affiliation(s)
| | | | - Meriem Badri
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | - Amira Merabtine
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Emelie Boucher
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Lydia Helena Hofmann
- Department of Psychology and Neuroscience, Maastricht University, Maastricht 6229, The Netherlands
| | - Jean-François Lepage
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé de l'Université de Sherbrooke, Centre de Recherche du CHU Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Hugo Théoret
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
9
|
Liu Y, Lim K, Sundman MH, Ugonna C, Ton That V, Cowen S, Chou YH. Association Between Responsiveness to Transcranial Magnetic Stimulation and Interhemispheric Functional Connectivity of Sensorimotor Cortex in Older Adults. Brain Connect 2023; 13:39-50. [PMID: 35620910 PMCID: PMC9942174 DOI: 10.1089/brain.2021.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Repetitive transcranial magnetic stimulation (rTMS) is a promising therapeutic technique, and is believed to accomplish its effect by influencing the stimulated and remotely connected areas. However, responsiveness to rTMS shows high interindividual variability, and this intersubject variability is particularly high in older adults. It remains unclear whether baseline resting-state functional connectivity (rsFC) contributes to this variability in older adults. The aims of this study are to (1) examine rTMS effects over the primary motor cortex (M1) in older adults, and (2) identify baseline network properties that may contribute to the interindividual variability. Methods: We tested response to intermittent theta burst stimulation (iTBS), an effective rTMS protocol, over M1 by using both electromyography and resting-state functional magnetic resonance imaging in older adults. Outcome measures included motor-evoked potential (MEP) elicited by single-pulse transcranial magnetic stimulation and rsFC before and after an iTBS session. Results: iTBS significantly increased MEP amplitudes and rsFC between the stimulation site, sensorimotor cortex, and supplementary motor area (SMA) in older adults. iTBS-induced changes in MEP amplitude were positively correlated with increases in interhemispheric rsFC after iTBS. Furthermore, older adults with lower baseline interhemispheric rsFC between sensorimotor cortex and SMA exhibited stronger MEP response after iTBS. Discussion: Findings of the study suggest that different levels of interhemispheric communication during resting state might contribute to the response heterogeneity to iTBS in older adults. Interhemispheric rsFC may have great potential serving as a useful marker for predicting iTBS responsiveness in older adults. ClinicalTrials.gov ID: 1707654427 Impact statement Factors contributing to interindividual variability of the responsive to repetitive transcranial magnetic stimulation (rTMS) in older adults remain poorly understood. In this study, we examined the effects of rTMS over the primary motor cortex in older adults, and found that response to rTMS is associated with prestimulation interhemispheric connectivity in the sensorimotor and premotor areas. Findings of the study have great potential to be translated into a connectivity-based strategy for identification of responders for rTMS in older adults.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Psychology and University of Arizona, Tucson, Arizona, USA
| | - Koeun Lim
- Department of Psychology and University of Arizona, Tucson, Arizona, USA
| | - Mark H. Sundman
- Department of Psychology and University of Arizona, Tucson, Arizona, USA
| | - Chidi Ugonna
- Department of Psychology and University of Arizona, Tucson, Arizona, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - Viet Ton That
- Department of Psychology and University of Arizona, Tucson, Arizona, USA
| | - Stephen Cowen
- Department of Psychology and University of Arizona, Tucson, Arizona, USA
- Evelyn F McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Ying-hui Chou
- Department of Psychology and University of Arizona, Tucson, Arizona, USA
- Evelyn F McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
10
|
Turrini S, Fiori F, Chiappini E, Santarnecchi E, Romei V, Avenanti A. Gradual enhancement of corticomotor excitability during cortico-cortical paired associative stimulation. Sci Rep 2022; 12:14670. [PMID: 36038605 PMCID: PMC9424198 DOI: 10.1038/s41598-022-18774-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cortico-cortical paired associative stimulation (ccPAS) is an effective transcranial magnetic stimulation (TMS) method for inducing associative plasticity between interconnected brain areas in humans. Prior ccPAS studies have focused on protocol’s aftereffects. Here, we investigated physiological changes induced “online” during ccPAS administration. We tested 109 participants receiving ccPAS over left ventral premotor cortex (PMv) and primary motor cortex (M1) using a standard procedure (90 paired-pulses with 8-ms interstimulus interval, repeated at 0.1 Hz frequency). On each paired-pulse, we recorded a motor-evoked potential (MEP) to continuously trace the emergence of corticomotor changes. Participant receiving forward-ccPAS (on each pair, a first TMS pulse was administered over PMv, second over M1, i.e., PMv-to-M1) showed a gradual and linear increase in MEP size that did not reach a plateau at the end of the protocol and was greater in participants with low motor threshold. Participants receiving reverse-ccPAS (i.e., M1-to-PMv) showed a trend toward inhibition. Our study highlights the facilitatory and inhibitory modulations that occur during ccPAS administration and suggest that online MEP monitoring could provide insights into the malleability of the motor system and protocol’s effectiveness. Our findings open interesting prospects about ccPAS potential optimization in experimental and clinical settings.
Collapse
Affiliation(s)
- Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena. Via Rasi Spinelli 176, 47521, Cesena, Italy.,Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Francesca Fiori
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena. Via Rasi Spinelli 176, 47521, Cesena, Italy.,NeXT: Unità di ricerca di Neurofisiologia e Neuroingegneria dell'Interazione Uomo-Tecnologia, Università Campus Bio-Medico, Rome, Italy
| | - Emilio Chiappini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena. Via Rasi Spinelli 176, 47521, Cesena, Italy.,Institut für Klinische und Gesundheitspsychologie, Universität Wien, Wien, Austria
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena. Via Rasi Spinelli 176, 47521, Cesena, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena. Via Rasi Spinelli 176, 47521, Cesena, Italy. .,Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
11
|
Chou YH, Sundman M, Ton That V, Green J, Trapani C. Cortical excitability and plasticity in Alzheimer's disease and mild cognitive impairment: A systematic review and meta-analysis of transcranial magnetic stimulation studies. Ageing Res Rev 2022; 79:101660. [PMID: 35680080 DOI: 10.1016/j.arr.2022.101660] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique. When stimulation is applied over the primary motor cortex and coupled with electromyography measures, TMS can probe functions of cortical excitability and plasticity in vivo. The purpose of this meta-analysis is to evaluate the utility of TMS-derived measures for differentiating patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) from cognitively normal older adults (CN). METHODS Databases searched included PubMed, Embase, APA PsycInfo, Medline, and CINAHL Plus from inception to July 2021. RESULTS Sixty-one studies with a total of 2728 participants (1454 patients with AD, 163 patients with MCI, and 1111 CN) were included. Patients with AD showed significantly higher cortical excitability, lower cortical inhibition, and impaired cortical plasticity compared to the CN cohorts. Patients with MCI exhibited increased cortical excitability and reduced plasticity compared to the CN cohort. Additionally, lower cognitive performance was significantly associated with higher cortical excitability and lower inhibition. No seizure events due to TMS were reported, and the mild adverse response rate is approximately 3/1000 (i.e., 9/2728). CONCLUSIONS Findings of our meta-analysis demonstrate the potential of using TMS-derived cortical excitability and plasticity measures as diagnostic biomarkers and therapeutic targets for AD and MCI.
Collapse
Affiliation(s)
- Ying-Hui Chou
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA; Evelyn F McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, USA.
| | - Mark Sundman
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Viet Ton That
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Jacob Green
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Chrisopher Trapani
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| |
Collapse
|
12
|
Suppa A, Asci F, Guerra A. Transcranial magnetic stimulation as a tool to induce and explore plasticity in humans. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:73-89. [PMID: 35034759 DOI: 10.1016/b978-0-12-819410-2.00005-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activity-dependent synaptic plasticity is the main theoretical framework to explain mechanisms of learning and memory. Synaptic plasticity can be explored experimentally in animals through various standardized protocols for eliciting long-term potentiation and long-term depression in hippocampal and cortical slices. In humans, several non-invasive protocols of repetitive transcranial magnetic stimulation and transcranial direct current stimulation have been designed and applied to probe synaptic plasticity in the primary motor cortex, as reflected by long-term changes in motor evoked potential amplitudes. These protocols mimic those normally used in animal studies for assessing long-term potentiation and long-term depression. In this chapter, we first discuss the physiologic basis of theta-burst stimulation, paired associative stimulation, and transcranial direct current stimulation. We describe the current biophysical and theoretical models underlying the molecular mechanisms of synaptic plasticity and metaplasticity, defined as activity-dependent changes in neural functions that modulate subsequent synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), in the human motor cortex including calcium-dependent plasticity, spike-timing-dependent plasticity, the role of N-methyl-d-aspartate-related transmission and gamma-aminobutyric-acid interneuronal activity. We also review the putative microcircuits responsible for synaptic plasticity in the human motor cortex. We critically readdress the issue of variability in studies investigating synaptic plasticity and propose available solutions. Finally, we speculate about the utility of future studies with more advanced experimental approaches.
Collapse
Affiliation(s)
- Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed Institute, Pozzilli (IS), Italy.
| | | | | |
Collapse
|
13
|
Janssens SEW, Sack AT. Spontaneous Fluctuations in Oscillatory Brain State Cause Differences in Transcranial Magnetic Stimulation Effects Within and Between Individuals. Front Hum Neurosci 2021; 15:802244. [PMID: 34924982 PMCID: PMC8674306 DOI: 10.3389/fnhum.2021.802244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) can cause measurable effects on neural activity and behavioral performance in healthy volunteers. In addition, TMS is increasingly used in clinical practice for treating various neuropsychiatric disorders. Unfortunately, TMS-induced effects show large intra- and inter-subject variability, hindering its reliability, and efficacy. One possible source of this variability may be the spontaneous fluctuations of neuronal oscillations. We present recent studies using multimodal TMS including TMS-EMG (electromyography), TMS-tACS (transcranial alternating current stimulation), and concurrent TMS-EEG-fMRI (electroencephalography, functional magnetic resonance imaging), to evaluate how individual oscillatory brain state affects TMS signal propagation within targeted networks. We demonstrate how the spontaneous oscillatory state at the time of TMS influences both immediate and longer-lasting TMS effects. These findings indicate that at least part of the variability in TMS efficacy may be attributable to the current practice of ignoring (spontaneous) oscillatory fluctuations during TMS. Ignoring this state-dependent spread of activity may cause great individual variability which so far is poorly understood and has proven impossible to control. We therefore also compare two technical solutions to directly account for oscillatory state during TMS, namely, to use (a) tACS to externally control these oscillatory states and then apply TMS at the optimal (controlled) brain state, or (b) oscillatory state-triggered TMS (closed-loop TMS). The described multimodal TMS approaches are paramount for establishing more robust TMS effects, and to allow enhanced control over the individual outcome of TMS interventions aimed at modulating information flow in the brain to achieve desirable changes in cognition, mood, and behavior.
Collapse
Affiliation(s)
- Shanice E. W. Janssens
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands
| | - Alexander T. Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain + Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
- Centre for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
14
|
Meder A, Liepelt-Scarfone I, Sulzer P, Berg D, Laske C, Preische O, Desideri D, Zipser CM, Salvadore G, Tatikola K, Timmers M, Ziemann U. Motor cortical excitability and paired-associative stimulation-induced plasticity in amnestic mild cognitive impairment and Alzheimer’s disease. Clin Neurophysiol 2021; 132:2264-2273. [DOI: 10.1016/j.clinph.2021.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
|
15
|
Altered motor cortical plasticity in patients with hepatic encephalopathy: A paired associative stimulation study. Clin Neurophysiol 2021; 132:2332-2341. [PMID: 34454259 DOI: 10.1016/j.clinph.2021.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Hepatic encephalopathy (HE) is a potentially reversible brain dysfunction caused by liver failure. Altered synaptic plasticity is supposed to play a major role in the pathophysiology of HE. Here, we used paired associative stimulation with an inter-stimulus interval of 25 ms (PAS25), a transcranial magnetic stimulation (TMS) protocol, to test synaptic plasticity of the motor cortex in patients with manifest HE. METHODS 23 HE-patients and 23 healthy controls were enrolled in the study. Motor evoked potential (MEP) amplitudes were assessed as measure for cortical excitability. Time courses of MEP amplitude changes after the PAS25 intervention were compared between both groups. RESULTS MEP-amplitudes increased after PAS25 in the control group, indicating PAS25-induced synaptic plasticity in healthy controls, as expected. In contrast, MEP-amplitudes within the HE group did not change and were lower than in the control group, indicating no induction of plasticity. CONCLUSIONS Our study revealed reduced synaptic plasticity of the primary motor cortex in HE. SIGNIFICANCE Reduced synaptic plasticity in HE provides a link between pathological changes on the molecular level and early clinical symptoms of the disease. This decrease may be caused by disturbances in the glutamatergic neurotransmission due to the known hyperammonemia in HE patients.
Collapse
|
16
|
Guidali G, Roncoroni C, Bolognini N. Paired associative stimulations: Novel tools for interacting with sensory and motor cortical plasticity. Behav Brain Res 2021; 414:113484. [PMID: 34302877 DOI: 10.1016/j.bbr.2021.113484] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022]
Abstract
In the early 2000s, a novel non-invasive brain stimulation protocol, the paired associative stimulation (PAS), was introduced, allowing to induce and investigate Hebbian associative plasticity within the humans' motor system, with patterns resembling spike-timing-dependent plasticity properties found in cellular models. Since this evidence, PAS efficacy has been proved in healthy, and to a lesser extent, in clinical populations. Recently, novel 'modified' protocols targeting sensorimotor and crossmodal networks appeared in the literature. In the present work, we have reviewed recent advances using these 'modified' PAS protocols targeting sensory and motor cortical networks. To better categorize them, we propose a novel classification according to the nature of the peripheral and cortical stimulations (i.e., within-system, cross-systems, and cortico-cortical PAS). For each protocol of the categories mentioned above, we describe and discuss their main features, how they have been used to study and promote brain plasticity, and their advantages and disadvantages. Overall, current evidence suggests that these novel non-invasive brain stimulation protocols represent very promising tools to study the plastic properties of humans' sensorimotor and crossmodal networks, both in the healthy and in the damaged central nervous system.
Collapse
Affiliation(s)
- Giacomo Guidali
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Psychology & NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.
| | - Camilla Roncoroni
- Department of Psychology & NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology & NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy; Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
17
|
Bisio A, Biggio M, Canepa P, Faelli E, Ruggeri P, Avanzino L, Bove M. Primary motor cortex excitability as a marker of plasticity in a stimulation protocol combining action observation and kinesthetic illusion of movement. Eur J Neurosci 2021; 53:2763-2773. [PMID: 33539632 DOI: 10.1111/ejn.15140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Action observation combined with proprioceptive stimulation able to induce a kinesthetic illusion of movement (AO-KI) was shown to elicit a plastic increase in primary motor cortex (M1) excitability, with promising applications in rehabilitative interventions. Nevertheless, the known individual variability in response to combined stimulation protocols limits its application. The aim of this study was to examine whether a relationship exists between changes in M1 excitability during AO-KI and the long-lasting changes in M1 induced by AO-KI. Fifteen volunteers received a conditioning protocol consisting in watching a video showing a thumb-opposition movement and a simultaneous proprioceptive stimulation that evoked an illusory kinesthetic experience of their thumbs closing. M1 excitability was evaluated by means of single-pulse transcranial magnetic stimulation before, DURING the conditioning protocol, and up to 60 min AFTER it was administered. M1 excitability significantly increased during AO-KI with respect to a rest condition. Furthermore, AO-KI induced a long-lasting increase in M1 excitability up to 60 min after administration. Finally, a significant positive correlation appeared between M1 excitability changes during and after AO-KI; that is, participants who were more responsive during AO-KI showed greater motor cortical activity changes after it. These findings suggest that M1 response during AO-KI can be considered a neurophysiological marker of individual responsiveness to the combined stimulation since it was predictive of its efficacy in inducing long-lasting M1 increase excitability. This information would allow knowing in advance whether an individual will be a responder to AO-KI.
Collapse
Affiliation(s)
- Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Monica Biggio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Patrizio Canepa
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
| | - Emanuela Faelli
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Piero Ruggeri
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy.,Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
18
|
Guerra A, Asci F, Zampogna A, D'Onofrio V, Petrucci S, Ginevrino M, Berardelli A, Suppa A. Gamma-transcranial alternating current stimulation and theta-burst stimulation: inter-subject variability and the role of BDNF. Clin Neurophysiol 2020; 131:2691-2699. [DOI: 10.1016/j.clinph.2020.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
|
19
|
Huang Y, Chen JC, Tsai CH, Lu MK. Convergent Associative Motor Cortical Plasticity Induced by Conditional Somatosensory and Motor Reaction Afferents. Front Hum Neurosci 2020; 14:576171. [PMID: 33192405 PMCID: PMC7609873 DOI: 10.3389/fnhum.2020.576171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Objective: Associative motor cortical plasticity can be non-invasively induced by paired median nerve electric stimulation and transcranial magnetic stimulation (TMS) of the primary motor cortex (M1). This study investigates whether a simultaneous motor reaction of the other hand advances the associative plasticity in M1. Methods: Twenty-four right-handed subjects received conventional paired associative stimulation (PAS) and PAS with simultaneous motor reaction (PASmr) with at least a 1-week interval. The PASmr protocol additionally included left abductor pollicis brevis muscle movement responding to a digital sound. The motor reaction time was individually measured. The M1 excitability was examined by the motor evoked potential (MEP), short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF) before and after the PAS protocols. Results: The conventional PAS protocol significantly facilitated MEP and suppressed SICI. A negative correlation between the reaction time and the MEP change, and a positive correlation between the reaction time and the ICF change were found in the PASmr protocol. By subgrouping analysis, we further found significant facilitation of MEP and a reduction of ICF in the subjects with fast reaction times but not in those with slow reaction times. Conclusion: Synchronized motor reaction ipsilateral to the stimulated M1 induces associative M1 motor plasticity through the spike-timing dependent principle. MEP and ICF change could represent this kind of plasticity. The current findings provide a novel insight into designing rehabilitation programs concerning motor function.
Collapse
Affiliation(s)
- Yi Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Jui-Cheng Chen
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chon-Haw Tsai
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Kuei Lu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.,Ph.D. Program for Translational Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|