1
|
Sahu M, Ambasta RK, Das SR, Mishra MK, Shanker A, Kumar P. Harnessing Brainwave Entrainment: A Non-invasive Strategy To Alleviate Neurological Disorder Symptoms. Ageing Res Rev 2024; 101:102547. [PMID: 39419401 DOI: 10.1016/j.arr.2024.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
From 1990-2019, the burden of neurological disorders varied considerably across countries and regions. Psychiatric disorders, often emerging in early to mid-adulthood, are linked to late-life neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. Individuals with conditions such as Major Depressive Disorder, Anxiety Disorder, Schizophrenia, and Bipolar Disorder face up to four times higher risk of developing neurodegenerative disorders. Contrarily, 65 % of those with neurodegenerative conditions experience severe psychiatric symptoms during their illness. Further, the limitation of medical resources continues to make this burden a significant global and local challenge. Therefore, brainwave entrainment provides therapeutic avenues for improving the symptoms of diseases. Brainwaves are rhythmic oscillations produced either spontaneously or in response to stimuli. Key brainwave patterns include gamma, beta, alpha, theta, and delta waves, yet the underlying physiological mechanisms and the brain's ability to shift between these dynamic states remain areas for further exploration. In neurological disorders, brainwaves are often disrupted, a phenomenon termed "oscillopathy". However, distinguishing these impaired oscillations from the natural variability in brainwave activity across different regions and functional states poses significant challenges. Brainwave-mediated therapeutics represents a promising research field aimed at correcting dysfunctional oscillations. Herein, we discuss a range of non-invasive techniques such as non-invasive brain stimulation (NIBS), neurologic music therapy (NMT), gamma stimulation, and somatosensory interventions using light, sound, and visual stimuli. These approaches, with their minimal side effects and cost-effectiveness, offer potential therapeutic benefits. When integrated, they may not only help in delaying disease progression but also contribute to the development of innovative medical devices for neurological care.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Suman R Das
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, and The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
2
|
Wauters LD, Croot K, Dial HR, Duffy JR, Grasso SM, Kim E, Schaffer Mendez K, Ballard KJ, Clark HM, Kohley L, Murray LL, Rogalski EJ, Figeys M, Milman L, Henry ML. Behavioral Treatment for Speech and Language in Primary Progressive Aphasia and Primary Progressive Apraxia of Speech: A Systematic Review. Neuropsychol Rev 2024; 34:882-923. [PMID: 37792075 PMCID: PMC11473583 DOI: 10.1007/s11065-023-09607-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 06/13/2023] [Indexed: 10/05/2023]
Abstract
Primary progressive aphasia (PPA) and primary progressive apraxia of speech (PPAOS) are neurodegenerative syndromes characterized by progressive decline in language or speech. There is a growing number of studies investigating speech-language interventions for PPA/PPAOS. An updated systematic evaluation of the treatment evidence is warranted to inform best clinical practice and guide future treatment research. We systematically reviewed the evidence for behavioral treatment for speech and language in this population. Reviewed articles were published in peer-reviewed journals through 31 May 2021. We evaluated level of evidence, reporting quality, and risk of bias using a modified version of the American Speech-Language Hearing Association (ASHA) Levels of Evidence, an appraisal point system, additional reporting quality and internal/external validity items, and, as appropriate, the Single Case Experimental Design Scale or the Physiotherapy Evidence Database - PsycBITE Rating Scale for Randomized and Non-Randomized Controlled Trials. Results were synthesized using quantitative summaries and narrative review. A total of 103 studies reported treatment outcomes for 626 individuals with PPA; no studies used the diagnostic label PPAOS. Most studies evaluated interventions for word retrieval. The highest-quality evidence was provided by 45 experimental and quasi-experimental studies (16 controlled group studies, 29 single-subject designs). All (k = 45/45) reported improvement on a primary outcome measure; most reported generalization (k = 34/43), maintenance (k = 34/39), or social validity (k = 17/19) of treatment for at least one participant. The available evidence supports speech-language intervention for persons with PPA; however, treatment for PPAOS awaits systematic investigation. Implications and limitations of the evidence and the review are discussed.
Collapse
Affiliation(s)
- Lisa D Wauters
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, 2504A Whitis Ave. (A1100), 78712, Austin, TX, USA
| | - Karen Croot
- School of Psychology, University of Sydney, 2006, Sydney, NSW, Australia
| | - Heather R Dial
- Department of Communication Sciences and Disorders, University of Houston, Houston, TX, 77204, USA
| | - Joseph R Duffy
- Department of Neurology, Division of Speech Pathology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Stephanie M Grasso
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, 2504A Whitis Ave. (A1100), 78712, Austin, TX, USA
| | - Esther Kim
- US Department of Communication Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, T6G 2R3, Edmonton, AB, Canada
| | | | - Kirrie J Ballard
- Faculty of Medicine & Health and Brain & Mind Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Heather M Clark
- Department of Neurology, Division of Speech Pathology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Leeah Kohley
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, 2504A Whitis Ave. (A1100), 78712, Austin, TX, USA
| | - Laura L Murray
- School of Communication Sciences and Disorders, Western University, London, ON, N6A 3K7, Canada
| | - Emily J Rogalski
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, 60611, Chicago, IL, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Feinberg School of Medicine, 60611, Chicago, IL, USA
| | - Mathieu Figeys
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Lisa Milman
- Department of Communicative Disorders and Deaf Education, Utah State University, Logan, UT, 84322, USA
| | - Maya L Henry
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, 2504A Whitis Ave. (A1100), 78712, Austin, TX, USA.
- Department of Neurology, Dell Medical School, University of Texas at Austin, 78712, Austin, TX, USA.
| |
Collapse
|
3
|
Roheger M, Riemann S, Brauer A, McGowan E, Grittner U, Flöel A, Meinzer M. Non-pharmacological interventions for improving language and communication in people with primary progressive aphasia. Cochrane Database Syst Rev 2024; 5:CD015067. [PMID: 38808659 PMCID: PMC11134511 DOI: 10.1002/14651858.cd015067.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
BACKGROUND Primary progressive aphasia (PPA) accounts for approximately 43% of frontotemporal dementias and is mainly characterised by a progressive impairment of speech and communication abilities. Three clinical variants have been identified: (a) non-fluent/agrammatic, (b) semantic, and (c) logopenic/phonological PPA variants. There is currently no curative treatment for PPA, and the disease progresses inexorably over time, with devastating effects on speech and communication ability, functional status, and quality of life. Several non-pharmacological interventions that may improve symptoms (e.g. different forms of language training and non-invasive brain stimulation) have been investigated in people with PPA. OBJECTIVES To assess the effects of non-pharmacological interventions for people with PPA on word retrieval (our primary outcome), global language functions, cognition, quality of life, and adverse events. SEARCH METHODS We searched the Cochrane Dementia and Cognitive Improvement Group's trial register, MEDLINE (Ovid SP), Embase (Ovid SP), four other databases and two other trial registers. The latest searches were run on 26 January 2024. SELECTION CRITERIA We included randomised controlled trials (RCTs) evaluating the effects of non-pharmacological interventions in people with PPA. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS There were insufficient data available to conduct the network meta-analyses that we had originally planned (due to trial data being insufficiently reported or not reported at all, as well as the heterogeneous content of the included interventions). Therefore, we provide a descriptive summary of the included studies and results. We included 10 studies, with a total of 132 participants, evaluating non-pharmacological interventions. These were: transcranial direct current stimulation (tDCS) or repetitive transcranial magnetic stimulation (rTMS) as stand-alone treatments (used by two and one studies, respectively); tDCS combined with semantic and phonological word-retrieval training (five studies); tDCS combined with semantic word-retrieval training (one study); and tDCS combined with phonological word-retrieval training (one study). Results for our primary outcome of word retrieval were mixed. For the two studies that investigated the effects of tDCS as stand-alone treatment compared to placebo ("sham") tDCS, we rated the results as having very low-certainty evidence. One study found a significant beneficial effect on word retrieval after active tDCS; one study did not report any significant effects in favour of the active tDCS group. Five studies investigated tDCS administered to the dorsolateral prefrontal cortex, inferior frontal cortex, left frontotemporal region, or the temporoparietal cortex, combined with semantic and phonological word-retrieval training. The most consistent finding was enhancement of word-retrieval ability for trained items immediately after the intervention, when behavioural training was combined with active tDCS compared to behavioural training plus sham tDCS. We found mixed effects for untrained items and maintenance of treatment effects during follow-up assessments. We rated the certainty of the evidence as very low in all studies. One study investigated tDCS combined with semantic word-retrieval training. Training was provided across 15 sessions with a frequency of three to five sessions per week, depending on the personal preferences of the participants. tDCS targeted the left frontotemporal region. The study included three participants: two received 1 mA stimulation and one received 2 mA stimulation. The study showed mixed results. We rated it as very low-certainty evidence. One study investigated tDCS combined with phonological word-retrieval training. Training was again provided across 15 sessions over a period of three weeks. tDCS targeted the left inferior frontal gyrus. This study showed a significantly more pronounced improvement for trained and untrained words in favour of the group that had received active tDCS, but we rated the certainty of the evidence as very low. One study compared active rTMS applied to an individually determined target site to active rTMS applied to a control site (vertex) for effects on participants' word retrieval. This study demonstrated better word retrieval for active rTMS administered to individually determined target brain regions than in the control intervention, but we rated the results as having a very low certainty of evidence. Four studies assessed overall language ability, three studies assessed cognition, five studies assessed potential adverse effects of brain stimulation, and one study investigated quality of life. AUTHORS' CONCLUSIONS There is currently no high-certainty evidence to inform clinical decision-making regarding non-pharmacological treatment selection for people with PPA. Preliminary evidence suggests that the combination of active tDCS with specific language therapy may improve impaired word retrieval for specifically trained items beyond the effects of behavioural treatment alone. However, more research is needed, including high-quality RCTs with detailed descriptions of participants and methods, and consideration of outcomes such as quality of life, depressive symptoms, and overall cognitive functioning. Moreover, studies assessing optimal treatments (i.e. behavioural interventions, brain stimulation interventions, and their combinations) for individual patients and PPA subtypes are needed. We were not able to conduct the planned (network) meta-analyses due to missing data that could not be obtained from most of the authors, a general lack of RCTs in the field, and heterogeneous interventions in eligible trials. Journals should implement a mandatory data-sharing requirement to assure transparency and accessibility of data from clinical trials.
Collapse
Affiliation(s)
- Mandy Roheger
- Department of Psychology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Steffen Riemann
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Brauer
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Ellen McGowan
- Speech and Language Therapy, Older People's Mental Health, Stockport, Pennine Care NHS Foundation Trust, Pennine Care NHS Foundation Trust, Stockport, UK
| | - Ulrike Grittner
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Marcus Meinzer
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Neophytou K, Williamson K, Herrmann O, Afthinos A, Gallegos J, Martin N, Tippett DC, Tsapkini K. Home-Based Transcranial Direct Current Stimulation in Primary Progressive Aphasia: A Pilot Study. Brain Sci 2024; 14:391. [PMID: 38672040 PMCID: PMC11048435 DOI: 10.3390/brainsci14040391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND This study aims to determine (a) if home-based anodal transcranial direct current stimulation (a-tDCS) delivered to the left supramarginal gyrus (SMG) coupled with verbal short-term memory/working memory (vSTM/WM) treatment ("RAM", short for "Repeat After Me") is more effective than sham-tDCS in improving vSTM/WM in patients with primary progressive aphasia (PPA), and (b) whether tDCS effects generalize to other language and cognitive abilities. METHODS Seven PPA participants received home-based a-tDCS and sham-tDCS coupled with RAM treatment in separate conditions in a double-blind design. The treatment task required participants to repeat word spans comprising semantically and phonologically unrelated words in the same and reverse order. The evaluation of treatment effects was carried out using the same tasks as in the treatment but with different items (near-transfer effects) and tasks that were not directly related to the treatment (far-transfer effects). RESULTS A-tDCS showed (a) a significant effect in improving vSTM abilities, measured by word span backward, and (b) a generalization of this effect to other language abilities, namely, spelling (both real words and pseudowords) and learning (retention and delayed recall). CONCLUSIONS These preliminary results indicate that vSTM/WM intervention can improve performance in trained vSTM/WM tasks in patients with PPA, especially when augmented with home-based tDCS over the left SMG.
Collapse
Affiliation(s)
- Kyriaki Neophytou
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
| | - Kelly Williamson
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
| | - Olivia Herrmann
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
| | - Alexandros Afthinos
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
- Cooper Medical School of Rowan University, Rowan University, 401 Broadway, Camden, NJ 08103, USA
| | - Jessica Gallegos
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
| | - Nadine Martin
- Department of Communication Sciences and Disorders, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA;
| | - Donna C. Tippett
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 174, Baltimore, MD 21287, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 601 N. Caroline Street, Baltimore, MD 21287, USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
- Department of Cognitive Science, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
5
|
Strunk K, Weiss S, Müller HM. High-Frequency Language Therapy with Semantic Feature Analysis (SFA) and Transcranial Direct Current Stimulation (tDCS): A Longitudinal Single-Case Report of Semantic Variant of Primary Progressive Aphasia (svPPA). Brain Sci 2024; 14:133. [PMID: 38391708 PMCID: PMC10886986 DOI: 10.3390/brainsci14020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The goal of this study was to investigate whether the combination of semantic feature analysis (SFA) and transcranial direct current stimulation (tDCS) is effective in treating word retrieval in the semantic variant of primary progressive aphasia (svPPA) and how long the potential effects last. METHODS A 56-year-old woman diagnosed with frontotemporal dementia (FTD) and svPPA participated in this longitudinal single-subject design. A total of four 2-week stimulation phases were conducted over a 14-month period, each of which was started depending on the participant's language performance. Follow-up testing was conducted shortly after the stimulation period, approximately 2 weeks, and approximately 4 weeks thereafter. RESULTS Significant improvement in word retrieval occurred after SFA and tDCS therapy. Two weeks after the end of each stimulation phase, approx. 80% of the trained words could be named correctly. For the untrained words, also significantly more words were correctly named at follow-ups compared to the baseline. Furthermore, the Boston Naming Test (BNT) demonstrated a significant increase in naming performance and showed that phonological cues facilitated word retrieval compared to semantic cues. CONCLUSION The combination of SFA and tDCS was able to counteract the expected language deterioration of a participant with svPPA. This effect increased until approximately 2 weeks after each intervention. In addition, a generalization of the effect to untrained words was shown.
Collapse
Affiliation(s)
- Katharina Strunk
- Experimental Neurolinguistics Group, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Sabine Weiss
- Experimental Neurolinguistics Group, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Inspiration 1, 33619 Bielefeld, Germany
- Clinical Linguistics, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Horst M Müller
- Experimental Neurolinguistics Group, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
6
|
LoBue C, McClintock SM, Chiang HS, Helphrey J, Thakkar VJ, Hart J. A Critical Review of Noninvasive Brain Stimulation Technologies in Alzheimer's Dementia and Primary Progressive Aphasia. J Alzheimers Dis 2024; 100:743-760. [PMID: 38905047 DOI: 10.3233/jad-240230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Multiple pharmacologic agents now have been approved in the United States and other countries as treatment to slow disease and clinical progression for Alzheimer's disease. Given these treatments have not been proven to lessen the cognitive deficits already manifested in the Alzheimer's Clinical Syndrome (ACS), and none are aimed for another debilitating dementia syndrome identified as primary progressive aphasia (PPA), there is an urgent need for new, safe, tolerable, and efficacious treatments to mitigate the cognitive deficits experienced in ACS and PPA. Noninvasive brain stimulation has shown promise for enhancing cognitive functioning, and there has been interest in its potential therapeutic value in ACS and PPA. This review critically examines the evidence of five technologies in ACS and PPA: transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), transcranial random noise stimulation (tRNS), repetitive transcranial magnetic stimulation (rTMS), and noninvasive vagus nerve stimulation (nVNS). Many randomized controlled trials of tDCS and rTMS report positive treatment effects on cognition in ACS and PPA that persist out to at least 8 weeks, whereas there are few trials for tACS and none for tRNS and nVNS. However, most positive trials did not identify clinically meaningful changes, underscoring that clinical efficacy has yet to be established in ACS and PPA. Much is still to be learned about noninvasive brain stimulation in ACS and PPA, and shifting the focus to prioritize clinical significance in addition to statistical significance in trials could yield greater success in understanding its potential cognitive effects and optimal parameters.
Collapse
Affiliation(s)
- Christian LoBue
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shawn M McClintock
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hsueh-Sheng Chiang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Jessica Helphrey
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vishal J Thakkar
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John Hart
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
7
|
Norata D, Motolese F, Magliozzi A, Pilato F, Di Lazzaro V, Luzzi S, Capone F. Transcranial direct current stimulation in semantic variant of primary progressive aphasia: a state-of-the-art review. Front Hum Neurosci 2023; 17:1219737. [PMID: 38021245 PMCID: PMC10663282 DOI: 10.3389/fnhum.2023.1219737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
The semantic variant of primary progressive aphasia (svPPA), known also as "semantic dementia (SD)," is a neurodegenerative disorder that pertains to the frontotemporal lobar degeneration clinical syndromes. There is currently no approved pharmacological therapy for all frontotemporal dementia variants. Transcranial direct current stimulation (tDCS) is a promising non-invasive brain stimulation technique capable of modulating cortical excitability through a sub-threshold shift in neuronal resting potential. This technique has previously been applied as adjunct treatment in Alzheimer's disease, while data for frontotemporal dementia are controversial. In this scoped review, we summarize and critically appraise the currently available evidence regarding the use of tDCS for improving performance in naming and/or matching tasks in patients with svPPA. Clinical trials addressing this topic were identified through MEDLINE (accessed by PubMed) and Web of Science, as of November 2022, week 3. Clinical trials have been unable to show a significant benefit of tDCS in enhancing semantic performance in svPPA patients. The heterogeneity of the studies available in the literature might be a possible explanation. Nevertheless, the results of these studies are promising and may offer valuable insights into methodological differences and overlaps, raising interest among researchers in identifying new non-pharmacological strategies for treating svPPA patients. Further studies are therefore warranted to investigate the potential therapeutic role of tDCS in svPPA.
Collapse
Affiliation(s)
- Davide Norata
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Neurological Clinic, Department of Experimental and Clinical Medicine (DIMSC), Marche Polytechnic University, Ancona, Italy
| | - Francesco Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Alessandro Magliozzi
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabio Pilato
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Simona Luzzi
- Neurological Clinic, Department of Experimental and Clinical Medicine (DIMSC), Marche Polytechnic University, Ancona, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
8
|
Wang Z, Ficek BN, Webster KT, Herrmann O, Frangakis CE, Desmond JE, Onyike CU, Caffo B, Hillis AE, Tsapkini K. Specificity in Generalization Effects of Transcranial Direct Current Stimulation Over the Left Inferior Frontal Gyrus in Primary Progressive Aphasia. Neuromodulation 2023; 26:850-860. [PMID: 37287321 PMCID: PMC10250817 DOI: 10.1016/j.neurom.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Generalization (or near-transfer) effects of an intervention to tasks not explicitly trained are the most desirable intervention outcomes. However, they are rarely reported and even more rarely explained. One hypothesis for generalization effects is that the tasks improved share the same brain function/computation with the intervention task. We tested this hypothesis in this study of transcranial direct current stimulation (tDCS) over the left inferior frontal gyrus (IFG) that is claimed to be involved in selective semantic retrieval of information from the temporal lobes. MATERIALS AND METHODS In this study, we examined whether tDCS over the left IFG in a group of patients with primary progressive aphasia (PPA), paired with a lexical/semantic retrieval intervention (oral and written naming), may specifically improve semantic fluency, a nontrained near-transfer task that relies on selective semantic retrieval, in patients with PPA. RESULTS Semantic fluency improved significantly more in the active tDCS than in the sham tDCS condition immediately after and two weeks after treatment. This improvement was marginally significant two months after treatment. We also found that the active tDCS effect was specific to tasks that require this IFG computation (selective semantic retrieval) but not to other tasks that may require different computations of the frontal lobes. CONCLUSIONS We provided interventional evidence that the left IFG is critical for selective semantic retrieval, and tDCS over the left IFG may have a near-transfer effect on tasks that depend on the same computation, even if they are not specifically trained. CLINICAL TRIAL REGISTRATION The Clinicaltrials.gov registration number for the study is NCT02606422.
Collapse
Affiliation(s)
- Zeyi Wang
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Bronte N Ficek
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Kimberly T Webster
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Olivia Herrmann
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Constantine E Frangakis
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Radiology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - John E Desmond
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA; Neuroscience Program, Johns Hopkins University, Baltimore, MD, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Argye E Hillis
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA; Department of Cognitive Science, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Physical Medicine & Rehabilitation, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Kyrana Tsapkini
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA; Department of Cognitive Science, Johns Hopkins Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Borrego-Écija S, Montagut N, Martín-Trias P, Vaqué-Alcázar L, Illán-Gala I, Balasa M, Lladó A, Casanova-Mollà J, Bargalló N, Valls-Solé J, Lleó A, Bartrés-Faz D, Sánchez-Valle R. Multifocal Transcranial Direct Current Stimulation in Primary Progressive Aphasia Does Not Provide a Clinical Benefit Over Speech Therapy. J Alzheimers Dis 2023:JAD230069. [PMID: 37182884 DOI: 10.3233/jad-230069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Primary progressive aphasia (PPA) is a group of neurodegenerative disorders including Alzheimer's disease and frontotemporal dementia characterized by language deterioration. Transcranial direct current stimulation (tDCS) is a non-invasive intervention for brain dysfunction. OBJECTIVE To evaluate the tolerability and efficacy of tDCS combined with speech therapy in the three variants of PPA. We evaluate changes in fMRI activity in a subset of patients. METHODS Double-blinded, randomized, cross-over, and sham-controlled tDCS study. 15 patients with PPA were included. Each patient underwent two interventions: a) speech therapy + active tDCS and b) speech therapy + sham tDCS stimulation. A multifocal strategy with anodes placed in the left frontal and parietal regions was used to stimulate the entire language network. Efficacy was evaluated by comparing the results of two independent sets of neuropsychological assessments administered at baseline, immediately after the intervention, and at 1 month and 3 months after the intervention. In a subsample, fMRI scanning was performed before and after each intervention. RESULTS The interventions were well tolerated. Participants in both arms showed clinical improvement, but no differences were found between active and sham tDCS interventions in any of the evaluations. There were trends toward better outcomes in the active tDCS group for semantic association and reading skills. fMRI identified an activity increase in the right frontal medial cortex and the bilateral paracingulate gyrus after the active tDCS intervention. CONCLUSION We did not find differences between active and sham tDCS stimulation in clinical scores of language function in PPA patients.
Collapse
Affiliation(s)
- Sergi Borrego-Écija
- Alzheimer's disease and other cognitive disorders Unit. Neurology Service, Hospital Clinic de Barcelona, Institutd'Investigació Biomèdica August Pi i Sunyer, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Nuria Montagut
- Alzheimer's disease and other cognitive disorders Unit. Neurology Service, Hospital Clinic de Barcelona, Institutd'Investigació Biomèdica August Pi i Sunyer, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Pablo Martín-Trias
- Medical Psychology Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Insitute of Neurosciences, University of Barcelona; Institut d'Investigació Biomèdica August Pi i Sunyer, Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Medical Psychology Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Insitute of Neurosciences, University of Barcelona; Institut d'Investigació Biomèdica August Pi i Sunyer, Barcelona, Spain
| | - Ignacio Illán-Gala
- Memory Unit, Service of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. Centro de Investigación en Red en enfermedadesneurogenerativas (CIBERNED), Madrid, Spain
| | - Mircea Balasa
- Alzheimer's disease and other cognitive disorders Unit. Neurology Service, Hospital Clinic de Barcelona, Institutd'Investigació Biomèdica August Pi i Sunyer, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Albert Lladó
- Alzheimer's disease and other cognitive disorders Unit. Neurology Service, Hospital Clinic de Barcelona, Institutd'Investigació Biomèdica August Pi i Sunyer, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Jordi Casanova-Mollà
- Clinical Neurophysiology Unit, Institutd'Investigació Biomèdica August Pi i Sunyer, NeurologyService, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Nuria Bargalló
- Radiology Service, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Josep Valls-Solé
- Clinical Neurophysiology Unit, Institutd'Investigació Biomèdica August Pi i Sunyer, NeurologyService, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Alberto Lleó
- Memory Unit, Service of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. Centro de Investigación en Red en enfermedadesneurogenerativas (CIBERNED), Madrid, Spain
| | - David Bartrés-Faz
- Medical Psychology Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Insitute of Neurosciences, University of Barcelona; Institut d'Investigació Biomèdica August Pi i Sunyer, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's disease and other cognitive disorders Unit. Neurology Service, Hospital Clinic de Barcelona, Institutd'Investigació Biomèdica August Pi i Sunyer, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Papanikolaou K, Nasios G, Nousia A, Siokas V, Messinis L, Dardiotis E. Noninvasive Brain Stimulation in Primary Progressive Aphasia: A Literature Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1425:567-574. [PMID: 37581830 DOI: 10.1007/978-3-031-31986-0_55] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Primary progressive aphasia (PPA) is a gradually progressive clinical syndrome in which the first and predominant symptoms involve language and/or speech production that interfere with daily activities. Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) appear to have a beneficial impact on many neurodegenerative pathologies. The current review investigated the impact of rTMS and tDCS on PPA patients. English language articles that have been published in the databases PubMed, and Scopus from 2007 to 2022 were included. Fifteen single-case or small-group studies were analyzed and presented. The majority of the literature findings point toward that the application of rTMS or tDCS may have a positive effect in improving symptoms such as verb production, action naming, phonemic-verbal fluency, grammatical comprehension, written spelling, and semantic features. In conclusion, our review provides additional evidence supporting that both types of stimulation may improve linguistic deficits, especially if they combined, speech therapy.
Collapse
Affiliation(s)
| | - Grigorios Nasios
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Anastasia Nousia
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Vasileios Siokas
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Lambros Messinis
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
11
|
Coemans S, Struys E, Vandenborre D, Wilssens I, Engelborghs S, Paquier P, Tsapkini K, Keulen S. A Systematic Review of Transcranial Direct Current Stimulation in Primary Progressive Aphasia: Methodological Considerations. Front Aging Neurosci 2021; 13:710818. [PMID: 34690737 PMCID: PMC8530184 DOI: 10.3389/fnagi.2021.710818] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022] Open
Abstract
A variety of tDCS approaches has been used to investigate the potential of tDCS to improve language outcomes, or slow down the decay of language competences caused by Primary Progressive Aphasia (PPA). The employed stimulation protocols and study designs in PPA are generally speaking similar to those deployed in post-stroke aphasic populations. These two etiologies of aphasia however differ substantially in their pathophysiology, and for both conditions the optimal stimulation paradigm still needs to be established. A systematic review was done and after applying inclusion and exclusion criteria, 15 articles were analyzed focusing on differences and similarities across studies especially focusing on PPA patient characteristics (age, PPA variant, language background), tDCS stimulation protocols (intensity, frequency, combined therapy, electrode configuration) and study design as recent reviews and group outcomes for individual studies suggest tDCS is an effective tool to improve language outcomes, while methodological approach and patient characteristics are mentioned as moderators that may influence treatment effects. We found that studies of tDCS in PPA have clinical and methodological and heterogeneity regarding patient populations, stimulation protocols and study design. While positive group results are usually found irrespective of these differences, the magnitude, duration and generalization of these outcomes differ when comparing stimulation locations, and when results are stratified according to the clinical variant of PPA. We interpret the results of included studies in light of patient characteristics and methodological decisions. Further, we highlight the role neuroimaging can play in study protocols and interpreting results and make recommendations for future work.
Collapse
Affiliation(s)
- Silke Coemans
- Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
| | - Esli Struys
- Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Dorien Vandenborre
- Department of Speech and Language Pathology, Thomas More University of Applied Sciences, Antwerp, Belgium
| | - Ineke Wilssens
- Department of Speech and Language Pathology, Thomas More University of Applied Sciences, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Reference Center for Biological Markers of Dementia, BIODEM, Institute Born-Bunge, Universiteit Antwerpen, Antwerp, Belgium
| | - Philippe Paquier
- Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Research in Cognition and Neurosciences (CRCN), Université Libre de Bruxelles, Antwerp, Belgium
- Department of Translational Neurosciences (TNW), Universiteit Antwerpen, Antwerp, Belgium
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| | - Stefanie Keulen
- Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
12
|
Vestito L, Trombini M, Mori L, Dellepiane S, Trompetto C, Morando M, Bandini F. Improved visuospatial neglect after tDCS and computer-assisted cognitive training in Posterior Cortical Atrophy: a single-case study. Neurocase 2021; 27:57-63. [PMID: 33332244 DOI: 10.1080/13554794.2020.1862242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Visuospatial neglect (VN) frequently occurs in Posterior Cortical Atrophy (PCA) and requires specific rehabilitation. In this single-case study, we investigated the efficacy of a computer-assisted cognitive training (CCT) alone or coupled with multiple sessions of anodal transcranial direct-current stimulation (A-tDCS) over the right posterior parietal cortex in improving left VN symptoms in a patient with PCA. The digital ReMoVES platform was used for both VN assessment and training. We found a significant improvement after CCT combined with A-tDCS within the limits of a single-case, our results suggest, for the first time, the usefulness of this combined approach in a neurodegenerative disorder.
Collapse
Affiliation(s)
| | - Marco Trombini
- Department of Naval, Electric, Electronic and Telecommunications Engineering (DITEN), University of Genoa, Genoa, Italy
| | - Laura Mori
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Silvana Dellepiane
- Department of Naval, Electric, Electronic and Telecommunications Engineering (DITEN), University of Genoa, Genoa, Italy
| | - Carlo Trompetto
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Matteo Morando
- Department of Naval, Electric, Electronic and Telecommunications Engineering (DITEN), University of Genoa, Genoa, Italy
| | - Fabio Bandini
- Department of Neurology, San Paolo Hospital, Savona, Italy
| |
Collapse
|
13
|
Sanches C, Stengel C, Godard J, Mertz J, Teichmann M, Migliaccio R, Valero-Cabré A. Past, Present, and Future of Non-invasive Brain Stimulation Approaches to Treat Cognitive Impairment in Neurodegenerative Diseases: Time for a Comprehensive Critical Review. Front Aging Neurosci 2021; 12:578339. [PMID: 33551785 PMCID: PMC7854576 DOI: 10.3389/fnagi.2020.578339] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Low birth rates and increasing life expectancy experienced by developed societies have placed an unprecedented pressure on governments and the health system to deal effectively with the human, social and financial burden associated to aging-related diseases. At present, ∼24 million people worldwide suffer from cognitive neurodegenerative diseases, a prevalence that doubles every five years. Pharmacological therapies and cognitive training/rehabilitation have generated temporary hope and, occasionally, proof of mild relief. Nonetheless, these approaches are yet to demonstrate a meaningful therapeutic impact and changes in prognosis. We here review evidence gathered for nearly a decade on non-invasive brain stimulation (NIBS), a less known therapeutic strategy aiming to limit cognitive decline associated with neurodegenerative conditions. Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation, two of the most popular NIBS technologies, use electrical fields generated non-invasively in the brain to long-lastingly enhance the excitability/activity of key brain regions contributing to relevant cognitive processes. The current comprehensive critical review presents proof-of-concept evidence and meaningful cognitive outcomes of NIBS in eight of the most prevalent neurodegenerative pathologies affecting cognition: Alzheimer's Disease, Parkinson's Disease, Dementia with Lewy Bodies, Primary Progressive Aphasias (PPA), behavioral variant of Frontotemporal Dementia, Corticobasal Syndrome, Progressive Supranuclear Palsy, and Posterior Cortical Atrophy. We analyzed a total of 70 internationally published studies: 33 focusing on Alzheimer's disease, 19 on PPA and 18 on the remaining neurodegenerative pathologies. The therapeutic benefit and clinical significance of NIBS remains inconclusive, in particular given the lack of a sufficient number of double-blind placebo-controlled randomized clinical trials using multiday stimulation regimes, the heterogeneity of the protocols, and adequate behavioral and neuroimaging response biomarkers, able to show lasting effects and an impact on prognosis. The field remains promising but, to make further progress, research efforts need to take in account the latest evidence of the anatomical and neurophysiological features underlying cognitive deficits in these patient populations. Moreover, as the development of in vivo biomarkers are ongoing, allowing for an early diagnosis of these neuro-cognitive conditions, one could consider a scenario in which NIBS treatment will be personalized and made part of a cognitive rehabilitation program, or useful as a potential adjunct to drug therapies since the earliest stages of suh diseases. Research should also integrate novel knowledge on the mechanisms and constraints guiding the impact of electrical and magnetic fields on cerebral tissues and brain activity, and incorporate the principles of information-based neurostimulation.
Collapse
Affiliation(s)
- Clara Sanches
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Chloé Stengel
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Juliette Godard
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Justine Mertz
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Marc Teichmann
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- National Reference Center for Rare or Early Onset Dementias, Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Raffaella Migliaccio
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- National Reference Center for Rare or Early Onset Dementias, Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- Laboratory for Cerebral Dynamics Plasticity & Rehabilitation, Boston University School of Medicine, Boston, MA, United States
- Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia, Barcelona, Spain
| |
Collapse
|
14
|
Effects of Combined Transcranial Direct Current Stimulation with Cognitive Training in Girls with Rett Syndrome. Brain Sci 2020; 10:brainsci10050276. [PMID: 32370253 PMCID: PMC7287589 DOI: 10.3390/brainsci10050276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 01/04/2023] Open
Abstract
Background: Transcranial Direct Current Stimulation (tDCS) combined with traditional rehabilitative techniques has not been widely applied to Rett Syndrome (RTT). The aim of this study was to examine the effects of combined cognitive traditional training with tDCS applied to attention and language measures in subjects with RTT. Methods: 31 subjects with RTT were randomly allocated into two groups: non-sham tDCS (n = 18) and sham tDCS (n = 13). The former received the integrated intervention non-sham tDCS plus cognitive empowerment during the treatment phase. The latter received sham stimulation plus cognitive empowerment. All participants underwent neurological and cognitive assessment to evaluate attention and language measures: before integrated treatment (pre-test phase), at the conclusion of the treatment (post-test phase), and at 1 month after the conclusion of the treatment (follow-up phase). Results: the results indicated longer attention time in the non-sham tDCS group compared to the sham tDCS group with a stable trend also in the follow-up phase; an increase of the number of vowel/phoneme sounds in the non-sham tDCS group; and an improvement in the neurophysiological parameters in the non-sham tDCS group. Conclusions: This study supports the use of tDCS as a promising and alternative approach in the RTT rehabilitation field.
Collapse
|