1
|
Wu J, Ji Y, Qu H, Zuo S, Liang J, Su J, Wang Q, Yan G, Ding G. Transcranial magnetic stimulation of the right inferior frontal gyrus impairs bilinguals' performance in language-switching tasks. Cognition 2024; 254:105963. [PMID: 39340870 DOI: 10.1016/j.cognition.2024.105963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/23/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
It is widely accepted that bilinguals activate both languages simultaneously, even when intending to speak only one. A prevailing theory proposes that bilinguals inhibit the nontarget language to produce the target language, thought to be supported by evidence that the right inferior frontal gyrus (rIFG), a region typically associated with inhibition, is activated during language-switching tasks. However, it remains unclear whether the rIFG plays a causal or epiphenomenal role in this process. To explore the role of the rIFG, the present study employed transcranial magnetic stimulation (TMS) to modulate its neural activity and evaluate subsequent behavior in bilinguals. Specifically, twenty-nine Chinese-English bilinguals participated in the study and performed picture-naming tasks in single- and dual-language contexts after receiving sham stimulation (Sham), continuous theta burst stimulation (cTBS), or intermittent theta burst stimulation (iTBS) over the rIFG in three separate visits. Sham served as a control, with cTBS and iTBS intended to decrease and increase cortical excitability, respectively. We found that, compared to Sham, cTBS led to larger asymmetric switching costs and smaller asymmetric mixing costs, whereas iTBS resulted only in smaller asymmetric mixing costs. These findings suggest that cTBS targeting the rIFG likely impairs both local and global control. However, iTBS applied to the rIFG alone may not necessarily enhance language control mechanisms and could even hinder global control. Moreover, exploratory analyses found pronounced TMS-induced impairments in less balanced bilinguals, implying their potentially greater reliance on bilingual language control. Overall, this study is the first to suggest a causal role of the rIFG in language switching.
Collapse
Affiliation(s)
- Junjie Wu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China; Tianjin Key Laboratory of Student Mental Health and Intelligence Assessment, Tianjin 300387, China
| | - Yannan Ji
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Clinical College, Chengde Medical University, Chengde 067000, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Hongfu Qu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Shuyue Zuo
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Jinsong Liang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Juan Su
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China; Tianjin Key Laboratory of Student Mental Health and Intelligence Assessment, Tianjin 300387, China
| | - Qiping Wang
- School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Guoli Yan
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China; Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China; Tianjin Key Laboratory of Student Mental Health and Intelligence Assessment, Tianjin 300387, China.
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
2
|
Xu M, Nikolin S, Samaratunga N, Chow EJH, Loo CK, Martin DM. Cognitive Effects Following Offline High-Frequency Repetitive Transcranial Magnetic Stimulation (HF-rTMS) in Healthy Populations: A Systematic Review and Meta-Analysis. Neuropsychol Rev 2024; 34:250-276. [PMID: 36857011 PMCID: PMC10920443 DOI: 10.1007/s11065-023-09580-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2023] [Indexed: 03/02/2023]
Abstract
High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) is a commonly used form of rTMS to treat neuropsychiatric disorders. Emerging evidence suggests that 'offline' HF-rTMS may have cognitive enhancing effects, although the magnitude and moderators of these effects remain unclear. We conducted a systematic review and meta-analysis to clarify the cognitive effects of offline HF-rTMS in healthy individuals. A literature search for randomised controlled trials with cognitive outcomes for pre and post offline HF-rTMS was performed across five databases up until March 2022. This study was registered on the PROSPERO international prospective protocol for systematic reviews (PROSPERO 2020 CRD 42,020,191,269). The Risk of Bias 2 tool was used to assess the risk of bias in randomised trials. Separate analyses examined the cognitive effects of excitatory and inhibitory forms of offline HF-rTMS on accuracy and reaction times across six cognitive domains. Fifty-three studies (N = 1507) met inclusion criteria. Excitatory offline HF-rTMS showed significant small sized effects for improving accuracy (k = 46, g = 0.12) and reaction time (k = 44, g = -0.13) across all cognitive domains collapsed. Excitatory offline HF-rTMS demonstrated a relatively greater effect for executive functioning in accuracy (k = 24, g = 0.14). Reaction times were also improved for the executive function (k = 21, g = -0.11) and motor (k = 3, g = -0.22) domains following excitatory offline HF-rTMS. The current review was restricted to healthy individuals and future research is required to examine cognitive enhancement from offline HF-rTMS in clinical cohorts.
Collapse
Affiliation(s)
- Mei Xu
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Stevan Nikolin
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, Australia
| | - Nisal Samaratunga
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Esther Jia Hui Chow
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Colleen K Loo
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, Australia
- The George Institute for Global Health, Sydney, Australia
| | - Donel M Martin
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia.
- Black Dog Institute, Sydney, Australia.
- UNSW Sydney, High St, Kensington, NSW, 2052, Australia.
| |
Collapse
|
3
|
He Q, Geißler CF, Ferrante M, Hartwigsen G, Friehs MA. Effects of transcranial magnetic stimulation on reactive response inhibition. Neurosci Biobehav Rev 2024; 157:105532. [PMID: 38194868 DOI: 10.1016/j.neubiorev.2023.105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Reactive response inhibition cancels impending actions to enable adaptive behavior in ever-changing environments and has wide neuropsychiatric implications. A canonical paradigm to measure the covert inhibition latency is the stop-signal task (SST). To probe the cortico-subcortical network underlying motor inhibition, transcranial magnetic stimulation (TMS) has been applied over central nodes to modulate SST performance, especially to the right inferior frontal cortex and the presupplementary motor area. Since the vast parameter spaces of SST and TMS enabled diverse implementations, the insights delivered by emerging TMS-SST studies remain inconclusive. Therefore, a systematic review was conducted to account for variability and synthesize converging evidence. Results indicate certain protocol specificity through the consistent perturbations induced by online TMS, whereas offline protocols show paradoxical effects on different target regions besides numerous null effects. Ancillary neuroimaging findings have verified and dissociated the underpinning network dynamics. Sources of heterogeneity in designs and risk of bias are highlighted. Finally, we outline best-practice recommendations to bridge methodological gaps and subserve the validity as well as replicability of future work.
Collapse
Affiliation(s)
- Qu He
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Christoph F Geißler
- Institute for Cognitive & Affective Neuroscience (ICAN), Trier University, Trier, Germany
| | - Matteo Ferrante
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany; Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Maximilian A Friehs
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Psychology of Conflict Risk and Safety, University of Twente, the Netherlands; University College Dublin, School of Psychology, Dublin, Ireland.
| |
Collapse
|
4
|
Kang D, Song C, Peng X, Yu G, Yang Y, Chen C, Long Y, Shao P, Wu R. The effect of continuous theta burst stimulation on antipsychotic-induced weight gain in first-episode drug-naive individuals with schizophrenia: a double-blind, randomized, sham-controlled feasibility trial. Transl Psychiatry 2024; 14:61. [PMID: 38272892 PMCID: PMC10810827 DOI: 10.1038/s41398-024-02770-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Antipsychotic intake may induce weight gain in drug-naive individuals with schizophrenia, leading to poor compliance in clinical management. However, there is still a lack of effective approaches to treat or prevent this side-effect. Therefore, we conducted this pilot study to investigate the effect of continuous theta burst stimulation (cTBS), a non-invasive magnetic stimulation technique, on preventing olanzapine-induced weight gain. Thirty-nine first-episode drug-naive individuals with schizophrenia were randomly assigned to receive either the active or sham cTBS intervention for 25 sessions (5 times per day for 5 consecutive days). The primary outcomes were changes in body weight and body mass index (BMI). Secondary outcomes included psychiatric symptoms, eating behavior scales, behavior tasks, and metabolic measures. For the result, the body weight and BMI increased significantly in the sham group but not in the active group, with a significant group effect. The active group exhibited a selective increase in the cognitive restraint domain in the Three-Factor Eating Questionnaire (TFEQ-CR) and a decrease in stop-signal reaction time compared to the sham group. The effect of cTBS on body weight was mediated by TFEQ-CR. Our findings demonstrated the feasibility that cTBS intervention could be a potential method for preventing olanzapine-induced weight gain in drug-naive first-episode schizophrenia patients through enhancing cognitive restraint to food. Trial registration: clinical trial registered with clinicaltrials.gov (NCT05086133).
Collapse
Affiliation(s)
- Dongyu Kang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Chuhan Song
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Xingjie Peng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Guo Yu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Ye Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Chuwei Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Yujun Long
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
| | - Ping Shao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.
| | - Renrong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
5
|
Hua Q, Zhang Y, Li Q, Gao X, Du R, Wang Y, Zhou Q, Zhang T, Sun J, Zhang L, Ji GJ, Wang K. Efficacy of twice-daily high-frequency repetitive transcranial magnetic stimulation on associative memory. Front Hum Neurosci 2022; 16:973298. [PMID: 36310842 PMCID: PMC9596967 DOI: 10.3389/fnhum.2022.973298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Several studies have examined the effects of repetitive transcranial magnetic stimulation (rTMS) on associative memory (AM) but findings were inconsistent. Here, we aimed to test whether twice-daily rTMS could significantly improve AM. Methods In this single-blind, sham-controlled experiment, 40 participants were randomized to receive twice-daily sham or real rTMS sessions for five consecutive days (a total of 16,000 pulses). The stimulation target in left inferior parietal lobule (IPL) exhibiting peak functional connectivity to the left hippocampus was individually defined for each participant. Participants completed both a picture-cued word association task and Stroop test at baseline and 1 day after the final real or sham rTMS session. Effects of twice-daily rTMS on AM and Stroop test performance were compared using two-way repeated measures analysis of variance with main factors Group (real vs. sham) and Time (baseline vs. post-rTMS). Results There was a significant Group × Time interaction effect. AM score was significantly enhanced in the twice-daily real group after rTMS, but this difference could not survive the post hoc analysis after multiple comparison correction. Further, AM improvement in the twice-daily real group was not superior to a previously reported once-daily rTMS group receiving 8,000 pulses. Then, we combined the twice- and once-daily real groups, and found a significant Group × Time interaction effect. Post hoc analysis indicated that the AM score was significantly enhanced in the real group after multiple comparisons correction. Conclusion Our prospective experiment did not show significant rTMS effect on AM, but this effect may become significant if more participants could be recruited as revealed by our retrospective analysis.
Collapse
Affiliation(s)
- Qiang Hua
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Yuanyuan Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Qianqian Li
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
- Department of Psychiatry, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoran Gao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Rongrong Du
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Yingru Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Qian Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Ting Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Jinmei Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Lei Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Gong-jun Ji
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
- Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
- Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, China
- Anhui Institute of Translational Medicine, Hefei, China
| |
Collapse
|
6
|
Bakulin I, Zabirova A, Sinitsyn D, Poydasheva A, Lagoda D, Suponeva N, Piradov M. Adding a Second iTBS Block in 15 or 60 Min Time Interval Does Not Increase iTBS Effects on Motor Cortex Excitability and the Responder Rates. Brain Sci 2022; 12:brainsci12081064. [PMID: 36009127 PMCID: PMC9405900 DOI: 10.3390/brainsci12081064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The use of metaplasticity-based intermittent theta-burst stimulation (iTBS) protocols including several stimulation blocks could be a possible approach to increasing stimulation effectiveness. Our aim was to investigate the neurophysiological effects of two protocols with a short and a long interval between blocks. Seventeen healthy volunteers received four protocols in a pseudorandomized order: iTBS 0-15 (two blocks of active iTBS of primary motor cortex (M1) separated by 15 min and a control stimulation block of the vertex in 60 min from the first block); iTBS 0-60 (active iTBS, a control block in 15 min, and an active block in 60 min); iTBS 0 (active iTBS and two control blocks with the same intervals); and Control (three control blocks). The motor evoked potentials (MEPs) were measured before the first and after the second and third blocks. We have shown no significant differences between the effects of the protocols on both the motor cortex excitability and the responder rates. No significant changes of MEPs were observed after all the protocols. The reliability for the responsiveness to a single block between two sessions was insignificant. Our data confirm low reproducibility of the response to iTBS and suggest that the use of repeated protocols does not increase the responder rates or neurophysiological effects of iTBS.
Collapse
|
7
|
Gao X, Hua Q, Du R, Sun J, Hu T, Yang J, Qiu B, Ji GJ, Wang K. Associative memory improvement after 5 days of magnetic stimulation: A replication experiment with active controls. Brain Res 2021; 1765:147510. [PMID: 33933433 DOI: 10.1016/j.brainres.2021.147510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/25/2022]
Abstract
Associative memory (AM) is an essential function of everyday life, but is often disrupted in many neurological diseases. Recent studies have found that repetitive transcranial magnetic stimulation (rTMS) can effectively enhance AM and have shown its potential in clinical applications. In this study, we aimed to reproduce the 5-day rTMS effect on AM in a Chinese version of a face-cued word recall task. In an open-label experiment, AM scores were significantly improved after active 20-Hz rTMS on individualized inferior parietal lobule (IPL) targets. To exclude the placebo effect, we performed a second experiment and added rTMS of the pre-supplementary motor area (preSMA) as an active control. In this within-subject crossover experiment, participants received active rTMS on IPL and preSMA targets, separated by at least 2 weeks. A Stroop task was included as a control test, which was more likely to be modulated by preSMA stimulations. We found that stimulations on IPL targets significantly improved AM, but this change did not significantly higher than that induced by preSMA stimulations. No significant change in Stroop measures were found in either IPL or preSMA condition. In summary, this study did not support that the 5 days of rTMS on individualized IPL targets could improve AM more than placebo rTMS. Further work is required to improve the rTMS paradigms to enhance the aftereffects in memory.
Collapse
Affiliation(s)
- Xiaoran Gao
- Department of Medical Psychology, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei 230000, China
| | - Qiang Hua
- Department of Medical Psychology, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei 230000, China
| | - Rongrong Du
- Department of Medical Psychology, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei 230000, China
| | - Jinmei Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Tianzheng Hu
- ANDE College, Xi'an University of Architecture and Technology, Xi'an 710311, China
| | - Jinying Yang
- Laboratory Center for Information Science, University of Science and Technology of China, China
| | - Bensheng Qiu
- Heifei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, China
| | - Gong-Jun Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China.
| |
Collapse
|
8
|
Quoilin C, Dricot L, Genon S, de Timary P, Duque J. Neural bases of inhibitory control: Combining transcranial magnetic stimulation and magnetic resonance imaging in alcohol-use disorder patients. Neuroimage 2020; 224:117435. [PMID: 33039622 DOI: 10.1016/j.neuroimage.2020.117435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/28/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022] Open
Abstract
Inhibitory control underlies the ability to inhibit inappropriate responses and involves processes that suppress motor excitability. Such motor modulatory effect has been largely described during action preparation but very little is known about the neural circuit responsible for its implementation. Here, we addressed this point by studying the degree to which the extent of preparatory suppression relates to brain morphometry. We investigated this relationship in patients suffering from severe alcohol use disorder (AUD) because this population displays an inconsistent level of preparatory suppression and major structural brain damage, making it a suitable sample to measure such link. To do so, 45 detoxified patients underwent a structural magnetic resonance imaging (MRI) and performed a transcranial magnetic stimulation (TMS) experiment, in which the degree of preparatory suppression was quantified. Besides, behavioral inhibition and trait impulsivity were evaluated in all participants. Overall, whole-brain analyses revealed that a weaker preparatory suppression was associated with a decrease in cortical thickness of a medial prefrontal cluster, encompassing parts of the anterior cingulate cortex and superior-frontal gyrus. In addition, a negative association was observed between the thickness of the supplementary area (SMA)/pre-SMA and behavioral inhibition abilities. Finally, we did not find any significant correlation between preparatory suppression, behavioral inhibition and trait impulsivity, indicating that they represent different facets of inhibitory control. Altogether, the current study provides important insight on the neural regions underlying preparatory suppression and allows highlighting that the excitability of the motor system represents a valuable read-out of upstream cognitive processes.
Collapse
Affiliation(s)
- Caroline Quoilin
- Institute of Neuroscience, Université catholique de Louvain, Ave Mounier, 53 - Bte B1.53.04, 1200 Brussels, Belgium.
| | - Laurence Dricot
- Institute of Neuroscience, Université catholique de Louvain, Ave Mounier, 53 - Bte B1.53.04, 1200 Brussels, Belgium
| | - Sarah Genon
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Jülich Forschungszentrum, Germany
| | - Philippe de Timary
- Institute of Neuroscience, Université catholique de Louvain, Ave Mounier, 53 - Bte B1.53.04, 1200 Brussels, Belgium; Department of adult psychiatry, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Julie Duque
- Institute of Neuroscience, Université catholique de Louvain, Ave Mounier, 53 - Bte B1.53.04, 1200 Brussels, Belgium
| |
Collapse
|
9
|
Borgomaneri S, Serio G, Battaglia S. Please, don't do it! Fifteen years of progress of non-invasive brain stimulation in action inhibition. Cortex 2020; 132:404-422. [PMID: 33045520 DOI: 10.1016/j.cortex.2020.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023]
Abstract
The ability to inhibit prepotent responses is critical for survival. Action inhibition can be investigated using a stop-signal task (SST), designed to provide a reliable measure of the time taken by the brain to suppress motor responses. Here we review the major research advances using the combination of this paradigm with the use of non-invasive brain stimulation techniques in the last fifteen years. We highlight new methodological approaches to understanding and exploiting several processes underlying action control, which is critically impaired in several psychiatric disorders. In this review we present and discuss existing literature demonstrating i) the importance of the use of non-invasive brain stimulation in studying human action inhibition, unveiling the neural network involved ii) the critical role of prefrontal areas, including the pre-supplementary motor area (pre-SMA) and the inferior frontal gyrus (IFG), in inhibitory control iii) the neural and behavioral evidence of proactive and reactive action inhibition. As the main result of this review, the specific literature demonstrated the crucial role of pre-SMA and IFG as evidenced from the field of noninvasive brain stimulation studies. Finally, we discuss the critical questions that remain unanswered about how such non-invasive brain stimulation protocols can be translated to therapeutic treatments.
Collapse
Affiliation(s)
- Sara Borgomaneri
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, Campus di Cesena, Cesena, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Gianluigi Serio
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, Campus di Cesena, Cesena, Italy
| | - Simone Battaglia
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, Campus di Cesena, Cesena, Italy
| |
Collapse
|
10
|
Bentley JN, Irwin ZT, Black SD, Roach ML, Vaden RJ, Gonzalez CL, Khan AU, El-Sayed GA, Knight RT, Guthrie BL, Walker HC. Subcortical Intermittent Theta-Burst Stimulation (iTBS) Increases Theta-Power in Dorsolateral Prefrontal Cortex (DLPFC). Front Neurosci 2020; 14:41. [PMID: 32082113 PMCID: PMC7006239 DOI: 10.3389/fnins.2020.00041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Cognitive symptoms from Parkinson’s disease cause severe disability and significantly limit quality of life. Little is known about mechanisms of cognitive impairment in PD, although aberrant oscillatory activity in basal ganglia-thalamo-prefrontal cortical circuits likely plays an important role. While continuous high-frequency deep brain stimulation (DBS) improves motor symptoms, it is generally ineffective for cognitive symptoms. Although we lack robust treatment options for these symptoms, recent studies with transcranial magnetic stimulation (TMS), applying intermittent theta-burst stimulation (iTBS) to dorsolateral prefrontal cortex (DLPFC), suggest beneficial effects for certain aspects of cognition, such as memory or inhibitory control. While TMS is non-invasive, its results are transient and require repeated application. Subcortical DBS targets have strong reciprocal connections with prefrontal cortex, such that iTBS through the permanently implanted lead might represent a more durable solution. Here we demonstrate safety and feasibility for delivering iTBS from the DBS electrode and explore changes in DLPFC electrophysiology. Methods We enrolled seven participants with medically refractory Parkinson’s disease who underwent DBS surgery targeting either the subthalamic nucleus (STN) or globus pallidus interna (GPi). We temporarily placed an electrocorticography strip over DLPFC through the DBS burr hole. After placement of the DBS electrode into either GPi (n = 3) or STN (n = 4), awake subjects rested quietly during iTBS (three 50-Hz pulses delivered at 5 Hz for 2 s, followed by 8 s of rest). We contrasted power spectra in DLPFC local field potentials during iTBS versus at rest, as well as between iTBS and conventional high-frequency stimulation (HFS). Results Dominant frequencies in DLPFC at rest varied among subjects and along the subdural strip electrode, though they were generally localized in theta (3–8 Hz) and/or beta (10–30 Hz) ranges. Both iTBS and HFS were well-tolerated and imperceptible. iTBS increased theta-frequency activity more than HFS. Further, GPi stimulation resulted in significantly greater theta-power versus STN stimulation in our sample. Conclusion Acute subcortical iTBS from the DBS electrode was safe and well-tolerated. This novel stimulation pattern delivered from the GPi may increase theta-frequency power in ipsilateral DLPFC. Future studies will confirm these changes in DLPFC activity during iTBS and evaluate whether they are associated with improvements in cognitive or behavioral symptoms from PD.
Collapse
Affiliation(s)
- J Nicole Bentley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zachary T Irwin
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sarah D Black
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Megan L Roach
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ryan J Vaden
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christopher L Gonzalez
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anas U Khan
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Galal A El-Sayed
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert T Knight
- Department of Psychology and Neuroscience, University of California, Berkeley, Berkeley, CA, United States.,Department of Neurology and Neurosurgery, University of California, San Francisco, San Francisco, CA, United States
| | - Barton L Guthrie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harrison C Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|