1
|
Abdulsalam L, Mordecai J, Ahmad I. Non-viral gene therapy for Leber's congenital amaurosis: progress and possibilities. Nanomedicine (Lond) 2025; 20:291-304. [PMID: 39707712 DOI: 10.1080/17435889.2024.2443387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Leber's congenital amaurosis (LCA) represents a set of rare and pervasive hereditary conditions of the retina that cause severe vision loss starting in early childhood. Targeted treatment intervention has become possible thanks to recent advances in understanding LCA genetic basis. While viral vectors have shown efficacy in gene delivery, they present challenges related to safety, low cargo capacity, and the potential for random genomic integration. Non-viral gene therapy is a safer and more flexible alternative to treating the underlying genetic mutation causing LCA. Non-viral gene delivery methods, such as inorganic nanoparticles, polymer-based delivery systems, and lipid-based nanoparticles, bypass the risks of immunogenicity and genomic integration, potentially offering a more versatile and personalized treatment for patients. This review explores the genetic background of LCA, emphasizing the mutations involved, and explores diverse non-viral gene delivery methods being developed. It also highlights recent studies on non-viral gene therapy for LCA in animal models and clinical trials. It presents future perspectives for gene therapy, including integrating emerging technologies like CRISPR-Cas9, interdisciplinary collaborations, personalized medicine, and ethical considerations.
Collapse
Affiliation(s)
- Latifat Abdulsalam
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - James Mordecai
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Irshad Ahmad
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| |
Collapse
|
2
|
Wang Q, Xu X, Chen S, Lu R, Li L, Lo CH, Liu Z, Ning K, Li T, Kowal TJ, Wang B, Hartnett ME, Wang S, Qi LS, Sun Y. dCasMINI-mediated therapy rescues photoreceptors degeneration in a mouse model of retinitis pigmentosa. SCIENCE ADVANCES 2024; 10:eadn7540. [PMID: 39693439 DOI: 10.1126/sciadv.adn7540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Retinitis pigmentosa (RP) is characterized by degeneration of rod and cone photoreceptors that progresses to irreversible blindness. Now, there are no mutation-agnostic approaches to treat RP. Here, we utilized a single adeno-associated virus (AAV)-based CRISPR activation system to activate phosphodiesterase 6B (Pde6b) to mitigate the severe degeneration in Pde6anmf363 mice. We demonstrate that transcriptional activation of Pde6b can rescue the loss of Pde6a, with preservation of retinal structure, restoration of electroretinography responses, and improvement of visual function as assessed by optokinetic response and looming-induced escape behaviors. These findings demonstrate the therapeutic potential of a dCasMINI-mediated activation strategy that provides a mutation-independent treatment for retinal degeneration. This study offers a promising therapeutic approach for RP and potentially other forms of genetic diseases.
Collapse
Affiliation(s)
- Qing Wang
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Xiaoshu Xu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Siyu Chen
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Rui Lu
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Liang Li
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Chien-Hui Lo
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Zhiquan Liu
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Ke Ning
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Tingting Li
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Tia J Kowal
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Biao Wang
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Mary E Hartnett
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Sui Wang
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA
| | - Yang Sun
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
- Palo Alto Veterans Administration, Palo Alto, CA, USA
- Maternal Child Health Research Institute at Stanford, Stanford University School of Medicine, Palo Alto, CA, USA
- BioX, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
3
|
Liu Z, Chen S, Davis AE, Lo C, Wang Q, Li T, Ning K, Zhang Q, Zhao J, Wang S, Sun Y. Efficient Rescue of Retinal Degeneration in Pde6a Mice by Engineered Base Editing and Prime Editing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405628. [PMID: 39297417 PMCID: PMC11558111 DOI: 10.1002/advs.202405628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Indexed: 11/14/2024]
Abstract
Retinitis pigmentosa (RP) is a complex spectrum of inherited retinal diseases marked by the gradual loss of photoreceptor cells, ultimately leading to blindness. Among these, mutations in PDE6A, responsible for encoding a cGMP-specific phosphodiesterase, stand out as pivotal in autosomal recessive RP (RP43). Unfortunately, no effective therapy currently exists for this specific form of RP. However, recent advancements in genome editing, such as base editing (BE) and prime editing (PE), offer a promising avenue for precise and efficient gene therapy. Here, it is illustrated that the engineered BE and PE systems, particularly PE, exhibit high efficiency in rescuing a target point mutation with minimal bystander effects in an RP mouse model carrying the Pde6a (c.2009A > G, p.D670G) mutation. The optimized BE and PE systems are first screened in N2a cells and subsequently assessed in electroporated mouse retinas. Notably, the optimal PE system, delivered via dual adeno-associated virus (AAV), precisely corrects the pathogenic mutation with average 9.4% efficiency, with no detectable bystander editing. This correction restores PDE6A protein expression, preserved photoreceptors, and rescued retinal function in Pde6a mice. Therefore, this study offers a proof-of-concept demonstration for the treatment of Pde6a-related retinal degeneration using BE and PE systems.
Collapse
Affiliation(s)
- Zhiquan Liu
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
| | - Siyu Chen
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
| | - Alexander E. Davis
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
| | - Chien‐Hui Lo
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
| | - Qing Wang
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
| | - Tingting Li
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
- Department of OphthalmologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Ke Ning
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
| | - Qi Zhang
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
| | - Jingyu Zhao
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
| | - Sui Wang
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
| | - Yang Sun
- Department of OphthalmologyStanford University School of MedicinePalo AltoCA94304USA
- Palo Alto Veterans AdministrationPalo AltoCA94304USA
| |
Collapse
|
4
|
Kulbay M, Tuli N, Akdag A, Kahn Ali S, Qian CX. Optogenetics and Targeted Gene Therapy for Retinal Diseases: Unravelling the Fundamentals, Applications, and Future Perspectives. J Clin Med 2024; 13:4224. [PMID: 39064263 PMCID: PMC11277578 DOI: 10.3390/jcm13144224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
With a common aim of restoring physiological function of defective cells, optogenetics and targeted gene therapies have shown great clinical potential and novelty in the branch of personalized medicine and inherited retinal diseases (IRDs). The basis of optogenetics aims to bypass defective photoreceptors by introducing opsins with light-sensing capabilities. In contrast, targeted gene therapies, such as methods based on CRISPR-Cas9 and RNA interference with noncoding RNAs (i.e., microRNA, small interfering RNA, short hairpin RNA), consists of inducing normal gene or protein expression into affected cells. Having partially leveraged the challenges limiting their prompt introduction into the clinical practice (i.e., engineering, cell or tissue delivery capabilities), it is crucial to deepen the fields of knowledge applied to optogenetics and targeted gene therapy. The aim of this in-depth and novel literature review is to explain the fundamentals and applications of optogenetics and targeted gene therapies, while providing decision-making arguments for ophthalmologists. First, we review the biomolecular principles and engineering steps involved in optogenetics and the targeted gene therapies mentioned above by bringing a focus on the specific vectors and molecules for cell signalization. The importance of vector choice and engineering methods are discussed. Second, we summarize the ongoing clinical trials and most recent discoveries for optogenetics and targeted gene therapies for IRDs. Finally, we then discuss the limits and current challenges of each novel therapy. We aim to provide for the first time scientific-based explanations for clinicians to justify the specificity of each therapy for one disease, which can help improve clinical decision-making tasks.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada;
| | - Nicolas Tuli
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada (A.A.)
| | - Arjin Akdag
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada (A.A.)
| | - Shigufa Kahn Ali
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada;
| | - Cynthia X. Qian
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada;
- Department of Ophthalmology, Centre Universitaire d’Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada
| |
Collapse
|
5
|
Yang H, Zhang H, Li X. Navigating the future of retinitis pigmentosa treatments: A comprehensive analysis of therapeutic approaches in rd10 mice. Neurobiol Dis 2024; 193:106436. [PMID: 38341159 DOI: 10.1016/j.nbd.2024.106436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
Retinitis pigmentosa (RP) is a degenerative disease, caused by genetic mutations that lead to a loss in photoreceptors. For research on RP, rd10 mice, which carry mutations in the phosphodiesterase (PDE) gene, exhibit degenerative patterns comparable to those of patients with RP, making them an ideal model for investigating potential treatments. Although numerous studies have reported the potential of biochemical drugs, gene correction, and stem cell transplantation in decelerating rd10 retinal degeneration, a comprehensive review of these studies has yet to be conducted. Therefore, here, a comparative analysis of rd10 mouse treatment research over the past decade was performed. Our findings suggest that biochemical drugs capable of inhibiting the inflammatory response may be promising therapeutics. Additionally, significant progress has been made in the field of gene therapy; nevertheless, challenges such as strict delivery requirements, bystander editing, and off-target effects still need to be resolved. Nevertheless, secretory function is the only unequivocal protective effect of stem cell transplantation. In summary, this review presents a comprehensive analysis and synthesis of the treatment approaches employing rd10 mice as experimental subjects, describing a clear pathway for future RP treatment research and identifies potential clinical interventions.
Collapse
Affiliation(s)
- Hongli Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Tianjin 300384, China.
| | - Hui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Tianjin 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Tianjin 300384, China.
| |
Collapse
|
6
|
Khoshandam M, Soltaninejad H, Mousazadeh M, Hamidieh AA, Hosseinkhani S. Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine. Genes Dis 2024; 11:268-282. [PMID: 37588217 PMCID: PMC10425811 DOI: 10.1016/j.gendis.2023.02.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/08/2023] [Indexed: 03/29/2023] Open
Abstract
CRISPR/Cas9 is an effective gene editing tool with broad applications for the prevention or treatment of numerous diseases. It depends on CRISPR (clustered regularly interspaced short palindromic repeats) as a bacterial immune system and plays as a gene editing tool. Due to the higher specificity and efficiency of CRISPR/Cas9 compared to other editing approaches, it has been broadly investigated to treat numerous hereditary and acquired illnesses, including cancers, hemolytic diseases, immunodeficiency disorders, cardiovascular diseases, visual maladies, neurodegenerative conditions, and a few X-linked disorders. CRISPR/Cas9 system has been used to treat cancers through a variety of approaches, with stable gene editing techniques. Here, the applications and clinical trials of CRISPR/Cas9 in various illnesses are described. Due to its high precision and efficiency, CRISPR/Cas9 strategies may treat gene-related illnesses by deleting, inserting, modifying, or blocking the expression of specific genes. The most challenging barrier to the in vivo use of CRISPR/Cas9 like off-target effects will be discussed. The use of transfection vehicles for CRISPR/Cas9, including viral vectors (such as an Adeno-associated virus (AAV)), and the development of non-viral vectors is also considered.
Collapse
Affiliation(s)
- Mohadeseh Khoshandam
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom 3716986466, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14155-6463, Iran
| | - Hossein Soltaninejad
- Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran 14117-13116, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| |
Collapse
|
7
|
Du W, Li J, Tang X, Yu W, Zhao M. CRISPR/SaCas9-based gene editing rescues photoreceptor degeneration throughout a rhodopsin-associated autosomal dominant retinitis pigmentosa mouse model. Exp Biol Med (Maywood) 2023; 248:1818-1828. [PMID: 37837380 PMCID: PMC10792415 DOI: 10.1177/15353702231199069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/12/2023] [Indexed: 10/16/2023] Open
Abstract
Rhodopsin (Rho) gene mutation was considered the highest prevalent mutation in autosomal dominant retinitis pigmentosa (ADRP); however, effective therapeutics for ADRP have not been developed. The process of gene editing via the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system offers the potentiality to provide cures for dominantly inherited disorders. Herein, we generated a CRISPR/SaCas9-mediated gene reduction system to inactivate the Rho mutant, while replacing normal rhodopsin in a rhodopsin mutation mouse model. When Rho-P23H knock-in mice were administered a subretinal injection of the "reduction and replacement" system, the expression of mutant rhodopsin was reduced, and retinal function was improved. Therefore, we concluded that CRISPR/SaCas9-based "reduction and replacement" gene therapy could provide structural and functional benefits for Rho mutant ADRP, as well as new directions for future clinical research on the treatment of such gain-of-function genetic diseases.
Collapse
Affiliation(s)
- Wei Du
- Department of Ophthalmology and Clinical Centre of Optometry, Peking University People’s Hospital, Beijing 100044, China
- Eye Diseases and Optometry Institute, Peking University People’s Hospital, Beijing 100044, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing 100044, China
- College of Optometry, Peking University Health Science Center, Beijing 100044, China
| | - Jiarui Li
- Department of Ophthalmology and Clinical Centre of Optometry, Peking University People’s Hospital, Beijing 100044, China
- Eye Diseases and Optometry Institute, Peking University People’s Hospital, Beijing 100044, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing 100044, China
- College of Optometry, Peking University Health Science Center, Beijing 100044, China
| | - Xin Tang
- Department of Ophthalmology and Clinical Centre of Optometry, Peking University People’s Hospital, Beijing 100044, China
- Eye Diseases and Optometry Institute, Peking University People’s Hospital, Beijing 100044, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing 100044, China
- College of Optometry, Peking University Health Science Center, Beijing 100044, China
| | - Wenzhen Yu
- Department of Ophthalmology and Clinical Centre of Optometry, Peking University People’s Hospital, Beijing 100044, China
- Eye Diseases and Optometry Institute, Peking University People’s Hospital, Beijing 100044, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing 100044, China
- College of Optometry, Peking University Health Science Center, Beijing 100044, China
| | - Mingwei Zhao
- Department of Ophthalmology and Clinical Centre of Optometry, Peking University People’s Hospital, Beijing 100044, China
- Eye Diseases and Optometry Institute, Peking University People’s Hospital, Beijing 100044, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing 100044, China
- College of Optometry, Peking University Health Science Center, Beijing 100044, China
| |
Collapse
|
8
|
Wu Y, Wan X, Zhao D, Chen X, Wang Y, Tang X, Li J, Li S, Sun X, Bi C, Zhang X. AAV-mediated base-editing therapy ameliorates the disease phenotypes in a mouse model of retinitis pigmentosa. Nat Commun 2023; 14:4923. [PMID: 37582961 PMCID: PMC10427680 DOI: 10.1038/s41467-023-40655-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
Base editing technology is an ideal solution for treating pathogenic single-nucleotide variations (SNVs). No gene editing therapy has yet been approved for eye diseases, such as retinitis pigmentosa (RP). Here, we show, in the rd10 mouse model, which carries an SNV identified as an RP-causing mutation in human patients, that subretinal delivery of an optimized dual adeno-associated virus system containing the adenine base editor corrects the pathogenic SNV in the neuroretina with up to 49% efficiency. Light microscopy showed that a thick and robust outer nuclear layer (photoreceptors) was preserved in the treated area compared with the thin, degenerated outer nuclear layer without treatment. Substantial electroretinogram signals were detected in treated rd10 eyes, whereas control treated eyes showed minimal signals. The water maze experiment showed that the treatment substantially improved vision-guided behavior. Together, we construct and validate a translational therapeutic solution for the treatment of RP in humans. Our findings might accelerate the development of base-editing based gene therapies.
Collapse
Affiliation(s)
- Yidong Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Eye Diseases, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xuxu Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yujie Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xinxin Tang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin, China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Eye Diseases, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| |
Collapse
|
9
|
Yan AL, Du SW, Palczewski K. Genome editing, a superior therapy for inherited retinal diseases. Vision Res 2023; 206:108192. [PMID: 36804635 PMCID: PMC10460145 DOI: 10.1016/j.visres.2023.108192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/17/2023]
Abstract
Gene augmentation and genome editing are promising strategies for the treatment of monogenic inherited retinal diseases. Although gene augmentation treatments are commercially available for inherited retinal diseases, there are many shortcomings that need to be addressed, like progressive retinal degeneration and diminishing efficacy over time. Innovative CRISPR-Cas9-based genome editing technologies have broadened the proportion of treatable genetic disorders and can greatly improve or complement treatment outcomes from gene augmentation. Progress in this relatively new field involves the development of therapeutics including gene disruption, ablate-and-replace strategies, and precision gene correction techniques, such as base editing and prime editing. By making direct edits to endogenous DNA, genome editing theoretically guarantees permanent gene correction and long-lasting treatment effects. Improvements to delivery modalities aimed at limiting persistent gene editor activity have displayed an improved safety profile and minimal off-target editing. Continued progress to advance precise gene correction and associated delivery strategies will establish genome editing as the preferred treatment for genetic retinal disorders. This commentary describes the applications, strengths, and drawbacks of conventional gene augmentation approaches, recent advances in precise genome editing in the retina, and promising preclinical strategies to facilitate the use of robust genome editing therapies in human patients.
Collapse
Affiliation(s)
- Alexander L Yan
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA; Program in Neuroscience, Amherst College, Amherst, MA 01002, USA
| | - Samuel W Du
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA; Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA; Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA; Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
10
|
Su J, She K, Song L, Jin X, Li R, Zhao Q, Xiao J, Chen D, Cheng H, Lu F, Wei Y, Yang Y. In vivo base editing rescues photoreceptors in a mouse model of retinitis pigmentosa. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:596-609. [PMID: 36910709 PMCID: PMC9996133 DOI: 10.1016/j.omtn.2023.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
Retinitis pigmentosa (RP) is a group of retinal diseases that cause the progressive death of retinal photoreceptor cells and eventually blindness. Mutations in the β-domain of the phosphodiesterase 6 (Pde6b) gene are the most identified causes of autosomal recessive RP. Clinically, there is no effective treatment so far that can stop the progression of RP and restore the vision. Here, we report a base editing approach in which adeno-associated virus (AAV)-mediated adenine base editor (ABE) delivering to postmitotic photoreceptors was conducted to correct the Pde6b mutation in a retinal degeneration 10 (rd10) mouse model of RP. Subretinal delivery of AAV8-ABE corrected Pde6b mutation with averaging up to 20.79% efficiency at the DNA level and 54.97% efficiency at the cDNA level without bystanders, restored PDE6B expression, preserved photoreceptors, and rescued visual function. RNA-seq revealed the preservation of genes associated with phototransduction and photoreceptor survival. Our data have demonstrated that base editing is a potential gene therapy that could provide durable protection against RP.
Collapse
Affiliation(s)
- Jing Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Kaiqin She
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Xiu Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Ruiting Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Qinyu Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Jianlu Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Danian Chen
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui Cheng
- Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Yang Yang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Hansen S, McClements ME, Corydon TJ, MacLaren RE. Future Perspectives of Prime Editing for the Treatment of Inherited Retinal Diseases. Cells 2023; 12:440. [PMID: 36766782 PMCID: PMC9913839 DOI: 10.3390/cells12030440] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Inherited retinal diseases (IRD) are a clinically and genetically heterogenous group of diseases and a leading cause of blindness in the working-age population. Even though gene augmentation therapies have shown promising results, they are only feasible to treat a small number of autosomal recessive IRDs, because the size of the gene is limited by the vector used. DNA editing however could potentially correct errors regardless of the overall size of the gene and might also be used to correct dominant mutations. Prime editing is a novel CRISPR/Cas9 based gene editing tool that enables precise correction of point mutations, insertions, and deletions without causing double strand DNA breaks. Due to its versatility and precision this technology may be a potential treatment option for virtually all genetic causes of IRD. Since its initial description, the prime editing technology has been further improved, resulting in higher efficacy and a larger target scope. Additionally, progress has been achieved concerning the size-related delivery issue of the prime editor components. This review aims to give an overview of these recent advancements and discusses prime editing as a potential treatment for IRDs.
Collapse
Affiliation(s)
- Silja Hansen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| | - Michelle E. McClements
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Department of Ophthalmology, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Robert E. MacLaren
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
12
|
Chang AY. Challenges of Treatment Methodologies and the Future of Gene Therapy and Stem Cell Therapy to Treat Retinitis Pigmentosa. Methods Mol Biol 2022; 2560:363-374. [PMID: 36481911 DOI: 10.1007/978-1-0716-2651-1_33] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of hereditary retinal degenerations for which there is currently no cure. Studies investigating the use of gene therapy, gene editing, and stem cells as potential treatment strategies have shown promising results in animal models and some early clinical trials. Even still, major barriers still exist, including the ability to develop therapies that can target the wide range of mutational etiologies and phenotypic presentations that encompass RP. Additionally, effective screening and early diagnosis are crucial for maximum therapeutic potential, especially because many therapeutic agents require a baseline level photoreceptor function.
Collapse
Affiliation(s)
- Angela Y Chang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
13
|
Tsai YT, da Costa BL, Nolan ND, Caruso SM, Jenny LA, Levi SR, Tsang SH, Quinn PMJ. Prime Editing for the Installation and Correction of Mutations Causing Inherited Retinal Disease: A Brief Methodology. Methods Mol Biol 2022; 2560:313-331. [PMID: 36481907 DOI: 10.1007/978-1-0716-2651-1_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inherited retinal diseases (IRDs) encompass a large heterogeneous group of rare blinding disorders whose etiology originates from mutations in the 280 genes identified to date. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems represent a promising avenue for the treatment of IRDs, as exemplified by FDA clinical trial approval of EDIT-101 (AGN-151587), which removes a deep intronic variant in the CEP290 gene that causes Leber congenital amaurosis (LCA) type 10. Prime editing is a novel double-strand break (DSB) independent CRISPR/Cas system which has the potential to correct all 12 possible transition and transversion mutations in addition to small deletions and insertions. Here, as a proof-of-concept study, we describe a methodology using prime editing for the in vitro installation and correction of the classical Pde6brd10 c.1678C > T (p.Arg560Cys) mutation which causes autosomal recessive retinitis pigmentosa (RP) in mice.
Collapse
Affiliation(s)
- Yi-Ting Tsai
- Columbia University, Department of Biomedical Engineering, New York, NY, USA
| | - Bruna Lopes da Costa
- Columbia University, Department of Biomedical Engineering, New York, NY, USA
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center - New York-Presbyterian Hospital, New York, NY, USA
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Nicholas D Nolan
- Columbia University, Department of Biomedical Engineering, New York, NY, USA
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center - New York-Presbyterian Hospital, New York, NY, USA
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Salvatore Marco Caruso
- Columbia University, Department of Biomedical Engineering, New York, NY, USA
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center - New York-Presbyterian Hospital, New York, NY, USA
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Laura A Jenny
- Columbia University, Department of Biomedical Engineering, New York, NY, USA
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center - New York-Presbyterian Hospital, New York, NY, USA
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sarah R Levi
- Columbia University, Department of Biomedical Engineering, New York, NY, USA
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center - New York-Presbyterian Hospital, New York, NY, USA
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Stephen H Tsang
- Departments of Ophthalmology, Pathology & Cell Biology, Graduate Programs in Nutritional & Metabolic Biology and Neurobiology & Behavior, Columbia Stem Cell Initiative, New York, NY, USA
| | - Peter M J Quinn
- Department of Opthalmology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
14
|
Chien Y, Hsiao YJ, Chou SJ, Lin TY, Yarmishyn AA, Lai WY, Lee MS, Lin YY, Lin TW, Hwang DK, Lin TC, Chiou SH, Chen SJ, Yang YP. Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: applications, challenges, and emerging opportunities. J Nanobiotechnology 2022; 20:511. [DOI: 10.1186/s12951-022-01717-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
AbstractInherited Retinal Diseases (IRDs) are considered one of the leading causes of blindness worldwide. However, the majority of them still lack a safe and effective treatment due to their complexity and genetic heterogeneity. Recently, gene therapy is gaining importance as an efficient strategy to address IRDs which were previously considered incurable. The development of the clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has strongly empowered the field of gene therapy. However, successful gene modifications rely on the efficient delivery of CRISPR-Cas9 components into the complex three-dimensional (3D) architecture of the human retinal tissue. Intriguing findings in the field of nanoparticles (NPs) meet all the criteria required for CRISPR-Cas9 delivery and have made a great contribution toward its therapeutic applications. In addition, exploiting induced pluripotent stem cell (iPSC) technology and in vitro 3D retinal organoids paved the way for prospective clinical trials of the CRISPR-Cas9 system in treating IRDs. This review highlights important advances in NP-based gene therapy, the CRISPR-Cas9 system, and iPSC-derived retinal organoids with a focus on IRDs. Collectively, these studies establish a multidisciplinary approach by integrating nanomedicine and stem cell technologies and demonstrate the utility of retina organoids in developing effective therapies for IRDs.
Collapse
|
15
|
Jo DH, Bae S, Kim HH, Kim JS, Kim JH. In vivo application of base and prime editing to treat inherited retinal diseases. Prog Retin Eye Res 2022; 94:101132. [PMID: 36241547 DOI: 10.1016/j.preteyeres.2022.101132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
Inherited retinal diseases (IRDs) are vision-threatening retinal disorders caused by pathogenic variants of genes related to visual functions. Genomic analyses in patients with IRDs have revealed pathogenic variants which affect vision. However, treatment options for IRDs are limited to nutritional supplements regardless of genetic variants or gene-targeting approaches based on antisense oligonucleotides and adeno-associated virus vectors limited to targeting few genes. Genome editing, particularly that involving clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 technologies, can correct pathogenic variants and provide additional treatment opportunities. Recently developed base and prime editing platforms based on CRISPR-Cas9 technologies are promising for therapeutic genome editing because they do not employ double-stranded breaks (DSBs), which are associated with P53 activation, large deletions, and chromosomal translocations. Instead, using attached deaminases and reverse transcriptases, base and prime editing efficiently induces specific base substitutions and intended genetic changes (substitutions, deletions, or insertions), respectively, without DSBs. In this review, we will discuss the recent in vivo application of CRISPR-Cas9 technologies, focusing on base and prime editing, in animal models of IRDs.
Collapse
|
16
|
Suh S, Choi EH, Raguram A, Liu DR, Palczewski K. Precision genome editing in the eye. Proc Natl Acad Sci U S A 2022; 119:e2210104119. [PMID: 36122230 PMCID: PMC9522375 DOI: 10.1073/pnas.2210104119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CRISPR-Cas-based genome editing technologies could, in principle, be used to treat a wide variety of inherited diseases, including genetic disorders of vision. Programmable CRISPR-Cas nucleases are effective tools for gene disruption, but they are poorly suited for precisely correcting pathogenic mutations in most therapeutic settings. Recently developed precision genome editing agents, including base editors and prime editors, have enabled precise gene correction and disease rescue in multiple preclinical models of genetic disorders. Additionally, new delivery technologies that transiently deliver precision genome editing agents in vivo offer minimized off-target editing and improved safety profiles. These improvements to precision genome editing and delivery technologies are expected to revolutionize the treatment of genetic disorders of vision and other diseases. In this Perspective, we describe current preclinical and clinical genome editing approaches for treating inherited retinal degenerative diseases, and we discuss important considerations that should be addressed as these approaches are translated into clinical practice.
Collapse
Affiliation(s)
- Susie Suh
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697
| | - Elliot H. Choi
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697
| | - Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
- Department of Chemistry, University of California, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| |
Collapse
|
17
|
Salman A, Kantor A, McClements ME, Marfany G, Trigueros S, MacLaren RE. Non-Viral Delivery of CRISPR/Cas Cargo to the Retina Using Nanoparticles: Current Possibilities, Challenges, and Limitations. Pharmaceutics 2022; 14:1842. [PMID: 36145593 PMCID: PMC9503525 DOI: 10.3390/pharmaceutics14091842] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/13/2022] Open
Abstract
The discovery of the CRISPR/Cas system and its development into a powerful genome engineering tool have revolutionized the field of molecular biology and generated excitement for its potential to treat a wide range of human diseases. As a gene therapy target, the retina offers many advantages over other tissues because of its surgical accessibility and relative immunity privilege due to its blood-retinal barrier. These features explain the large advances made in ocular gene therapy over the past decade, including the first in vivo clinical trial using CRISPR gene-editing reagents. Although viral vector-mediated therapeutic approaches have been successful, they have several shortcomings, including packaging constraints, pre-existing anti-capsid immunity and vector-induced immunogenicity, therapeutic potency and persistence, and potential genotoxicity. The use of nanomaterials in the delivery of therapeutic agents has revolutionized the way genetic materials are delivered to cells, tissues, and organs, and presents an appealing alternative to bypass the limitations of viral delivery systems. In this review, we explore the potential use of non-viral vectors as tools for gene therapy, exploring the latest advancements in nanotechnology in medicine and focusing on the nanoparticle-mediated delivery of CRIPSR genetic cargo to the retina.
Collapse
Affiliation(s)
- Ahmed Salman
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Ariel Kantor
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | | | - Gemma Marfany
- Department of Genetics Microbiology and Statistics, University of Barcelona, 08007 Barcelona, Spain
- CIBERER, University of Barcelona, 08007 Barcelona, Spain
| | - Sonia Trigueros
- Department of Genetics Microbiology and Statistics, University of Barcelona, 08007 Barcelona, Spain
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | - Robert E. MacLaren
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
18
|
Plasmid-mediated gene transfer of Cas9 induces vector-related but not SpCas9-related immune responses in human retinal pigment epithelial cells. Sci Rep 2022; 12:13202. [PMID: 35915300 PMCID: PMC9343442 DOI: 10.1038/s41598-022-17269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) system represents a powerful gene-editing tool and could enable treatment of blinding diseases of the retina. As a peptide of bacterial origin, we investigated the immunogenic potential of Cas9 in models of retinal immunocompetent cells: human microglia (IMhu) and ARPE-19 cells. Transfection with Streptococcus pyogenes-Cas9 expression plasmids (SpCas9 plasmid) induced Cas9 protein expression in both cell lines. However, only ARPE-19 cells, not IMhu cells, responded with pro-inflammatory immune responses as evidenced by the upregulation of IL-8, IL-6, and the cellular activation markers HLA-ABC and CD54 (ICAM). These pro-inflammatory responses were also induced through transfection with equally sized non-coding control plasmids. Moreover, viability rates of ARPE-19 cells were reduced after transfection with both the SpCas9 plasmids and the control plasmids. Although these results demonstrate cell type-specific responses to the DNA plasmid vector, they show no evidence of an immunogenic effect due to the presence of Cas9 in models of human retinal pigment epithelial and microglia cells. These findings add another layer of confidence in the immunological safety of potential future Cas9-mediated retinal gene therapies.
Collapse
|
19
|
Cha S, Ahn J, Jeong Y, Lee YH, Kim HK, Lee D, Yoo Y, Goo YS. Stage-Dependent Changes of Visual Function and Electrical Response of the Retina in the rd10 Mouse Model. Front Cell Neurosci 2022; 16:926096. [PMID: 35936494 PMCID: PMC9345760 DOI: 10.3389/fncel.2022.926096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022] Open
Abstract
One of the critical prerequisites for the successful development of retinal prostheses is understanding the physiological features of retinal ganglion cells (RGCs) in the different stages of retinal degeneration (RD). This study used our custom-made rd10 mice, C57BL/6-Pde6bem1(R560C)Dkl/Korl mutated on the Pde6b gene in C57BL/6J mouse with the CRISPR/Cas9-based gene-editing method. We selected the postnatal day (P) 45, P70, P140, and P238 as representative ages for RD stages. The optomotor response measured the visual acuity across degeneration stages. At P45, the rd10 mice exhibited lower visual acuity than wild-type (WT) mice. At P140 and older, no optomotor response was observed. We classified RGC responses to the flashed light into ON, OFF, and ON/OFF RGCs via in vitro multichannel recording. With degeneration, the number of RGCs responding to the light stimulation decreased in all three types of RGCs. The OFF response disappeared faster than the ON response with older postnatal ages. We elicited RGC spikes with electrical stimulation and analyzed the network-mediated RGC response in the rd10 mice. Across all postnatal ages, the spikes of rd10 RGCs were less elicited by pulse amplitude modulation than in WT RGCs. The ratio of RGCs showing multiple peaks of spike burst increased in older ages. The electrically evoked RGC spikes by the pulse amplitude modulation differ across postnatal ages. Therefore, degeneration stage-dependent stimulation strategies should be considered for developing retinal prosthesis and successful vision restoration.
Collapse
Affiliation(s)
- Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Yurim Jeong
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Yong Hee Lee
- Department of Biochemistry, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Hyong Kyu Kim
- Department of Microbiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Yongseok Yoo
- Department of Electronics Engineering, Incheon National University, Incheon, South Korea
- *Correspondence: Yongseok Yoo,
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
- Yong Sook Goo,
| |
Collapse
|
20
|
Lim JM, Kim HH. Basic Principles and Clinical Applications of CRISPR-Based Genome Editing. Yonsei Med J 2022; 63:105-113. [PMID: 35083895 PMCID: PMC8819410 DOI: 10.3349/ymj.2022.63.2.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 11/27/2022] Open
Abstract
Advances in sequencing technologies have facilitated the discovery of previously unknown genetic variants in both inherited and acquired disorders, and tools to correct these pathogenic variants are rapidly evolving. Since the first introduction of CRISPR-Cas9 in 2012, the field of CRISPR-based genome editing has progressed immensely, giving hope to many patients suffering from genetic disorders that lack effective treatment. In this review, we will examine the basic principles of CRISPR-based genome editing, explain the mechanisms of new genome editors, including base editors and prime editors, and evaluate the therapeutic possibilities of CRISPR-based genome editing by focusing on recently published clinical trials and animal studies. Although efficacy and safety issues remain a large concern, we cannot deny that CRISPR-based genome editing will soon be prevalent in clinical practice.
Collapse
Affiliation(s)
- Jung Min Lim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
- Graduate Program of NanoScience and Technology, Yonsei University, Seoul, Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Korea.
| |
Collapse
|
21
|
da Costa BL, Levi SR, Eulau E, Tsai YT, Quinn PMJ. Prime Editing for Inherited Retinal Diseases. Front Genome Ed 2021; 3:775330. [PMID: 34901928 PMCID: PMC8656220 DOI: 10.3389/fgeed.2021.775330] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022] Open
Abstract
Inherited retinal diseases (IRDs) are chronic, hereditary disorders that lead to progressive degeneration of the retina. Disease etiology originates from a genetic mutation-inherited or de novo-with a majority of IRDs resulting from point mutations. Given the plethora of IRDs, to date, mutations that cause these dystrophies have been found in approximately 280 genes. However, there is currently only one FDA-approved gene augmentation therapy, Luxturna (voretigene neparvovec-rzyl), available to patients with RPE65-mediated retinitis pigmentosa (RP). Although clinical trials for other genes are underway, these techniques typically involve gene augmentation rather than genome surgery. While gene augmentation therapy delivers a healthy copy of DNA to the cells of the retina, genome surgery uses clustered regularly interspaced short palindromic repeats (CRISPR)-based technology to correct a specific genetic mutation within the endogenous genome sequence. A new technique known as prime editing (PE) applies a CRISPR-based technology that possesses the potential to correct all twelve possible transition and transversion mutations as well as small insertions and deletions. EDIT-101, a CRISPR-based therapy that is currently in clinical trials, uses double-strand breaks and nonhomologous end joining to remove the IVS26 mutation in the CEP290 gene. Preferably, PE does not cause double-strand breaks nor does it require any donor DNA repair template, highlighting its unparalleled efficiency. Instead, PE uses reverse transcriptase and Cas9 nickase to repair mutations in the genome. While this technique is still developing, with several challenges yet to be addressed, it offers promising implications for the future of IRD treatment.
Collapse
Affiliation(s)
- Bruna Lopes da Costa
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, United States
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Sarah R. Levi
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, United States
| | - Eric Eulau
- College of Arts and Sciences, Syracuse University, New York, NY, United States
| | - Yi-Ting Tsai
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, United States
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Peter M. J. Quinn
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
22
|
Hu J, Bourne RA, McGrath BC, Lin A, Pei Z, Cavener DR. Co-opting regulation bypass repair as a gene-correction strategy for monogenic diseases. Mol Ther 2021; 29:3274-3292. [PMID: 33892188 PMCID: PMC8571108 DOI: 10.1016/j.ymthe.2021.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/18/2021] [Accepted: 04/15/2021] [Indexed: 12/03/2022] Open
Abstract
With the development of CRISPR-Cas9-mediated gene-editing technologies, correction of disease-causing mutations has become possible. However, current gene-correction strategies preclude mutation repair in post-mitotic cells of human tissues, and a unique repair strategy must be designed and tested for each and every mutation that may occur in a gene. We have developed a novel gene-correction strategy, co-opting regulation bypass repair (CRBR), which can repair a spectrum of mutations in mitotic or post-mitotic cells and tissues. CRBR utilizes the non-homologous end joining (NHEJ) pathway to insert a coding sequence (CDS) and transcription/translation terminators targeted upstream of any CDS mutation and downstream of the transcriptional promoter. CRBR results in simultaneous co-option of the endogenous regulatory region and bypass of the genetic defect. We validated the CRBR strategy for human gene therapy by rescuing a mouse model of Wolcott-Rallison syndrome (WRS) with permanent neonatal diabetes caused by either a large deletion or a nonsense mutation in the PERK (EIF2AK3) gene. Additionally, we integrated a CRBR GFP-terminator cassette downstream of the human insulin promoter in cadaver pancreatic islets of Langerhans, which resulted in insulin promoter regulated expression of GFP, demonstrating the potential utility of CRBR in human tissue gene repair.
Collapse
Affiliation(s)
- Jingjie Hu
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rebecca A Bourne
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Barbara C McGrath
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alice Lin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zifei Pei
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Douglas R Cavener
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
23
|
Ramirez-Phillips AC, Liu D. Therapeutic Genome Editing and In Vivo Delivery. AAPS JOURNAL 2021; 23:80. [PMID: 34080099 DOI: 10.1208/s12248-021-00613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022]
Abstract
Improvements in the understanding of human genetics and its roles in disease development and prevention have led to an increased interest in therapeutic genome editing via the use of engineered nucleases. Various approaches have been explored in the past focusing on the development of an effective and safe system for sequence-specific editing. Compared to earlier nucleases such as zinc finger nuclease and transcription activator-like effector nuclease, the relatively low cost and ease of producing clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR/Cas9) systems have made therapeutic genome editing significantly more feasible. CRISPR/Cas9 genome editing has shown great potential to correct genetic mutations implicated in monogenic diseases and to eradicate latent or chronic viral infections in preclinical studies. Several CRISPR/Cas9-based therapeutics have reached the clinical stage, including treatments for inherited red blood cell disorders and Leber Congenital Amaurosis 10, as well as CRISPR/Cas9-edited T cells designed to target and destroy cancer cells. Further advances in therapeutic genome editing will rely on a safe and more efficient method of in vivo CRISPR/Cas9 delivery and improved efficiency of homology-directed repair for site-specific gene insertion or replacement. While other reviews have focused on one or two aspects of CRISPR/Cas9 genome editing, this review aims to provide a summary of the mechanisms of genome editing, the reasons for the emerging interest in CRISPR/Cas9 compared to other engineered nucleases, the current progress in developing CRISPR/Cas9 delivery systems, and the current preclinical and clinical applications of CRISPR/Cas9 genome editing.
Collapse
Affiliation(s)
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA.
| |
Collapse
|
24
|
Crane R, Conley SM, Al-Ubaidi MR, Naash MI. Gene Therapy to the Retina and the Cochlea. Front Neurosci 2021; 15:652215. [PMID: 33815052 PMCID: PMC8010260 DOI: 10.3389/fnins.2021.652215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Vision and hearing disorders comprise the most common sensory disorders found in people. Many forms of vision and hearing loss are inherited and current treatments only provide patients with temporary or partial relief. As a result, developing genetic therapies for any of the several hundred known causative genes underlying inherited retinal and cochlear disorders has been of great interest. Recent exciting advances in gene therapy have shown promise for the clinical treatment of inherited retinal diseases, and while clinical gene therapies for cochlear disease are not yet available, research in the last several years has resulted in significant advancement in preclinical development for gene delivery to the cochlea. Furthermore, the development of somatic targeted genome editing using CRISPR/Cas9 has brought new possibilities for the treatment of dominant or gain-of-function disease. Here we discuss the current state of gene therapy for inherited diseases of the retina and cochlea with an eye toward areas that still need additional development.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Muayyad R. Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Muna I. Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
25
|
Kantor A, McClements ME, Peddle CF, Fry LE, Salman A, Cehajic-Kapetanovic J, Xue K, MacLaren RE. CRISPR genome engineering for retinal diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:29-79. [PMID: 34175046 DOI: 10.1016/bs.pmbts.2021.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Novel gene therapy treatments for inherited retinal diseases have been at the forefront of translational medicine over the past couple of decades. Since the discovery of CRISPR mechanisms and their potential application for the treatment of inherited human conditions, it seemed inevitable that advances would soon be made using retinal models of disease. The development of CRISPR technology for gene therapy and its increasing potential to selectively target disease-causing nucleotide changes has been rapid. In this chapter, we discuss the currently available CRISPR toolkit and how it has been and can be applied in the future for the treatment of inherited retinal diseases. These blinding conditions have until now had limited opportunity for successful therapeutic intervention, but the discovery of CRISPR has created new hope of achieving such, as we discuss within this chapter.
Collapse
Affiliation(s)
- Ariel Kantor
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Caroline F Peddle
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Lewis E Fry
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Ahmed Salman
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
26
|
Ocular delivery of CRISPR/Cas genome editing components for treatment of eye diseases. Adv Drug Deliv Rev 2021; 168:181-195. [PMID: 32603815 DOI: 10.1016/j.addr.2020.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022]
Abstract
A variety of inherited or multifactorial ocular diseases call for novel treatment paradigms. The newly developed genome editing technology, CRISPR, has shown great promise in treating these diseases, but delivery of the CRISPR/Cas components to target ocular tissues and cells requires appropriate use of vectors and routes of administration to ensure safety, efficacy and specificity. Although adeno-associated viral (AAV) vectors are thus far the most commonly used tool for ocular gene delivery, sustained expression of CRISPR/Cas components may cause immune reactions and an increased risk of off-target editing. In this review, we summarize the ocular administration routes and discuss the advantages and disadvantages of viral and non-viral vectors for delivery of CRISPR/Cas components to the eye. We review the existing studies of CRISPR/Cas genome editing for ocular diseases and discuss the major challenges of the technology in ocular applications. We also discuss the most recently developed CRISPR tools such as base editing and prime editing which may be used for future ocular applications.
Collapse
|
27
|
Talib M, Boon CJF. Retinal Dystrophies and the Road to Treatment: Clinical Requirements and Considerations. Asia Pac J Ophthalmol (Phila) 2020; 9:159-179. [PMID: 32511120 PMCID: PMC7299224 DOI: 10.1097/apo.0000000000000290] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
: Retinal dystrophies (RDs) comprise relatively rare but devastating causes of progressive vision loss. They represent a spectrum of diseases with marked genetic and clinical heterogeneity. Mutations in the same gene may lead to different diagnoses, for example, retinitis pigmentosa or cone dystrophy. Conversely, mutations in different genes may lead to the same phenotype. The age at symptom onset, and the rate and characteristics of peripheral and central vision decline, may vary widely per disease group and even within families. For most RD cases, no effective treatment is currently available. However, preclinical studies and phase I/II/III gene therapy trials are ongoing for several RD subtypes, and recently the first retinal gene therapy has been approved by the US Food and Drug Administration for RPE65-associated RDs: voretigene neparvovec-rzyl (Luxturna). With the rapid advances in gene therapy studies, insight into the phenotypic spectrum and long-term disease course is crucial information for several RD types. The vast clinical heterogeneity presents another important challenge in the evaluation of potential efficacy in future treatment trials, and in establishing treatment candidacy criteria. This perspective describes these challenges, providing detailed clinical descriptions of several forms of RD that are caused by genes of interest for ongoing and future gene or cell-based therapy trials. Several ongoing and future treatment options will be described.
Collapse
Affiliation(s)
- Mays Talib
- Department of Ophthalmology, Leiden, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, University of Amsterdam. Amsterdam, The Netherlands
| |
Collapse
|
28
|
Application of CRISPR Tools for Variant Interpretation and Disease Modeling in Inherited Retinal Dystrophies. Genes (Basel) 2020; 11:genes11050473. [PMID: 32349249 PMCID: PMC7290804 DOI: 10.3390/genes11050473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Inherited retinal dystrophies are an assorted group of rare diseases that collectively account for the major cause of visual impairment of genetic origin worldwide. Besides clinically, these vision loss disorders present a high genetic and allelic heterogeneity. To date, over 250 genes have been associated to retinal dystrophies with reported causative variants of every nature (nonsense, missense, frameshift, splice-site, large rearrangements, and so forth). Except for a fistful of mutations, most of them are private and affect one or few families, making it a challenge to ratify the newly identified candidate genes or the pathogenicity of dubious variants in disease-associated loci. A recurrent option involves altering the gene in in vitro or in vivo systems to contrast the resulting phenotype and molecular imprint. To validate specific mutations, the process must rely on simulating the precise genetic change, which, until recently, proved to be a difficult endeavor. The rise of the CRISPR/Cas9 technology and its adaptation for genetic engineering now offers a resourceful suite of tools to alleviate the process of functional studies. Here we review the implementation of these RNA-programmable Cas9 nucleases in culture-based and animal models to elucidate the role of novel genes and variants in retinal dystrophies.
Collapse
|
29
|
Metabolic and Redox Signaling of the Nucleoredoxin-Like-1 Gene for the Treatment of Genetic Retinal Diseases. Int J Mol Sci 2020; 21:ijms21051625. [PMID: 32120883 PMCID: PMC7084304 DOI: 10.3390/ijms21051625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
The loss of cone photoreceptor function in retinitis pigmentosa (RP) severely impacts the central and daily vision and quality of life of patients affected by this disease. The loss of cones follows the degeneration of rods, in a manner independent of the causing mutations in numerous genes associated with RP. We have explored this phenomenon and proposed that the loss of rods triggers a reduction in the expression of rod-derived cone viability factor (RdCVF) encoded by the nucleoredoxin-like 1 (NXNL1) gene which interrupts the metabolic and redox signaling between rods and cones. After providing scientific evidence supporting this mechanism, we propose a way to restore this lost signaling and prevent the cone vision loss in animal models of RP. We also explain how we could restore this signaling to prevent cone vision loss in animal models of the disease and how we plan to apply this therapeutic strategy by the administration of both products of NXNL1 encoding the trophic factor RdCVF and the thioredoxin enzyme RdCVFL using an adeno-associated viral vector. We describe in detail all the steps of this translational program, from the design of the drug, its production, biological validation, and analytical and preclinical qualification required for a future clinical trial that would, if successful, provide a treatment for this incurable disease.
Collapse
|