1
|
Acharya P, Thapa G, Liao X, Matoo S, Graves MJ, Atallah SY, Tipirneni AK, Nguyen T, Chhabra NM, Maschack J, Herod MR, Ohaezu FA, Robison A, Mudaliyar A, Bharaj J, Roeser N, Holmes K, Nayak V, Alsayed R, Perrin BJ, Crawley SW. Select autosomal dominant DFNA11 deafness variants activate Myo7A targeting in epithelial cells. J Cell Sci 2025; 138:jcs263982. [PMID: 40110717 DOI: 10.1242/jcs.263982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Myosin-7A (Myo7A) is a motor protein crucial for the organization and function of stereocilia, specialized actin-rich protrusions on the surface of inner ear hair cells that mediate hearing. Variants in Myo7A cause several forms of genetic hearing loss, including autosomal dominant DFNA11 deafness. Despite its importance, the structural elements that control Myo7A within cells are not well understood. In this study, we used cultured kidney epithelial cells to screen for mutations that activate the motor-dependent targeting of Myo7A to the tips of apical microvilli on these cells. Our findings reveal that the targeting of Myo7A is regulated by specific IQ motifs within its lever arm and that this regulation can function at least partially independent of its tail sequence. Importantly, we demonstrate that many of the DFNA11 deafness variants reported in patients activate Myo7A targeting, providing a potential explanation for the autosomal dominant genetics of this form of deafness.
Collapse
Affiliation(s)
- Prashun Acharya
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Garima Thapa
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Xiayi Liao
- Department of Biology, Indiana University, Indianapolis, IN 46202, USA
| | - Samaneh Matoo
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Maura J Graves
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Sarah Y Atallah
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Ashna K Tipirneni
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Tram Nguyen
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Niki M Chhabra
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Jaden Maschack
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Mackenzie R Herod
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Favour A Ohaezu
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Alder Robison
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Ashwini Mudaliyar
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Jasvinder Bharaj
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Nicole Roeser
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Katherine Holmes
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Vishwaas Nayak
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Rayah Alsayed
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Benjamin J Perrin
- Department of Biology, Indiana University, Indianapolis, IN 46202, USA
| | - Scott W Crawley
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
2
|
Nonarath HJT, Simpson SL, Slobodianuk TL, Tran H, Collery RF, Dinculescu A, Link BA. The USH3A causative gene clarin1 functions in Müller glia to maintain retinal photoreceptors. PLoS Genet 2025; 21:e1011205. [PMID: 40067805 PMCID: PMC11925288 DOI: 10.1371/journal.pgen.1011205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/20/2025] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Mutations in CLRN1 cause Usher syndrome type IIIA (USH3A), an autosomal recessive disorder characterized by hearing and vision loss, and often accompanied by vestibular dysfunction. The identity of the cell types responsible for the pathology and mechanisms leading to vision loss in USH3A remains elusive. To address this, we employed CRISPR/Cas9 technology to delete a large region in the coding and untranslated (UTR) region of zebrafish clrn1. The retinas of clrn1 mutant larvae exhibited sensitivity to cell stress, along with age-dependent loss of function and degeneration in the photoreceptor layer. Investigation revealed disorganization in the outer retina in clrn1 mutants, including actin-based structures of the Müller glia and photoreceptor cells. To assess cell-specific contributions to USH3A pathology, we specifically re-expressed clrn1 in either Müller glia or photoreceptor cells. Müller glia re-expression of clrn1 prevented the elevated cell death observed in larval clrn1 mutant zebrafish exposed to high-intensity light. Notably, the degree of phenotypic rescue correlated with the level of Clrn1 re-expression. Surprisingly, high levels of Clrn1 expression enhanced cell death in both wild-type and clrn1 mutant animals. However, rod- or cone-specific Clrn1 re-expression did not reduce the extent of cell death. Taken together, our findings underscore three crucial insights. First, clrn1 mutant zebrafish exhibit key pathological features of USH3A; second, Clrn1 within Müller glia plays a pivotal role in photoreceptor maintenance, with its expression requiring controlled regulation; third, the reliance of photoreceptors on Müller glia suggests a structural support mechanism, possibly through direct interactions between Müller glia and photoreceptors mediated in part by Clrn1 protein.
Collapse
Affiliation(s)
- Hannah J T Nonarath
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Samantha L Simpson
- Department of Ophthalmology and Vision Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Tricia L Slobodianuk
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Hai Tran
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ross F Collery
- Department of Ophthalmology and Vision Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Astra Dinculescu
- Department of Ophthalmology, University of Florida, Gainesville, Florida, United States of America
| | - Brian A Link
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
3
|
Bhat R, Nallamothu B, Shethia F, Chhaya V, Khambholja K. Key challenges in developing a gene therapy for Usher syndrome: machine-assisted scoping review. J Community Genet 2024; 15:735-747. [PMID: 39549230 PMCID: PMC11645336 DOI: 10.1007/s12687-024-00749-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024] Open
Abstract
Despite compelling empirical evidence demonstrating its efficacy, gene therapies for usher syndrome (USH) are not yet available for the patient's usage. This scoping review assessed the current scenario and analysed the challenges in implementing gene therapies for USH. A literature search was conducted using PubMed and Google Scholar through an artificial intelligence (AI) tool, MaiA, focusing on relevant publications from the last 10 years. We followed the methodological guidance of the Joanna Briggs Institute (JBI) and adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Reviews (PRISMA-ScR) checklist. Of 517 records, 51 reports were considered for final analysis. It identified and categorized challenges across four key areas: preclinical, clinical, economic, and regulatory. Of all, many reports (30) highlighted the preclinical challenges where the USH gene development process encountered roadblocks. Specifically, preclinical challenges included the lack of suitable in-vivo models and effective delivery methods. Clinical challenges focused on establishing clear endpoints and long-term safety and efficacy. Economic challenges addressed diagnostic issues and manufacturing hurdles, while regulatory challenges focused on expedited evaluation processes and guidance for clinical development. Our analysis uncovered key barriers to clinical translation of USH gene therapy and strategies to address them. Researchers are employing innovative approaches, including novel delivery methods such as minigenes and nanoparticles, inventive clinical trial designs, cohesive regulatory frameworks, strategic market assessments, and collaborative research initiatives. These efforts hold promise for impactful disease-cure and modifying interventions ultimately enhancing the quality of life for USH patients.
Collapse
Affiliation(s)
| | | | - Foram Shethia
- Catalyst Clinical Research, Vadodara, Gujarat, India
| | - Vatsal Chhaya
- Catalyst Clinical Research, Vadodara, Gujarat, India
| | | |
Collapse
|
4
|
Acharya P, Thapa G, Liao X, Matoo S, Graves MJ, Atallah SY, Tipirneni AK, Nguyen T, Chhabra NM, Maschack J, Herod MR, Ohaezu FA, Robison A, Mudaliyar A, Bharaj J, Roeser N, Holmes K, Nayak V, Alsayed R, Perrin BJ, Crawley SW. Select autosomal dominant DFNA11 deafness mutations activate Myo7A in epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613491. [PMID: 39345484 PMCID: PMC11429914 DOI: 10.1101/2024.09.17.613491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Myosin-7A (Myo7A) is a motor protein crucial for the organization and function of stereocilia, specialized actin-rich protrusions on the surface of inner ear hair cells that mediate hearing. Mutations in Myo7A cause several forms of genetic hearing loss, including autosomal dominant DFNA11 deafness. Despite its importance, the structural elements of Myo7A that control its motor activity within cells are not well understood. In this study, we used cultured kidney epithelial cells to screen for mutations that activate the motor-dependent targeting of Myo7A to the tips of apical microvilli on these cells. Our findings reveal that Myo7A is regulated by specific IQ motifs within its lever arm, and that this regulation can function at least partially independent of its tail sequence. Importantly, we demonstrate that many of the DFNA11 deafness mutations reported in patients activate Myo7A targeting, providing a potential explanation for the autosomal dominant genetics of this form of deafness.
Collapse
|
5
|
Sanzhaeva U, Boyd-Pratt H, Bender PTR, Saravanan T, Rhodes SB, Guan T, Billington N, Boye SE, Cunningham CL, Anderson CT, Ramamurthy V. TUBB4B is essential for the cytoskeletal architecture of cochlear supporting cells and motile cilia development. Commun Biol 2024; 7:1146. [PMID: 39277687 PMCID: PMC11401917 DOI: 10.1038/s42003-024-06867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
Microtubules are essential for various cellular processes. The functional diversity of microtubules is attributed to the incorporation of various α- and β-tubulin isotypes encoded by different genes. In this work, we investigated the functional role of β4B-tubulin isotype (TUBB4B) in hearing and vision as mutations in TUBB4B are associated with sensorineural disease. Using a Tubb4b knockout mouse model, our findings demonstrate that TUBB4B is essential for hearing. Mice lacking TUBB4B are profoundly deaf due to defects in the inner and middle ear. Specifically, in the inner ear, the absence of TUBB4B lead to disorganized and reduced densities of microtubules in pillar cells, suggesting a critical role for TUBB4B in providing mechanical support for auditory transmission. In the middle ear, Tubb4b-/- mice exhibit motile cilia defects in epithelial cells, leading to the development of otitis media. However, Tubb4b deletion does not affect photoreceptor function or cause retinal degeneration. Intriguingly, β6-tubulin levels increase in retinas lacking β4B-tubulin isotype, suggesting a functional compensation mechanism. Our findings illustrate the essential roles of TUBB4B in hearing but not in vision in mice, highlighting the distinct functions of tubulin isotypes in different sensory systems.
Collapse
Affiliation(s)
- Urikhan Sanzhaeva
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Helen Boyd-Pratt
- Clinical Translational Sciences Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Philip T R Bender
- Rockefeller Neuroscience Institute and Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Thamaraiselvi Saravanan
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Scott B Rhodes
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Tongju Guan
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Neil Billington
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Christopher L Cunningham
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles T Anderson
- Rockefeller Neuroscience Institute and Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Visvanathan Ramamurthy
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, WV, USA.
- Department of Ophthalmology and Visual Sciences, West Virginia University School of Medicine, Morgantown, WV, USA.
| |
Collapse
|
6
|
Nonarath HJT, Simpson SL, Slobodianuk TL, Collery RF, Dinculescu A, Link BA. The USH3A causative gene clarin1 functions in Müller glia to maintain retinal photoreceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582878. [PMID: 38464015 PMCID: PMC10925332 DOI: 10.1101/2024.02.29.582878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Mutations in CLRN1 cause Usher syndrome type IIIA (USH3A), an autosomal recessive disorder characterized by hearing and vision loss, and often accompanied by vestibular balance issues. The identity of the cell types responsible for the pathology and mechanisms leading to vision loss in USH3A remains elusive. To address this, we employed CRISPR/Cas9 technology to delete a large region in the coding and untranslated (UTR) region of zebrafish clrn1. Retina of clrn1 mutant larvae exhibited sensitivity to cell stress, along with age-dependent loss of function and degeneration in the photoreceptor layer. Investigation revealed disorganization in the outer retina in clrn1 mutants, including actin-based structures of the Müller glia and photoreceptor cells. To assess cell-specific contributions to USH3A pathology, we specifically re-expressed clrn1 in either Müller glia or photoreceptor cells. Müller glia re-expression of clrn1 prevented the elevated cell death observed in larval clrn1 mutant zebrafish exposed to high-intensity light. Notably, the degree of phenotypic rescue correlated with the level of Clrn1 re-expression. Surprisingly, high levels of Clrn1 expression enhanced cell death in both wild-type and clrn1 mutant animals. However, rod- or cone-specific Clrn1 re-expression did not rescue the extent of cell death. Taken together, our findings underscore three crucial insights. First, clrn1 mutant zebrafish exhibit key pathological features of USH3A; second, Clrn1 within Müller glia plays a pivotal role in photoreceptor maintenance, with its expression requiring controlled regulation; third, the reliance of photoreceptors on Müller glia suggests a structural support mechanism, possibly through direct interactions between Müller glia and photoreceptors mediated in part by Clrn1 protein.
Collapse
Affiliation(s)
- Hannah J. T. Nonarath
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Samantha L. Simpson
- Department of Ophthalmology and Vision Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Tricia L. Slobodianuk
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Ross F. Collery
- Department of Ophthalmology and Vision Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Astra Dinculescu
- Department of Ophthalmology, University of Florida, Gainesville, Florida 32611
| | - Brian A. Link
- Department Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
7
|
Khowal S, Zhang D, Yong WH, Heaney AP. Whole-exome sequencing reveals genetic variants that may play a role in neurocytomas. J Neurooncol 2024; 166:471-483. [PMID: 38319496 DOI: 10.1007/s11060-024-04567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
OBJECTIVES Neurocytomas (NCs) are rare intracranial tumors that can often be surgically resected. However, disease course is unpredictable in many patients and medical therapies are lacking. We have used whole exome sequencing to explore the molecular etiology for neurocytoma and assist in target identification to develop novel therapeutic interventions. METHODS We used whole exome sequencing (WES) to compare the molecular landscape of 21 primary & recurrent NCs to five normal cerebellar control samples. WES data was analyzed using the Qiagen Clinical Insight program, variants of interest (VOI) were interrogated using ConSurf, ScoreCons, & Ingenuity Pathway Analysis Software to predict their potential functional effects, and Copy number variations (CNVs) in the genes of interest were analyzed by Genewiz (Azenta Life Sciences). RESULTS Of 40 VOI involving thirty-six genes, 7 were pathogenic, 17 likely-pathogenic, and 16 of uncertain-significance. Of seven pathogenic NC associated variants, Glucosylceramidase beta 1 [GBA1 c.703T > C (p.S235P)] was mutated in 5/21 (24%), Coagulation factor VIII [F8 c.3637dupA (p.I1213fs*28)] in 4/21 (19%), Phenylalanine hydroxylase [PAH c.975C > A (p.Y325*)] in 3/21 (14%), and Fanconi anemia complementation group C [FANCC c.1162G > T (p.G388*)], Chromodomain helicase DNA binding protein 7 [CHD7 c.2839C > T (p.R947*)], Myosin VIIA [MYO7A c.940G > T (p.E314*)] and Dynein axonemal heavy chain 11 [DNAH11 c.3544C > T (p.R1182*)] in 2/21 (9.5%) NCs respectively. CNVs were noted in 85% of these latter 7 genes. Interestingly, a Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 2 [CTDSP2 c.472G > A (p.E158K)] of uncertain significance was also found in > 70% of NC cases. INTERPRETATION The variants of interest we identified in the NCs regulate a variety of neurological processes including cilia motility, cell metabolism, immune responses, and DNA damage repair and provide novel insights into the molecular pathogenesis of these extremely rare tumors.
Collapse
Affiliation(s)
- Sapna Khowal
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Dongyun Zhang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - William H Yong
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, 92868, USA
| | - Anthony P Heaney
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
Gilmore WB, Hultgren NW, Chadha A, Barocio SB, Zhang J, Kutsyr O, Flores-Bellver M, Canto-Soler MV, Williams DS. Expression of two major isoforms of MYO7A in the retina: Considerations for gene therapy of Usher syndrome type 1B. Vision Res 2023; 212:108311. [PMID: 37586294 PMCID: PMC10984346 DOI: 10.1016/j.visres.2023.108311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Usher syndrome type 1B (USH1B) is a deaf-blindness disorder, caused by mutations in the MYO7A gene, which encodes the heavy chain of an unconventional actin-based motor protein. Here, we examined the two retinal isoforms of MYO7A, IF1 and IF2. We compared 3D models of the two isoforms and noted that the 38-amino acid region that is present in IF1 but absent from IF2 affects the C lobe of the FERM1 domain and the opening of a cleft in this potentially important protein binding domain. Expression of each of the two isoforms of human MYO7A and pig and mouse Myo7a was detected in the RPE and neural retina. Quantification by qPCR showed that the expression of IF2 was typically ∼ 7-fold greater than that of IF1. We discuss the implications of these findings for any USH1B gene therapy strategy. Given the current incomplete knowledge of the functions of each isoform, both isoforms should be considered for targeting both the RPE and the neural retina in gene augmentation therapies.
Collapse
Affiliation(s)
- W Blake Gilmore
- Department of Ophthalmology and Stein Eye Institute, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nan W Hultgren
- Department of Ophthalmology and Stein Eye Institute, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Abhishek Chadha
- Department of Ophthalmology and Stein Eye Institute, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sonia B Barocio
- Department of Ophthalmology and Stein Eye Institute, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Joyce Zhang
- Department of Ophthalmology and Stein Eye Institute, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Oksana Kutsyr
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Miguel Flores-Bellver
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, School of Medicine, Aurora, CO, USA
| | - M Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, School of Medicine, Aurora, CO, USA
| | - David S Williams
- Department of Ophthalmology and Stein Eye Institute, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Boye SE, Durham T, Laster A, Gelfman CM, Sahel JA. Identifying and Overcoming Challenges in Developing Effective Treatments for Usher 1B: A Workshop Report. Transl Vis Sci Technol 2023; 12:2. [PMID: 36723965 PMCID: PMC9904327 DOI: 10.1167/tvst.12.2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Purpose To identify challenges and opportunities for the development of treatments for Usher syndrome (USH) type 1B. Methods In September 2021, the Foundation Fighting Blindness hosted a virtual workshop of clinicians, academic and industry researchers, advocates, and affected individuals and their families to discuss the challenges and opportunities for USH1B treatment development. Results The workshop began with insights from individuals affected by USH1B. Presentation topics included myosin VIIA protein function in the ear and eye and its role in disease pathology; challenges with the USH1B mouse model most used in disease research to date; new investigations into alternative disease models that may provide closer analogues to USH1B in the human retina, including retinal organoids and large animal models; and learnings from and limitations of available disease natural history data. Participants discussed the need for an open dialogue between researchers and regulators to design USH1B clinical trials with appropriate outcome measures of vision improvement, along with multimodal imaging of the retina and other testing approaches that can help inform trial designs. The workshop concluded with presentations and a roundtable reviewing emerging treatments, including USH1B-targeted genetic augmentation therapy and gene-agnostic approaches. Conclusions Initiatives like this workshop are important to foster all stakeholders in support of achieving the shared goal of treating and curing USH1B. Translational Relevance Presentations and discussions focused on overcoming disease modeling and clinical trial design challenges to facilitate development, testing, and implementation of effective USH1B treatments.
Collapse
Affiliation(s)
- Shannon E. Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA,Atsena Therapeutics, Inc., Durham, NC, USA
| | - Todd Durham
- Foundation Fighting Blindness, Columbia, MD, USA
| | - Amy Laster
- Foundation Fighting Blindness, Columbia, MD, USA
| | | | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Sharma RK, Drusin M, Hostyk J, Baugh EH, Aggarwal VS, Goldstein D, Kim AH. Myosin Mutations and Sudden Sensorineural Hearing Loss: Results of Whole Exome Sequencing. Otol Neurotol 2023; 44:16-20. [PMID: 36509433 DOI: 10.1097/mao.0000000000003756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Idiopathic sudden sensorineural hearing loss (ISSNHL) affects 66,000 patients per year in the United States. Genetic mutations have been associated with progressive hearing loss; however, genetic mutations associated with ISSNHL have not been identified. METHODS A prospective cohort study of adults older than 18 years presenting with ISSNHL at a tertiary academic medical center. Whole exome sequencing (WES) was conducted using Genome Analysis Toolkit best practices. An automated diagnostic screen employing a variety of models for pathogenicity was conducted across all genes with no specific targets. Candidate pathogenic variants were reviewed by a team of geneticists and clinicians. Variants were crossed-referenced with 92 known hearing loss associated genes. RESULTS Twenty-nine patients with SSNHL were screened using WES. The average age of patients was 53 ± 17.1 years, and most patients were White (62%) and men (55%). The mean pure tone average was 64.8 ± 31.3 dB for the affected ear. Using a 0.1% allele frequency screen, 12 (41%) cases had a mutation in any of the nine selected myosin genes. When we restrict to singletons (allele frequency = 0%), 21% (n = 6) of cases have qualifying variants, whereas only 3.8% (n = 481) of 12,577 healthy controls carry qualifying variants (p < 0.01). Most mutations (80%) were missense mutations. Of the novel mutations, one was a frameshift mutation, and two were a stop-gained function. Three were missense mutations. CONCLUSION Myosin mutations may be associated with ISSNHL. However, larger population screening is needed to confirm the association of myosin mutation with ISSNHL and steroid responsiveness.
Collapse
Affiliation(s)
| | - Madeleine Drusin
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center
| | - Joseph Hostyk
- Columba University Irving Medical Center, Institute of Genomic Medicine, New York, New York
| | - Evan H Baugh
- Columba University Irving Medical Center, Institute of Genomic Medicine, New York, New York
| | - Vimla S Aggarwal
- Columba University Irving Medical Center, Institute of Genomic Medicine, New York, New York
| | - David Goldstein
- Columba University Irving Medical Center, Institute of Genomic Medicine, New York, New York
| | - Ana H Kim
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center
| |
Collapse
|
11
|
Lin Q, Yang D, Shen Z, Zhou X. New splice site mutations in MYO7A causing Usher syndrome type 1: a study on a Chinese consanguineous family. Int Ophthalmol 2022; 43:2091-2099. [DOI: 10.1007/s10792-022-02611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
|
12
|
Chen YS, Cabrera E, Tucker BJ, Shin TJ, Moawad JV, Totten DJ, Booth KT, Nelson RF. TMPRSS3 expression is limited in spiral ganglion neurons: implication for successful cochlear implantation. J Med Genet 2022; 59:1219-1226. [PMID: 35961784 DOI: 10.1136/jmg-2022-108654] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/15/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND It is well established that biallelic mutations in transmembrane protease, serine 3 (TMPRSS3) cause hearing loss. Currently, there is controversy regarding the audiological outcomes after cochlear implantation (CI) for TMPRSS3-associated hearing loss. This controversy creates confusion among healthcare providers regarding the best treatment options for individuals with TMPRSS3-related hearing loss. METHODS A literature review was performed to identify all published cases of patients with TMPRSS3-associated hearing loss who received a CI. CI outcomes of this cohort were compared with published adult CI cohorts using postoperative consonant-nucleus-consonant (CNC) word performance. TMPRSS3 expression in mouse cochlea and human auditory nerves (HAN) was determined by using hybridisation chain reaction and single-cell RNA-sequencing analysis. RESULTS In aggregate, 27 patients (30 total CI ears) with TMPRSS3-associated hearing loss treated with CI, and 85% of patients reported favourable outcomes. Postoperative CNC word scores in patients with TMPRSS3-associated hearing loss were not significantly different than those seen in adult CI cohorts (8 studies). Robust Tmprss3 expression occurs throughout the mouse organ of Corti, the spindle and root cells of the lateral wall and faint staining within <5% of the HAN, representing type II spiral ganglion neurons. Adult HAN express negligible levels of TMPRSS3. CONCLUSION The clinical features after CI and physiological expression of TMPRSS3 suggest against a major role of TMPRSS3 in auditory neurons.
Collapse
Affiliation(s)
- Yuan-Siao Chen
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ernesto Cabrera
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brady J Tucker
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Timothy J Shin
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jasmine V Moawad
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Douglas J Totten
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kevin T Booth
- Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rick F Nelson
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
13
|
Radhakrishnan R, Dronamraju VR, Leung M, Gruesen A, Solanki AK, Walterhouse S, Roehrich H, Song G, da Costa Monsanto R, Cureoglu S, Martin R, Kondkar AA, van Kuijk FJ, Montezuma SR, Knöelker HJ, Hufnagel RB, Lobo GP. The role of motor proteins in photoreceptor protein transport and visual function. Ophthalmic Genet 2022; 43:285-300. [PMID: 35470760 DOI: 10.1080/13816810.2022.2062391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Rods and cones are photoreceptor neurons in the retina that are required for visual sensation in vertebrates, wherein the perception of vision is initiated when these neurons respond to photons in the light stimuli. The photoreceptor cell is structurally studied as outer segments (OS) and inner segments (IS) where proper protein sorting, localization, and compartmentalization are critical for phototransduction, visual function, and survival. In human retinal diseases, improper protein transport to the OS or mislocalization of proteins to the IS and other cellular compartments could lead to impaired visual responses and photoreceptor cell degeneration that ultimately cause loss of visual function. RESULTS Therefore, studying and identifying mechanisms involved in facilitating and maintaining proper protein transport in photoreceptor cells would help our understanding of pathologies involving retinal cell degeneration in inherited retinal dystrophies, age-related macular degeneration, and Usher Syndrome. CONCLUSIONS Our mini-review will discuss mechanisms of protein transport within photoreceptors and introduce a novel role for an unconventional motor protein, MYO1C, in actin-based motor transport of the visual chromophore Rhodopsin to the OS, in support of phototransduction and visual function.
Collapse
Affiliation(s)
- Rakesh Radhakrishnan
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Venkateshwara R Dronamraju
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matthias Leung
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew Gruesen
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ashish K Solanki
- Department of Medicine, Drug Discovery Building, Medical University of South Carolina, South Carolina, USA
| | - Stephen Walterhouse
- Department of Medicine, Drug Discovery Building, Medical University of South Carolina, South Carolina, USA
| | - Heidi Roehrich
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Grace Song
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rafael da Costa Monsanto
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sebahattin Cureoglu
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - René Martin
- Faculty of Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Altaf A Kondkar
- Department of Ophthalmology.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Frederik J van Kuijk
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sandra R Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Glenn P Lobo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Medicine, Drug Discovery Building, Medical University of South Carolina, South Carolina, USA.,Department of Ophthalmology, Medical University of South Carolina, South Carolina, USA
| |
Collapse
|
14
|
Joo SY, Na G, Kim JA, Yoo JE, Kim DH, Kim SJ, Jang SH, Yu S, Kim HY, Choi JY, Gee HY, Jung J. Clinical Heterogeneity Associated with MYO7A Variants Relies on Affected Domains. Biomedicines 2022; 10:biomedicines10040798. [PMID: 35453549 PMCID: PMC9028242 DOI: 10.3390/biomedicines10040798] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Autosomal dominant hearing loss (ADHL) manifests as an adult-onset disease or a progressive disease. MYO7A variants are associated with DFNA11, a subtype of ADHL. Here, we examined the role and genotype–phenotype correlation of MYO7A in ADHL. Enrolled families suspected of having post-lingual sensorineural hearing loss were selected for exome sequencing. Mutational alleles in MYO7A were identified according to ACMG guidelines. Segregation analysis was performed to examine whether pathogenic variants segregated with affected status of families. All identified pathogenic variants were evaluated for a phenotype–genotype correlation. MYO7A variants were detected in 4.7% of post-lingual families, and 12 of 14 families were multiplex. Five potentially pathogenic missense variants were identified. Fourteen variants causing autosomal dominant deafness were clustered in motor and MyTH4 domains of MYO7A protein. Missense variants in the motor domain caused late onset of hearing loss with ascending tendency. A severe audiological phenotype was apparent in individuals carrying tail domain variants. We report two new pathogenic variants responsible for DFNA11 in the Korean ADHL population. Dominant pathogenic variants of MYO7A occur frequently in motor and MyTH4 domains. Audiological differences among individuals correspond to specific domains which contain the variants. Therefore, appropriate rehabilitation is needed, particularly for patients with late-onset familial hearing loss.
Collapse
Affiliation(s)
- Sun Young Joo
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea; (S.Y.J.); (J.A.K.); (S.J.K.); (S.H.J.); (S.Y.); (H.-Y.K.)
| | - Gina Na
- Department of Otorhinolaryngology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang 10380, Korea;
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.E.Y.); (D.H.K.); (J.Y.C.)
| | - Jung Ah Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea; (S.Y.J.); (J.A.K.); (S.J.K.); (S.H.J.); (S.Y.); (H.-Y.K.)
| | - Jee Eun Yoo
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.E.Y.); (D.H.K.); (J.Y.C.)
| | - Da Hye Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.E.Y.); (D.H.K.); (J.Y.C.)
| | - Se Jin Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea; (S.Y.J.); (J.A.K.); (S.J.K.); (S.H.J.); (S.Y.); (H.-Y.K.)
| | - Seung Hyun Jang
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea; (S.Y.J.); (J.A.K.); (S.J.K.); (S.H.J.); (S.Y.); (H.-Y.K.)
| | - Seyoung Yu
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea; (S.Y.J.); (J.A.K.); (S.J.K.); (S.H.J.); (S.Y.); (H.-Y.K.)
| | - Hye-Youn Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea; (S.Y.J.); (J.A.K.); (S.J.K.); (S.H.J.); (S.Y.); (H.-Y.K.)
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.E.Y.); (D.H.K.); (J.Y.C.)
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea; (S.Y.J.); (J.A.K.); (S.J.K.); (S.H.J.); (S.Y.); (H.-Y.K.)
- Correspondence: (H.Y.G.); (J.J.); Tel.: +82-2-2228-0755 (H.Y.G.); +82-2228-3622 (J.J.)
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.E.Y.); (D.H.K.); (J.Y.C.)
- Correspondence: (H.Y.G.); (J.J.); Tel.: +82-2-2228-0755 (H.Y.G.); +82-2228-3622 (J.J.)
| |
Collapse
|
15
|
Myosin VI Haploinsufficiency Reduced Hearing Ability in Mice. Neuroscience 2021; 478:100-111. [PMID: 34619316 DOI: 10.1016/j.neuroscience.2021.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/10/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022]
Abstract
In human, myosin VI (MYO6) haploinsufficiency causes postlingual progressive hearing loss. Because the usefulness of mouse models remains unclear, we produced novel Myo6 null (-/-) mutant mice and analyzed the hearing phenotypes of Myo6+/- (+/-) heterozygous mutants. We first recorded and compared the auditory brainstem responses and distortion product otoacoustic emissions in control Myo6+/+ (+/+) wild-type and +/- mice. These hearing phenotypes of +/- mice were mild; however, we confirmed that +/- mice developed progressive hearing loss. In particular, the hearing loss of female +/- mice progressed faster than that of male +/- mice. The stereocilia bundles of +/- mice exhibited progressive taper loss in cochlear inner hair cells (IHCs) and outer hair cells (OHCs). The loss of OHCs in +/- heterozygotes occurred at an earlier age than in +/+ mice. In particular, the OHCs at the basal area of the cochlea were decreased in +/- mice. IHC ribbon synapses from the area at the base of the cochlea were significantly reduced in +/- mice. Thus, our study indicated that MYO6 haploinsufficiency affected the detection of sounds in mice, and we suggest that +/- mice with Myo6 null alleles are useful animal models for gene therapy and drug treatment in patients with progressive hearing loss due to MYO6 haploinsufficiency.
Collapse
|
16
|
Miles A, Blair C, Emili A, Tropepe V. Usher syndrome type 1-associated gene, pcdh15b, is required for photoreceptor structural integrity in zebrafish. Dis Model Mech 2021; 14:272551. [PMID: 34668518 PMCID: PMC8669488 DOI: 10.1242/dmm.048965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022] Open
Abstract
Blindness associated with Usher syndrome type 1 (USH1) is typically characterized as rod photoreceptor degeneration, followed by secondary loss of cones. The mechanisms leading to blindness are unknown because most genetic mouse models only recapitulate auditory defects. We generated zebrafish mutants for one of the USH1 genes, protocadherin-15b (pcdh15b), a putative cell adhesion molecule. Zebrafish Pcdh15 is expressed exclusively in photoreceptors within calyceal processes (CPs), at the base of the outer segment (OS) and within the synapse. In our mutants, rod and cone photoreceptor integrity is compromised, with early and progressively worsening abnormal OS disc growth and detachment, in part due to weakening CP contacts. These effects were attenuated or exacerbated by growth in dark and bright-light conditions, respectively. We also describe novel evidence for structural defects in synapses of pcdh15b mutant photoreceptors. Cell death does not accompany these defects at early stages, suggesting that photoreceptor structural defects, rather than overt cell loss, may underlie vision deficits. Thus, we present the first genetic animal model of a PCDH15-associated retinopathy that can be used to understand the aetiology of blindness in USH1. This article has an associated First Person interview with the first author of the paper. Summary: We present one of the first genetic animal mutants for PCDH15 that displays a severe, early retinopathy and suggests that zebrafish could be a useful model for PCDH15-associated retinal phenotypes.
Collapse
Affiliation(s)
- Amanda Miles
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Clarke Blair
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA
| | - Vincent Tropepe
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
17
|
Fuster-García C, García-Bohórquez B, Rodríguez-Muñoz A, Aller E, Jaijo T, Millán JM, García-García G. Usher Syndrome: Genetics of a Human Ciliopathy. Int J Mol Sci 2021; 22:6723. [PMID: 34201633 PMCID: PMC8268283 DOI: 10.3390/ijms22136723] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive syndromic ciliopathy characterized by sensorineural hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. There are three clinical types depending on the severity and age of onset of the symptoms; in addition, ten genes are reported to be causative of USH, and six more related to the disease. These genes encode proteins of a diverse nature, which interact and form a dynamic protein network called the "Usher interactome". In the organ of Corti, the USH proteins are essential for the correct development and maintenance of the structure and cohesion of the stereocilia. In the retina, the USH protein network is principally located in the periciliary region of the photoreceptors, and plays an important role in the maintenance of the periciliary structure and the trafficking of molecules between the inner and the outer segments of photoreceptors. Even though some genes are clearly involved in the syndrome, others are controversial. Moreover, expression of some USH genes has been detected in other tissues, which could explain their involvement in additional mild comorbidities. In this paper, we review the genetics of Usher syndrome and the spectrum of mutations in USH genes. The aim is to identify possible mutation associations with the disease and provide an updated genotype-phenotype correlation.
Collapse
Affiliation(s)
- Carla Fuster-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Belén García-Bohórquez
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
| | - Ana Rodríguez-Muñoz
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - José M. Millán
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Gema García-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
18
|
Cirilo JA, Gunther LK, Yengo CM. Functional Role of Class III Myosins in Hair Cells. Front Cell Dev Biol 2021; 9:643856. [PMID: 33718386 PMCID: PMC7947357 DOI: 10.3389/fcell.2021.643856] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 11/14/2022] Open
Abstract
Cytoskeletal motors produce force and motion using the energy from ATP hydrolysis and function in a variety of mechanical roles in cells including muscle contraction, cargo transport, and cell division. Actin-based myosin motors have been shown to play crucial roles in the development and function of the stereocilia of auditory and vestibular inner ear hair cells. Hair cells can contain hundreds of stereocilia, which rely on myosin motors to elongate, organize, and stabilize their structure. Mutations in many stereocilia-associated myosins have been shown to cause hearing loss in both humans and animal models suggesting that each myosin isoform has a specific function in these unique parallel actin bundle-based protrusions. Here we review what is known about the classes of myosins that function in the stereocilia, with a special focus on class III myosins that harbor point mutations associated with delayed onset hearing loss. Much has been learned about the role of the two class III myosin isoforms, MYO3A and MYO3B, in maintaining the precise stereocilia lengths required for normal hearing. We propose a model for how class III myosins play a key role in regulating stereocilia lengths and demonstrate how their motor and regulatory properties are particularly well suited for this function. We conclude that ongoing studies on class III myosins and other stereocilia-associated myosins are extremely important and may lead to novel therapeutic strategies for the treatment of hearing loss due to stereocilia degeneration.
Collapse
Affiliation(s)
- Joseph A Cirilo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Laura K Gunther
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
19
|
Whatley M, Francis A, Ng ZY, Khoh XE, Atlas MD, Dilley RJ, Wong EYM. Usher Syndrome: Genetics and Molecular Links of Hearing Loss and Directions for Therapy. Front Genet 2020; 11:565216. [PMID: 33193648 PMCID: PMC7642844 DOI: 10.3389/fgene.2020.565216] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive (AR) disorder that permanently and severely affects the senses of hearing, vision, and balance. Three clinically distinct types of USH have been identified, decreasing in severity from Type 1 to 3, with symptoms of sensorineural hearing loss (SNHL), retinitis pigmentosa (RP), and vestibular dysfunction. There are currently nine confirmed and two suspected USH-causative genes, and a further three candidate loci have been mapped. The proteins encoded by these genes form complexes that play critical roles in the development and maintenance of cellular structures within the inner ear and retina, which have minimal capacity for repair or regeneration. In the cochlea, stereocilia are located on the apical surface of inner ear hair cells (HC) and are responsible for transducing mechanical stimuli from sound pressure waves into chemical signals. These signals are then detected by the auditory nerve fibers, transmitted to the brain and interpreted as sound. Disease-causing mutations in USH genes can destabilize the tip links that bind the stereocilia to each other, and cause defects in protein trafficking and stereocilia bundle morphology, thereby inhibiting mechanosensory transduction. This review summarizes the current knowledge on Usher syndrome with a particular emphasis on mutations in USH genes, USH protein structures, and functional analyses in animal models. Currently, there is no cure for USH. However, the genetic therapies that are rapidly developing will benefit from this compilation of detailed genetic information to identify the most effective strategies for restoring functional USH proteins.
Collapse
Affiliation(s)
- Meg Whatley
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Abbie Francis
- Ear Science Institute Australia, Nedlands, WA, Australia
- Emergency Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Zi Ying Ng
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Xin Ee Khoh
- Ear Science Institute Australia, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Marcus D. Atlas
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
| | - Rodney J. Dilley
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA, Australia
| | - Elaine Y. M. Wong
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|