1
|
Li FF, Zheng YP, Li G, Yang Y, Ma JW, Zang CX, Tao D, Li L, Bao XQ, Zhang D. Compound FLZ attenuates neuroinflammation through inhibiting Src/PTEN/Akt signaling pathway. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-17. [PMID: 39742451 DOI: 10.1080/10286020.2024.2435981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
Compound FLZ has neuroprotective effects on Parkinson's disease (PD), while the precise mechanism remains unclear. In this study, we found that FLZ decreased PTEN/Akt activity in LPS-challenged BV2 cells. Neuroinflammatory responses suppressed by FLZ were abolished when PTEN or Src was inhibited. Additionally, FLZ weakened the interactions of Src and PTEN, and attenuated Src phosphorylation once PETN was inhibited, but failed to decrease PTEN phosphorylation when Src was silenced. Eventually, we elaborated that FLZ bound to Src directly and inhibited its activity. Collectively, FLZ attenuated neuroinflammation through inhibiting Src/PTEN/Akt pathway, paving the way for clinical use of FLZ to treat PD.
Collapse
Affiliation(s)
- Fang-Fang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuan-Peng Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Gen Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing-Wei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cai-Xia Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Deng Tao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiu-Qi Bao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
2
|
Zhang X, Guo J, Liu J, Liu J, Li Z, Chen J, Jiang J, Zhang K, Zhou B. Exosomal Src from hypoxic vascular smooth muscle cells exacerbates ischemic brain injury by promoting M1 microglial polarization. Neurochem Int 2024; 179:105819. [PMID: 39084350 DOI: 10.1016/j.neuint.2024.105819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Inflammatory response mediated by M1 microglia is a crucial factor leading to the exacerbation of brain injury after ischemic stroke (IS). Under the stimulation of IS, vascular smooth muscle cells (VSMCs) switch to the synthetic phenotype characterized by exosome secretion. Previous studies have shown that exosomes play an important role in the regulation of microglial polarization. We reported that exosomes derived from primary human brain VSMCs under hypoxia (HExos), but not those under normoxia (Exos), significantly promoted primary human microglia (HM1900) shift to M1 phenotype. Proteomic analysis showed that the Src protein enriched in HExos was a potential pro-inflammatory mediator. In vitro experiments showed that the expression of Src and M1 markers were upregulated in HM1900 co-incubated with HExos. However, the Src inhibitor dasatinib (DAS) significantly promoted the transformation of HM1900 phenotype from M1 to M2. In vivo experiments of pMCAO mice also revealed that DAS could effectively inhibit the activation of M1 microglia/macrophages, protect neurons from apoptosis, and improve neuronal function. These data suggested that hypoxic-VSMCs-derived exosomes were involved in post-IS inflammation by promoting M1 microglial polarization through Src transmission. Targeting inhibition of Src potentially acts as an effective strategy for treating brain injury after IS.
Collapse
MESH Headings
- Animals
- Exosomes/metabolism
- Microglia/metabolism
- Microglia/drug effects
- Humans
- Mice
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Male
- src-Family Kinases/metabolism
- src-Family Kinases/antagonists & inhibitors
- Mice, Inbred C57BL
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Brain Ischemia/metabolism
- Brain Ischemia/pathology
- Cell Hypoxia/physiology
- Cell Hypoxia/drug effects
- Cell Polarity/physiology
- Cell Polarity/drug effects
- Cells, Cultured
Collapse
Affiliation(s)
- Xiaoting Zhang
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Jingpei Guo
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Junbin Liu
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Junfeng Liu
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Zhaozhu Li
- Department of Medical Ultrasonics, The Fourth People's Hospital of Nanhai District of Foshan City, Foshan, Guangdong Province, 528211, China
| | - Jiayao Chen
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Jiawei Jiang
- College of Education, Jinan University, Zhuhai, Guangdong Province, 519000, China
| | - Ke Zhang
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
| | - Bin Zhou
- Center of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Center of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
| |
Collapse
|
3
|
Skv M, Abraham SM, Eshwari O, Golla K, Jhelum P, Maity S, Komal P. Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders. Mol Neurobiol 2024; 61:7211-7238. [PMID: 38372958 DOI: 10.1007/s12035-024-03989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjari Skv
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Omalur Eshwari
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Kishore Golla
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Priya Jhelum
- Centre for Research in Neuroscience and Brain Program, The Research Instituteof the, McGill University Health Centre , Montreal, QC, Canada
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Pandey S, Han W, Li J, Shepard R, Wu K, Castellano D, Tian Q, Dong L, Li Y, Lu W. Reversing anxiety by targeting a stress-responsive signaling pathway. Proc Natl Acad Sci U S A 2024; 121:e2400078121. [PMID: 39058580 PMCID: PMC11295078 DOI: 10.1073/pnas.2400078121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/24/2024] [Indexed: 07/28/2024] Open
Abstract
Current treatments of anxiety and depressive disorders are plagued by considerable side effects and limited efficacies, underscoring the need for additional molecular targets that can be leveraged to improve medications. Here, we have identified a molecular cascade triggered by chronic stress that exacerbates anxiety- and depressive-like behaviors. Specifically, chronic stress enhances Src kinase activity and tyrosine phosphorylation of calmodulin, which diminishes MyosinVa (MyoVa) interaction with Neuroligin2 (NL2), resulting in decreased inhibitory transmission and heightened anxiety-like behaviors. Importantly, pharmacological inhibition of Src reinstates inhibitory synaptic deficits and effectively reverses heightened anxiety-like behaviors in chronically stressed mice, a process requiring the MyoVa-NL2 interaction. These data demonstrate the reversibility of anxiety- and depressive-like phenotypes at both molecular and behavioral levels and uncover a therapeutic target for anxiety and depressive disorders.
Collapse
Affiliation(s)
- Saurabh Pandey
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | - Jun Li
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | - Ryan Shepard
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | - Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, NIH, Bethesda, MD20892
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| |
Collapse
|
5
|
Bao Y, Wang L, Liu H, Yang J, Yu F, Cui C, Huang D. A Diagnostic Model for Parkinson's Disease Based on Anoikis-Related Genes. Mol Neurobiol 2024; 61:3641-3656. [PMID: 38001358 DOI: 10.1007/s12035-023-03753-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, and its pathological mechanisms are thought to be closely linked to apoptosis. Anoikis, a specific type of apoptosis, has recently been suggested to play a role in the progression of Parkinson's disease; however, the underlying mechanisms are not well understood. To explore the potential mechanisms involved in PD, we selected genes from the GSE28894 dataset and compared their expression in PD patients and healthy controls to identify differentially expressed genes (DEGs), and selected anoikis-related genes (ANRGs) from the DEGs. Furthermore, the least absolute shrinkage and selection operator (LASSO) regression approach and multivariate logistic regression highlighted five key genes-GSK3B, PCNA, CDC42, DAPK2, and SRC-as biomarker candidates. Subsequently, we developed a nomogram model incorporating these 5 genes along with age and sex to predict and diagnose PD. To evaluate the model's coherence, clinical applicability, and distinguishability, we utilized receiver operating characteristic (ROC) curves, the C-index, and calibration curves and validated it in both the GSE20295 dataset and our center's external clinical data. In addition, we confirmed the differential expression of the 5 model genes in human blood samples through qRT-PCR and Western blotting. Our constructed anoikis-related PD diagnostic model exhibits satisfactory predictive accuracy and offers novel insights into both diagnosis and treatment strategies for Parkinson's disease while facilitating its implementation in clinical practice.
Collapse
Affiliation(s)
- Yiwen Bao
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lufeng Wang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hong Liu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jie Yang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Fei Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Can Cui
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
6
|
Ducza L, Gaál B. The Neglected Sibling: NLRP2 Inflammasome in the Nervous System. Aging Dis 2024; 15:1006-1028. [PMID: 38722788 PMCID: PMC11081174 DOI: 10.14336/ad.2023.0926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/26/2023] [Indexed: 05/13/2024] Open
Abstract
While classical NOD-like receptor pyrin domain containing protein 1 (NLRP1) and NLRP3 inflammasomal proteins have been extensively investigated, the contribution of NLRP2 is still ill-defined in the nervous system. Given the putative significance of NLRP2 in orchestrating neuroinflammation, further inquiry is needed to gain a better understanding of its connectome, hence its specific targeting may hold a promising therapeutic implication. Therefore, bioinformatical approach for extracting information, specifically in the context of neuropathologies, is also undoubtedly preferred. To the best of our knowledge, there is no review study selectively targeting only NLRP2. Increasing, but still fragmentary evidence should encourage researchers to thoroughly investigate this inflammasome in various animal- and human models. Taken together, herein we aimed to review the current literature focusing on the role of NLRP2 inflammasome in the nervous system and more importantly, we provide an algorithm-based protein network of human NLRP2 for elucidating potentially valuable molecular partnerships that can be the beginning of a new discourse and future therapeutic considerations.
Collapse
Affiliation(s)
- László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary, Hungary
| | - Botond Gaál
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary, Hungary
| |
Collapse
|
7
|
Ding L, Chen D, Li Y, Xie Y, Sun X, Wang D. Saracatinib prompts hemin-induced K562 erythroid differentiation but suppresses erythropoiesis of hematopoietic stem cells. Hum Cell 2024; 37:648-665. [PMID: 38388899 PMCID: PMC11016514 DOI: 10.1007/s13577-024-01034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Human myeloid leukemia cells (such as K562) could be used for the study of erythropoiesis, and mature erythroid markers and globins could be induced during leukemia cell differentiation; however, the pathways involved are different compared with those of hematopoietic stem cells (HSCs).We identified the differentially expressed genes (DEGs) of K562 cells and HSCs associated with stem cells and erythroid differentiation. Furthermore, we showed that hemin-induced differentiation of K562 cells could be induced by serum starvation or treatment with the tyrosine kinase inhibitor saracatinib. However, erythroid differentiation of HSCs was inhibited by the deprivation of the important serum component erythropoietin (EPO) or treatment with saracatinib. Finally, we found that the mRNA expression of K562 cells and HSCs was different during saracatinib-treated erythroid differentiation, and the DEGs of K562 cells and HSCs associated with tyrosine-protein kinase were identified.These findings elucidated the cellular phenomenon of saracatinib induction during erythroid differentiation of K562 cells and HSCs, and the potential mechanism is the different mRNA expression profile of tyrosine-protein kinase in K562 cells and HSCs.
Collapse
Affiliation(s)
- Lina Ding
- Department of Obstetrics, Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, Dongguan, 523326, Guangdong, China
| | - Diyu Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Guangzhou, 510150, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Guangzhou, 510150, Guangdong, China
| | - Yuanshuai Li
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Guangzhou, 510150, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Guangzhou, 510150, Guangdong, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Guangzhou, 510150, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Guangzhou, 510150, Guangdong, China
| | - Xiaofang Sun
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Guangzhou, 510150, Guangdong, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Guangzhou, 510150, Guangdong, China.
| | - Ding Wang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Guangzhou, 510150, Guangdong, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
8
|
Stamenkovic V, Lautz JD, Harsh FM, Smith SEP. SRC family kinase inhibition rescues molecular and behavioral phenotypes, but not protein interaction network dynamics, in a mouse model of Fragile X syndrome. Mol Psychiatry 2024; 29:1392-1405. [PMID: 38297084 PMCID: PMC11524049 DOI: 10.1038/s41380-024-02418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Glutamatergic synapses encode information from extracellular inputs using dynamic protein interaction networks (PINs) that undergo widespread reorganization following synaptic activity, allowing cells to distinguish between signaling inputs and generate coordinated cellular responses. Here, we investigate how Fragile X Messenger Ribonucleoprotein (FMRP) deficiency disrupts signal transduction through a glutamatergic synapse PIN downstream of NMDA receptor or metabotropic glutamate receptor (mGluR) stimulation. In cultured cortical neurons or acute cortical slices from P7, P17 and P60 FMR1-/y mice, the unstimulated protein interaction network state resembled that of wildtype littermates stimulated with mGluR agonists, demonstrating resting state pre-activation of mGluR signaling networks. In contrast, interactions downstream of NMDAR stimulation were similar to WT. We identified the Src family kinase (SFK) Fyn as a network hub, because many interactions involving Fyn were pre-activated in FMR1-/y animals. We tested whether targeting SFKs in FMR1-/y mice could modify disease phenotypes, and found that Saracatinib (SCB), an SFK inhibitor, normalized elevated basal protein synthesis, novel object recognition memory and social behavior in FMR1-/y mice. However, SCB treatment did not normalize the PIN to a wild-type-like state in vitro or in vivo, but rather induced extensive changes to protein complexes containing Shank3, NMDARs and Fyn. We conclude that targeting abnormal nodes of a PIN can identify potential disease-modifying drugs, but behavioral rescue does not correlate with PIN normalization.
Collapse
Affiliation(s)
- Vera Stamenkovic
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Felicia M Harsh
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Jain NK, Tailang M, Chandrasekaran B, Khazaleh N, Thangavel N, Makeen HA, Albratty M, Najmi A, Alhazmi HA, Zoghebi K, Alagusundaram M, Jain HK. Integrating network pharmacology with molecular docking to rationalize the ethnomedicinal use of Alchornea laxiflora (Benth.) Pax & K. Hoffm. for efficient treatment of depression. Front Pharmacol 2024; 15:1290398. [PMID: 38505421 PMCID: PMC10949534 DOI: 10.3389/fphar.2024.1290398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Background: Alchornea laxiflora (Benth.) Pax & K. Hoffm. (A. laxiflora) has been indicated in traditional medicine to treat depression. However, scientific rationalization is still lacking. Hence, this study aimed to investigate the antidepressant potential of A. laxiflora using network pharmacology and molecular docking analysis. Materials and methods: The active compounds and potential targets of A. laxiflora and depression-related targets were retrieved from public databases, such as PubMed, PubChem, DisGeNET, GeneCards, OMIM, SwissTargetprediction, BindingDB, STRING, and DAVID. Essential bioactive compounds, potential targets, and signaling pathways were predicted using in silico analysis, including BA-TAR, PPI, BA-TAR-PATH network construction, and GO and KEGG pathway enrichment analysis. Later on, with molecular docking analysis, the interaction of essential bioactive compounds of A. laxiflora and predicted core targets of depression were verified. Results: The network pharmacology approach identified 15 active compounds, a total of 219 compound-related targets, and 14,574 depression-related targets with 200 intersecting targets between them. SRC, EGFR, PIK3R1, AKT1, and MAPK1 were the core targets, whereas 3-acetyloleanolic acid and 3-acetylursolic acid were the most active compounds of A. laxiflora with anti-depressant potential. GO functional enrichment analysis revealed 129 GO terms, including 82 biological processes, 14 cellular components, and 34 molecular function terms. KEGG pathway enrichment analysis yielded significantly enriched 108 signaling pathways. Out of them, PI3K-Akt and MAPK signaling pathways might have a key role in treating depression. Molecular docking analysis results exhibited that core targets of depression, such as SRC, EGFR, PIK3R1, AKT1, and MAPK1, bind stably with the analyzed bioactive compounds of A. laxiflora. Conclusion: The present study elucidates the bioactive compounds, potential targets, and pertinent mechanism of action of A. laxiflora in treating depression. A. laxiflora might exert an antidepressant effect by regulating PI3K-Akt and MAPK signaling pathways. However, further investigations are required to validate.
Collapse
Affiliation(s)
- Nem Kumar Jain
- School of Pharmacy, ITM University, Gwalior, Madhya Pradesh, India
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Mukul Tailang
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, Madhya Pradesh, India
| | | | | | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan Ahmad Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - M. Alagusundaram
- School of Pharmacy, ITM University, Gwalior, Madhya Pradesh, India
| | - Hemant Kumar Jain
- Department of General Medicine, Government Medical College, Datia, Madhya Pradesh, India
| |
Collapse
|
10
|
Liang KH, Luo YH, Wang ML, Chiou SH, Chen YM, Hsu HS. A multiomic investigation of lung adenocarcinoma molecular subtypes. J Chin Med Assoc 2024; 87:33-39. [PMID: 37991388 DOI: 10.1097/jcma.0000000000001029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma-an aggressive and life-threatening malignancy-is a type of non-small-cell lung cancer. Despite medical advancements, the prognosis of lung adenocarcinoma remains unfavorable, likely because of its heterogeneous nature. Furthermore, few subtype-specific treatments are available for lung adenocarcinoma. This study was conducted to explore the molecular subtypes of lung adenocarcinoma. METHODS We performed a joint analysis of transcriptome and proteome data from East Asian patients with lung adenocarcinoma (nonsmokers, 86.5%). RESULTS Four novel subtypes were identified based on distinct molecular characteristics: subtypes I, II, III, and IV. In patients with subtype I lung adenocarcinoma, eukaryotic translation initiation factor 4 gamma 1 activates cell proliferation; inhibiting this factor suppresses tumor growth, and reducing its level induces autophagy. Subtype II is characterized by Kristen rat sarcoma viral oncogene homolog-activating oncogenesis; the onset age of this subtype is the lowest among all subtypes. Subtype III manifests as an advanced disease at diagnosis; it is characterized by a core serum response-related oncogenic signature, which indicates poor overall survival in Western patients with lung cancer. Subtype IV is more common in men than in women; it has astroglial characteristics. A Connectivity Map analysis revealed that the oncogenic expression patterns corresponding to subtypes I, II, III, and IV can be reversed by the inhibitors of Inhibitor of κB (IκB) kinase (eg, withaferin A), mammalian target of rapamycin (eg, everolimus), Src proto-oncogene (Src) (eg, saracatinib), and Transforming Growth Factor (TGF)-β/Smad (eg, LY-364947), respectively. CONCLUSION This study introduced an innovative multiomics data analysis pipeline. Using this approach, we successfully identified four molecular subtypes of lung adenocarcinoma and their candidate therapeutic agents. The newly identified subtypes can be combined with the current biomarkers to generate a comprehensive roadmap for treatment decision-making.
Collapse
Affiliation(s)
- Kung-Hao Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, College of Phmaceutical Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yung-Hung Luo
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, College of Phmaceutical Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Han-Shui Hsu
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General, Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
11
|
Chu E, Mychasiuk R, Tsantikos E, Raftery AL, L’Estrange-Stranieri E, Dill LK, Semple BD, Hibbs ML. Regulation of Microglial Signaling by Lyn and SHIP-1 in the Steady-State Adult Mouse Brain. Cells 2023; 12:2378. [PMID: 37830592 PMCID: PMC10571795 DOI: 10.3390/cells12192378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Chronic neuroinflammation and glial activation are associated with the development of many neurodegenerative diseases and neuropsychological disorders. Recent evidence suggests that the protein tyrosine kinase Lyn and the lipid phosphatase SH2 domain-containing inositol 5' phosphatase-1 (SHIP-1) regulate neuroimmunological responses, but their homeostatic roles remain unclear. The current study investigated the roles of Lyn and SHIP-1 in microglial responses in the steady-state adult mouse brain. Young adult Lyn-/- and SHIP-1-/- mice underwent a series of neurobehavior tests and postmortem brain analyses. The microglial phenotype and activation state were examined by immunofluorescence and flow cytometry, and neuroimmune responses were assessed using gene expression analysis. Lyn-/- mice had an unaltered behavioral phenotype, neuroimmune response, and microglial phenotype, while SHIP-1-/- mice demonstrated reduced explorative activity and exhibited microglia with elevated activation markers but reduced granularity. In addition, expression of several neuroinflammatory genes was increased in SHIP-1-/- mice. In response to LPS stimulation ex vivo, the microglia from both Lyn-/- and SHIP-1-/- showed evidence of hyper-activity with augmented TNF-α production. Together, these findings demonstrate that both Lyn and SHIP-1 have the propensity to control microglial responses, but only SHIP-1 regulates neuroinflammation and microglial activation in the steady-state adult brain, while Lyn activity appears dispensable for maintaining brain homeostasis.
Collapse
Affiliation(s)
- Erskine Chu
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Evelyn Tsantikos
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - April L. Raftery
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - Elan L’Estrange-Stranieri
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| | - Larissa K. Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Margaret L. Hibbs
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (E.T.); (A.L.R.); (E.L.-S.)
| |
Collapse
|
12
|
Mansour HM, F Mohamed A, Khattab MM, El-Khatib AS. Lapatinib ditosylate rescues motor deficits in rotenone-intoxicated rats: Potential repurposing of anti-cancer drug as a disease-modifying agent in Parkinson's disease. Eur J Pharmacol 2023; 954:175875. [PMID: 37385578 DOI: 10.1016/j.ejphar.2023.175875] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor deficits induced by dopaminergic neuronal death in the substantia nigra (SN). Finding a successful neuroprotective therapy is still challenging despite improved knowledge of the etiology of PD and a variety of medications intended to reduce symptoms. Lapatinib (LAP), an FDA-approved anti-cancer medication, has been stated to exert its effect through the modulation of oxidative stress. Furthermore, recent studies display the neuroprotective effects of LAP in epilepsy, encephalomyelitis, and Alzheimer's disease in rodent models through the modulation of oxidative stress and ferroptosis. Nevertheless, it is questionable whether LAP exerts neuroprotective effects in PD. In the current study, administration of 100 mg/kg LAP in rotenone-treated rats for 21 days ameliorates motor impairment, debilitated histopathological alterations, and revived dopaminergic neurons by increasing tyrosine hydroxylase (TH) expression in SN, along with increased dopamine level. LAP remarkably restored the antioxidant defense mechanism system, GPX4/GSH/NRF2 axis, inhibiting oxidative markers, including iron, TfR1, PTGS2, and 4-HNE, along with suppression of p-EGFR/c-SRC/PKCβII/PLC-γ/ACSL-4 pathway. Moreover, LAP modulates HSP90/CDC37 chaperone complex, regulating many key pathological markers of PD, including LRRK2, c-ABL, and α-syn. It is concluded that LAP has neuroprotective effects in PD via modulation of many key parameters implicated in PD pathogenesis. Taken together, the current study offers insights into the potential repositioning of LAP as a disease-modifying drug in PD.
Collapse
Affiliation(s)
- Heba M Mansour
- Central Administration of Biological, Innovative Products, and Clinical Studies, Egyptian Drug Authority, EDA, Giza, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Liu Y, Yang H, Luo N, Fu Y, Qiu F, Pan Z, Li X, Jian W, Yang X, Xue Q, Luo Y, Yu B, Liu Z. An Fgr kinase inhibitor attenuates sepsis-associated encephalopathy by ameliorating mitochondrial dysfunction, oxidative stress, and neuroinflammation via the SIRT1/PGC-1α signaling pathway. J Transl Med 2023; 21:486. [PMID: 37475042 PMCID: PMC10360347 DOI: 10.1186/s12967-023-04345-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is characterized by diffuse brain dysfunction, long-term cognitive impairment, and increased morbidity and mortality. The current treatment for SAE is mainly symptomatic; the lack of specific treatment options and a poor understanding of the underlying mechanism of disease are responsible for poor patient outcomes. Fgr is a member of the Src family of tyrosine kinases and is involved in the innate immune response, hematologic cancer, diet-induced obesity, and hemorrhage-induced thalamic pain. This study investigated the protection provided by an Fgr kinase inhibitor in SAE and the underlying mechanism(s) of action. METHODS A cecal ligation and puncture (CLP)-induced mouse sepsis model was established. Mice were treated with or without an Fgr inhibitor and a PGC-1α inhibitor/activator. An open field test, a novel object recognition test, and an elevated plus maze were used to assess neurobehavioral changes in the mice. Western blotting and immunofluorescence were used to measure protein expression, and mRNA levels were measured using quantitative PCR (qPCR). An enzyme-linked immunosorbent assay was performed to quantify inflammatory cytokines. Mitochondrial membrane potential and morphology were measured by JC-1, electron microscopy, and the MitoTracker Deep Red probe. Oxidative stress and mitochondrial dysfunction were analyzed. In addition, the regulatory effect of Fgr on sirtuin 1 (SIRT1) was assessed. RESULTS CLP-induced sepsis increased the expression of Fgr in the hippocampal neurons. Pharmacological inhibition of Fgr attenuated CLP-induced neuroinflammation, the survival rate, cognitive and emotional dysfunction, oxidative stress, and mitochondrial dysfunction. Moreover, Fgr interacted with SIRT1 and reduced its activity and expression. In addition, activation of SIRT1/PGC-1α promoted the protective effects of the Fgr inhibitor on CLP-induced brain dysfunction, while inactivation of SIRT1/PGC-1α counteracted the benefits of the Fgr inhibitor. CONCLUSIONS To our knowledge, this is the first report of Fgr kinase inhibition markedly ameliorating SAE through activation of the SIRT1/PGC-1α pathway, and this may be a promising therapeutic target for SAE.
Collapse
Affiliation(s)
- Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Han Yang
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Nanbo Luo
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yifei Fu
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fang Qiu
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Zhenglong Pan
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiongjuan Li
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wenling Jian
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xinping Yang
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qingsheng Xue
- Department of Anesthesiology, Ruijin Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Zhiheng Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
14
|
Salsinha AS, Socodato R, Rodrigues A, Vale-Silva R, Relvas JB, Pintado M, Rodríguez-Alcalá LM. Potential of omega-3 and conjugated fatty acids to control microglia inflammatory imbalance elicited by obesogenic nutrients. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159331. [PMID: 37172801 DOI: 10.1016/j.bbalip.2023.159331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/05/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
High-fat diet-induced obesity detrimentally affects brain function by inducing chronic low-grade inflammation. This neuroinflammation is, at least in part, likely to be mediated by microglia, which are the main immune cell population in the brain. Microglia express a wide range of lipid-sensitive receptors and their activity can be modulated by fatty acids that cross the blood-brain barrier. Here, by combining live cell imaging and FRET technology we assessed how different fatty acids modulate microglia activity. We demonstrate that the combined action of fructose and palmitic acid induce Ikβα degradation and nuclear translocation of the p65 subunit nuclear factor kB (NF-κB) in HCM3 human microglia. Such obesogenic nutrients also lead to reactive oxygen species production and LynSrc activation (critical regulators of microglia inflammation). Importantly, short-time exposure to omega-3 (EPA and DHA), CLA and CLNA are sufficient to abolish NF-κB pathway activation, suggesting a potential neuroprotective role. Omega-3 and CLA also show an antioxidant potential by inhibiting reactive oxygen species production, and the activation of LynSrc in microglia. Furthermore, using chemical agonists (TUG-891) and antagonists (AH7614) of GPR120/FFA4, we demonstrated that omega-3, CLA and CLNA inhibition of the NF-κB pathway is mediated by this receptor, while omega-3 and CLA antioxidant potential occurs through different signaling mechanisms.
Collapse
Affiliation(s)
- A S Salsinha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - R Socodato
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - A Rodrigues
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - R Vale-Silva
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - J B Relvas
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - L M Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
15
|
Zong Q, Pan Y, Liu Y, Wu Z, Huang Z, Zhang Y, Ma K. pNaktide mitigates inflammation-induced neuronal damage and behavioral deficits through the oxidative stress pathway. Int Immunopharmacol 2023; 116:109727. [PMID: 36689848 DOI: 10.1016/j.intimp.2023.109727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Neuroinflammation is closely related to the etiology and progression of neurodegenerative diseases such as Parkinson disease and Alzheimer disease. pNaktide, an Src inhibitor, exerts antioxidant effects by mimicking Na/K-ATPase. It has been verified that its anti-inflammation and anti-oxidation ability could be embodied in obesity, steatohepatitis, uremic cardiomyopathy, aging, and prostate cancer. This study aimed to investigate the effects and mechanisms of pNaktide in lipopolysaccharide (LPS)-induced behavioral damage, neuroinflammation, and neuronal damage. We found that pNaktide improved anxiety, memory, and motor deficits. pNaktide inhibited MAPK and NF-κB pathways induced by TLR4 activation, inhibited the NLRP3 inflammasome complex, and reduced the expression of inflammatory factors, complement factors, and chemokines. pNaktide inhibited the activation of Nrf2 and HO-1 antioxidant stress pathways by LPS and reduced the level of oxidative stress. Inhibition of autophagy and enhancement of apoptosis induced by LPS were also alleviated by pNaktide, which restored LPS-induced injury to newborn neurons in the hippocampus region. In summary, pNaktide attenuates neuroinflammation, reduces the level of oxidative stress, has neuroprotective effects, and may be used for the treatment of neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Qinglan Zong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Yongfang Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Zhengcun Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Zhangqiong Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| |
Collapse
|
16
|
Abdi IY, Bartl M, Dakna M, Abdesselem H, Majbour N, Trenkwalder C, El-Agnaf O, Mollenhauer B. Cross-sectional proteomic expression in Parkinson's disease-related proteins in drug-naïve patients vs healthy controls with longitudinal clinical follow-up. Neurobiol Dis 2023; 177:105997. [PMID: 36634823 DOI: 10.1016/j.nbd.2023.105997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
There is an urgent need to find reliable and accessible blood-based biomarkers for early diagnosis of Parkinson's disease (PD) correlating with clinical symptoms and displaying predictive potential to improve future clinical trials. This led us to a conduct large-scale proteomics approach using an advanced high-throughput proteomics technology to create a proteomic profile for PD. Over 1300 proteins were measured in serum samples from a de novo Parkinson's (DeNoPa) cohort made up of 85 deep clinically phenotyped drug-naïve de novo PD patients and 93 matched healthy controls (HC) with longitudinal clinical follow-up available of up to 8 years. The analysis identified 73 differentially expressed proteins (DEPs) of which 14 proteins were confirmed as stable potential diagnostic markers using machine learning tools. Among the DEPs identified, eight proteins-ALCAM, contactin 1, CD36, DUS3, NEGR1, Notch1, TrkB, and BTK- significantly correlated with longitudinal clinical scores including motor and non-motor symptom scores, cognitive function and depression scales, indicating potential predictive values for progression in PD among various phenotypes. Known functions of these proteins and their possible relation to the pathophysiology or symptomatology of PD were discussed and presented with a particular emphasis on the potential biological mechanisms involved, such as cell adhesion, axonal guidance and neuroinflammation, and T-cell activation. In conclusion, with the use of advance multiplex proteomic technology, a blood-based protein signature profile was identified from serum samples of a well-characterized PD cohort capable of potentially differentiating PD from HC and predicting clinical disease progression of related motor and non-motor PD symptoms. We thereby highlight the need to validate and further investigate these markers in future prospective cohorts and assess their possible PD-related mechanisms.
Collapse
Affiliation(s)
- Ilham Yahya Abdi
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar; Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| | - Michael Bartl
- Department of Neurology, University Medical Center Goettingen, Robert-Koch, Goettingen, Germany.
| | - Mohammed Dakna
- Department of Neurology, University Medical Center Goettingen, Robert-Koch, Goettingen, Germany.
| | - Houari Abdesselem
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| | - Nour Majbour
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Klinikstrasse, Kassel, Germany; Department of Neurosurgery, University Medical Center Goettingen, Robert-Koch, Goettingen, Germany.
| | - Omar El-Agnaf
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar; Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Robert-Koch, Goettingen, Germany; Paracelsus-Elena-Klinik, Klinikstrasse, Kassel, Germany.
| |
Collapse
|
17
|
Parthasarathy G, Pattison MB, Midkiff CC. The FGF/FGFR system in the microglial neuroinflammation with Borrelia burgdorferi: likely intersectionality with other neurological conditions. J Neuroinflammation 2023; 20:10. [PMID: 36650549 PMCID: PMC9847051 DOI: 10.1186/s12974-022-02681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Lyme neuroborreliosis, caused by the bacterium Borrelia burgdorferi affects both the central and peripheral nervous systems (CNS, PNS). The CNS manifestations, especially at later stages, can mimic/cause many other neurological conditions including psychiatric disorders, dementia, and others, with a likely neuroinflammatory basis. The pathogenic mechanisms associated with Lyme neuroborreliosis, however, are not fully understood. METHODS In this study, using cultures of primary rhesus microglia, we explored the roles of several fibroblast growth factor receptors (FGFRs) and fibroblast growth factors (FGFs) in neuroinflammation associated with live B. burgdorferi exposure. FGFR specific siRNA and inhibitors, custom antibody arrays, ELISAs, immunofluorescence and microscopy were used to comprehensively analyze the roles of these molecules in microglial neuroinflammation due to B. burgdorferi. RESULTS FGFR1-3 expressions were upregulated in microglia in response to B. burgdorferi. Inhibition of FGFR 1, 2 and 3 signaling using siRNA and three different inhibitors showed that FGFR signaling is proinflammatory in response to the Lyme disease bacterium. FGFR1 activation also contributed to non-viable B. burgdorferi mediated neuroinflammation. Analysis of the B. burgdorferi conditioned microglial medium by a custom antibody array showed that several FGFs are induced by the live bacterium including FGF6, FGF10 and FGF12, which in turn induce IL-6 and/or CXCL8, indicating a proinflammatory nature. To our knowledge, this is also the first-ever described role for FGF6 and FGF12 in CNS neuroinflammation. FGF23 upregulation, in addition, was observed in response to the Lyme disease bacterium. B. burgdorferi exposure also downregulated many FGFs including FGF 5, 7, 9, 11, 13, 16, 20 and 21. Some of the upregulated FGFs have been implicated in major depressive disorder (MDD) or dementia development, while the downregulated ones have been demonstrated to have protective roles in epilepsy, Parkinson's disease, Alzheimer's disease, spinal cord injury, blood-brain barrier stability, and others. CONCLUSIONS In this study we show that FGFRs and FGFs are novel inducers of inflammatory mediators in Lyme neuroborreliosis. It is likely that an unresolved, long-term (neuro)-Lyme infection can contribute to the development of other neurologic conditions in susceptible individuals either by augmenting pathogenic FGFs or by suppressing ameliorative FGFs or both.
Collapse
Affiliation(s)
- Geetha Parthasarathy
- Division of Immunology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Room 109, Covington, LA, 70433, USA.
| | - Melissa B Pattison
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA
| | - Cecily C Midkiff
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA
| |
Collapse
|
18
|
Portugal CC, Almeida TO, Socodato R, Relvas JB. Src family kinases (SFKs): critical regulators of microglial homeostatic functions and neurodegeneration in Parkinson's and Alzheimer's diseases. FEBS J 2022; 289:7760-7775. [PMID: 34510775 DOI: 10.1111/febs.16197] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 08/03/2021] [Accepted: 09/10/2021] [Indexed: 01/14/2023]
Abstract
c-Src was the first protein kinase to be described as capable of phosphorylating tyrosine residues. Subsequent identification of other tyrosine-phosphorylating protein kinases with a similar structure to c-Src gave rise to the concept of Src family kinases (SFKs). Microglia are the resident innate immune cell population of the CNS. Under physiological conditions, microglia actively participate in brain tissue homeostasis, continuously patrolling the neuronal parenchyma and exerting neuroprotective actions. Activation of pathogen-associated molecular pattern (PAMP) and damage-associated molecular pattern (DAMP) receptors induces microglial proliferation, migration toward pathological foci, phagocytosis, and changes in gene expression, concurrent with the secretion of cytokines, chemokines, and growth factors. A significant body of literature shows that SFK stimulation positively associates with microglial activation and neuropathological conditions, including Alzheimer's and Parkinson's diseases. Here, we review essential microglial homeostatic functions regulated by SFKs, including phagocytosis, environmental sensing, and secretion of inflammatory mediators. In addition, we discuss the potential of SFK modulation for microglial homeostasis in Parkinson's and Alzheimer's diseases.
Collapse
Affiliation(s)
- Camila C Portugal
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - Tiago O Almeida
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Doutoramento em Ciências Biomédicas, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Department of Biomedicine, Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|
19
|
Afsheen N, Rafique S, Rafeeq H, Irshad K, Hussain A, Huma Z, Kumar V, Bilal M, Aleya L, Iqbal HMN. Neurotoxic effects of environmental contaminants-measurements, mechanistic insight, and environmental relevance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70808-70821. [PMID: 36059010 DOI: 10.1007/s11356-022-22779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Pollution is a significant and growing concern for any population regardless of age because these environmental contaminants exhibit different neurodegenerative effects on persons of different ages. These environmental contaminants are the products of human welfare projects like industry, automobile exhaust, clinical and research laboratory extrudes, and agricultural chemicals. These contaminants are found in various forms in environmental matrices like nanoparticles, particulate matter, lipophilic vaporized toxicants, and ultrafine particulate matter. Because of their small size, they can easily cross blood-brain barriers or use different cellular mechanisms for assistance. Other than this, these contaminants cause an innate immune response in different cells of the central nervous system and cause neurotoxicity. Considering the above critiques and current needs, this review summarizes different protective strategies based on bioactive compounds present in plants. Various bioactive compounds from medicinal plants with neuroprotective capacities are discussed with relevant examples. Many in vitro studies on clinical trials have shown promising outcomes using plant-based bioactive compounds against neurological disorders.
Collapse
Affiliation(s)
- Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Sadia Rafique
- Department of Pharmacy, Riphah International University, Faisalabad, 38000, Pakistan
| | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Kanwal Irshad
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Asim Hussain
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Zille Huma
- Department of Chemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Vineet Kumar
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
20
|
Morani F, Doccini S, Galatolo D, Pezzini F, Soliymani R, Simonati A, Lalowski MM, Gemignani F, Santorelli FM. Integrative Organelle-Based Functional Proteomics: In Silico Prediction of Impaired Functional Annotations in SACS KO Cell Model. Biomolecules 2022; 12:biom12081024. [PMID: 35892334 PMCID: PMC9331974 DOI: 10.3390/biom12081024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/07/2023] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an inherited neurodegenerative disease characterized by early-onset spasticity in the lower limbs, axonal-demyelinating sensorimotor peripheral neuropathy, and cerebellar ataxia. Our understanding of ARSACS (genetic basis, protein function, and disease mechanisms) remains partial. The integrative use of organelle-based quantitative proteomics and whole-genome analysis proposed in the present study allowed identifying the affected disease-specific pathways, upstream regulators, and biological functions related to ARSACS, which exemplify a rationale for the development of improved early diagnostic strategies and alternative treatment options in this rare condition that currently lacks a cure. Our integrated results strengthen the evidence for disease-specific defects related to bioenergetics and protein quality control systems and reinforce the role of dysregulated cytoskeletal organization in the pathogenesis of ARSACS.
Collapse
Affiliation(s)
- Federica Morani
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (F.M.); (F.G.)
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit—IRCCS Stella Maris, 56128 Pisa, Italy; (S.D.); (D.G.)
| | - Daniele Galatolo
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit—IRCCS Stella Maris, 56128 Pisa, Italy; (S.D.); (D.G.)
| | - Francesco Pezzini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37129 Verona, Italy; (F.P.); (A.S.)
| | - Rabah Soliymani
- HiLIFE, Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland; (R.S.); (M.M.L.)
| | - Alessandro Simonati
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37129 Verona, Italy; (F.P.); (A.S.)
| | - Maciej M. Lalowski
- HiLIFE, Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland; (R.S.); (M.M.L.)
- Institute of Bioorganic Chemistry, PAS, Department of Biomedical Proteomics, 61-704 Poznań, Poland
| | - Federica Gemignani
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (F.M.); (F.G.)
| | - Filippo M. Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit—IRCCS Stella Maris, 56128 Pisa, Italy; (S.D.); (D.G.)
- Correspondence: ; Tel.: +39-050-886311
| |
Collapse
|
21
|
Gage M, Putra M, Wachter L, Dishman K, Gard M, Gomez-Estrada C, Thippeswamy T. Saracatinib, a Src Tyrosine Kinase Inhibitor, as a Disease Modifier in the Rat DFP Model: Sex Differences, Neurobehavior, Gliosis, Neurodegeneration, and Nitro-Oxidative Stress. Antioxidants (Basel) 2021; 11:61. [PMID: 35052568 PMCID: PMC8773289 DOI: 10.3390/antiox11010061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Diisopropylfluorophosphate (DFP), an organophosphate nerve agent (OPNA), exposure causes status epilepticus (SE) and epileptogenesis. In this study, we tested the protective effects of saracatinib (AZD0530), a Src kinase inhibitor, in mixed-sex or male-only Sprague Dawley rats exposed to 4-5 mg/kg DFP followed by 2 mg/kg atropine and 25 mg/kg 2-pralidoxime. Midazolam (3 mg/kg) was given to the mixed-sex cohort (1 h post-DFP) and male-only cohort (~30 min post-DFP). Saracatinib (20 mg/kg, oral, daily for 7 days) or vehicle was given two hours later and euthanized eight days or ten weeks post-DFP. Brain immunohistochemistry (IHC) showed increased microgliosis, astrogliosis, and neurodegeneration in DFP-treated animals. In the 10-week post-DFP male-only group, there were no significant differences between groups in the novel object recognition, Morris water maze, rotarod, or forced swim test. Brain IHC revealed significant mitigation by saracatinib in contrast to vehicle-treated DFP animals in microgliosis, astrogliosis, neurodegeneration, and nitro-oxidative stressors, such as inducible nitric oxide synthase, GP91phox, and 3-Nitrotyrosine. These findings suggest the protective effects of saracatinib on brain pathology seem to depend on the initial SE severity. Further studies on dose optimization, including extended treatment regimen depending on the SE severity, are required to determine its disease-modifying potential in OPNA models.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences and Interdepartmental Neuroscience Program, Iowa State University, Ames, IA 50011, USA; (M.G.); (M.P.); (L.W.); (K.D.); (M.G.); (C.G.-E.)
| |
Collapse
|
22
|
Cai Y, Xu J, Cheng Q. Proto-oncogene tyrosine-protein kinase SRC (Src) inhibition in microglia relieves neuroinflammation in neuropathic pain mouse models. Bioengineered 2021; 12:11390-11398. [PMID: 34851237 PMCID: PMC8810198 DOI: 10.1080/21655979.2021.2008694] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 01/20/2023] Open
Abstract
Chronic neuroinflammation is an important factor in the development of neuropathic pain (NP). Excess microglia activation releases a mass of pro-inflammatory cytokines during neuroinflammation process, leading to a constant painful irritation of the sensory nerve. Src belongs to a non-receptor tyrosine kinase associated with sarcoma, whereas the role of Src in neuropathic pain is controversial. We designed to testify the inflammation-regulatory role of Src in the lipopolysaccharide (LPS)-induced BV2 microglia line and the mouse model of neuropathic pain by partial sciatic nerve ligation (PNL). In BV2 microglia, Src expression was inhibited using a Src family kinase inhibitor PP2 after LPS induced inflammatory response. In vivo, the neuropathic pain in mice was induced by PNL surgery and then treated with PP2. The neuroinflammation level in vitro was detected by enzyme-linked immunosorbent assay (ELISA), immunofluorescence (IF), trans-well and Western blotting (WB) assays, in vivo was examined in PNL mice using immunohistochemistry (IHC) and IF. Finally, mechanical allodynia and thermal hyperalgesia assays were used to access the functional evaluation. Inhibition of Src was decreased microglial inflammation and migration after LPS stimuli. Mechanistically, the expression of nuclear factor kappa B (NF-κB) pathway decreased after Src inhibition. The data in vivo showed that the decrease expression of Src reduced neuroinflammation and the amount of microglia in spinal dorsal horn (SDH), the mechanical allodynia of mice thereby attenuated after Src inhibition. These results indicated that the inhibition of Src took a protective effect in neuropathic pain mouse models via reducing microglia-induced neuroinflammation.
Collapse
Affiliation(s)
- Yuanxing Cai
- Department of Anesthesiology, Emergency General Hospital, Beijing, China
| | - Jing Xu
- Department of Anesthesiology, Emergency General Hospital, Beijing, China
| | - Qinghao Cheng
- Department of Anesthesiology, Emergency General Hospital, Beijing, China
| |
Collapse
|
23
|
Gage M, Putra M, Gomez-Estrada C, Golden M, Wachter L, Gard M, Thippeswamy T. Differential Impact of Severity and Duration of Status Epilepticus, Medical Countermeasures, and a Disease-Modifier, Saracatinib, on Brain Regions in the Rat Diisopropylfluorophosphate Model. Front Cell Neurosci 2021; 15:772868. [PMID: 34720886 PMCID: PMC8555467 DOI: 10.3389/fncel.2021.772868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022] Open
Abstract
Acute organophosphate (OP) toxicity poses a significant threat to both military and civilian personnel as it can lead to a variety of cholinergic symptoms including the development of status epilepticus (SE). Depending on its severity, SE can lead to a spectrum of neurological changes including neuroinflammation and neurodegeneration. In this study, we determined the impact of SE severity and duration on disease promoting parameters such as gliosis and neurodegeneration and the efficacy of a disease modifier, saracatinib (AZD0530), a Src/Fyn tyrosine kinase inhibitor. Animals were exposed to 4 mg/kg diisopropylfluorophosphate (DFP, s.c.) followed by medical countermeasures. We had five experimental groups: controls (no DFP), animals with no continuous convulsive seizures (CS), animals with ∼20-min continuous CS, 31-60-min continuous CS, and > 60-min continuous CS. These groups were then assessed for astrogliosis, microgliosis, and neurodegeneration 8 days after DFP exposure. The 31-60-min and > 60-min groups, but not ∼20-min group, had significantly upregulated gliosis and neurodegeneration in the hippocampus compared to controls. In the piriform cortex and amygdala, however, all three continuous CS groups had significant upregulation in both gliosis and neurodegeneration. In a separate cohort of animals that had ∼20 and > 60-min of continuous CS, we administered saracatinib for 7 days beginning three hours after DFP. There was bodyweight loss and mortality irrespective of the initial SE severity and duration. However, in survived animals, saracatinib prevented spontaneous recurrent seizures (SRS) during the first week in both severity groups. In the ∼20-min CS group, compared to the vehicle, saracatinib significantly reduced neurodegeneration in the piriform cortex and amygdala. There were no significant differences in the measured parameters between the naïve control and saracatinib on its own (without DFP) groups. Overall, this study demonstrates the differential effects of the initial SE severity and duration on the localization of gliosis and neurodegeneration. We have also demonstrated the disease-modifying potential of saracatinib. However, its’ dosing regimen should be optimized based on initial severity and duration of CS during SE to maximize therapeutic effects and minimize toxicity in the DFP model as well as in other OP models such as soman.
Collapse
Affiliation(s)
- Meghan Gage
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
| | - Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
| | - Crystal Gomez-Estrada
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Madison Golden
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Logan Wachter
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Megan Gard
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
24
|
Tallon C, Picciolini S, Yoo SW, Thomas AG, Pal A, Alt J, Carlomagno C, Gualerzi A, Rais R, Haughey NJ, Bedoni M, Slusher BS. Inhibition of neutral sphingomyelinase 2 reduces extracellular vesicle release from neurons, oligodendrocytes, and activated microglial cells following acute brain injury. Biochem Pharmacol 2021; 194:114796. [PMID: 34678224 DOI: 10.1016/j.bcp.2021.114796] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Extracellular Vesicles (EVs) are implicated in the spread of pathogenic proteinsin a growing number of neurological diseases. Given this, there is rising interest in developing inhibitors of Neutral Sphingomyelinase 2 (nSMase2), an enzyme critical in EV biogenesis. Our group recently discovered phenyl(R)-(1-(3-(3,4-dimethoxyphenyl)-2,6-dimethylimidazo[1,2-b]pyridazin-8-yl)pyrrolidin-3-yl)carbamate (PDDC), the first potent, selective, orally-available, and brain-penetrable nSMase2 inhibitor, capable of dose-dependently reducing EVs release in vitro and in vivo. Herein, using multiplexed Surface Plasmon Resonance imaging (SPRi), we evaluated which brain cell-derived EVs were affected by PDDC following acute brain injury. Mice were fed PDDC-containing chow at doses which gave steady PDDC brain exposures exceeding its nSMase2 IC50. Mice were then administered an intra-striatal IL-1β injection and two hours later plasma and brain were collected. IL-1β injection significantly increased striatal nSMase2 activity which was completely normalized by PDDC. Using SPRi, we found that IL-1β-induced injury selectively increased plasma levels of CD171 + and PLP1 + EVs; this EV increase was normalized by PDDC. In contrast, GLAST1 + EVs were unchanged by IL-1β or PDDC. IL-1β injection selectively increased EVs released from activated versus non-activated microglia, indicated by the CD11b+/IB4 + ratio. The increase in EVs from CD11b + microglia was dramatically attenuated with PDDC. Taken together, our data demonstrate that following acute injury, brain nSMase2 activity is elevated. EVs released from neurons, oligodendrocytes, and activated microglial are increased in plasma and inhibition of nSMase2 with PDDC reduced these IL-1β-induced changes implicating nSMase2 inhibition as a therapeutic target for acute brain injury.
Collapse
Affiliation(s)
- Carolyn Tallon
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Silvia Picciolini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), Milan, Italy
| | - Seung-Wan Yoo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Arindom Pal
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cristiano Carlomagno
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), Milan, Italy
| | - Alice Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), Milan, Italy
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), Milan, Italy.
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Li Y, Bao Y, Zheng H, Qin Y, Hua B. Can Src protein tyrosine kinase inhibitors be combined with opioid analgesics? Src and opioid-induced tolerance, hyperalgesia and addiction. Biomed Pharmacother 2021; 139:111653. [PMID: 34243625 DOI: 10.1016/j.biopha.2021.111653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022] Open
Abstract
The clinical application of opioids may be accompanied by a series of adverse consequences, such as opioid tolerance, opioid-induced hyperalgesia, opioid dependence or addiction. In view of this issue, clinicians are faced with the dilemma of treating various types of pain with or without opioids. In this review, we discuss that Src protein tyrosine kinase plays an important role in these adverse consequences, and Src inhibitors can solve these problems well. Therefore, Src inhibitors have the potential to be used in combination with opioids to achieve synergy. How to combine them together to maximize the analgesic effect while avoiding unnecessary trouble provides a topic for follow-up research.
Collapse
Affiliation(s)
- Yaoyuan Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yinggang Qin
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
26
|
Gage MC, Thippeswamy T. Inhibitors of Src Family Kinases, Inducible Nitric Oxide Synthase, and NADPH Oxidase as Potential CNS Drug Targets for Neurological Diseases. CNS Drugs 2021; 35:1-20. [PMID: 33515429 PMCID: PMC7893831 DOI: 10.1007/s40263-020-00787-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/21/2022]
Abstract
Neurological diseases share common neuroinflammatory and oxidative stress pathways. Both phenotypic and molecular changes in microglia, astrocytes, and neurons contribute to the progression of disease and present potential targets for disease modification. Src family kinases (SFKs) are present in both neurons and glial cells and are upregulated following neurological insults in both human and animal models. In neurons, SFKs interact with post-synaptic protein domains to mediate hyperexcitability and neurotoxicity. SFKs are upstream of signaling cascades that lead to the modulation of neurotransmitter receptors and the transcription of pro-inflammatory cytokines as well as producers of free radicals through the activation of glia. Inducible nitric oxide synthase (iNOS/NOS-II) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), the major mediators of reactive nitrogen/oxygen species (RNS/ROS) production in the brain, are also upregulated along with the pro-inflammatory cytokines following neurological insult and contribute to disease progression. Persistent neuronal hyperexcitability, RNS/ROS, and cytokines can exacerbate neurodegeneration, a common pathognomonic feature of the most prevalent neurological disorders such as Alzheimer's disease, Parkinson's disease, and epilepsy. Using a wide variety of preclinical disease models, inhibitors of the SFK-iNOS-NOX2 signaling axis have been tested to cure or modify disease progression. In this review, we discuss the SFK-iNOS-NOX2 signaling pathway and their inhibitors as potential CNS targets for major neurological diseases.
Collapse
|
27
|
Iovino L, Tremblay ME, Civiero L. Glutamate-induced excitotoxicity in Parkinson's disease: The role of glial cells. J Pharmacol Sci 2020; 144:151-164. [PMID: 32807662 DOI: 10.1016/j.jphs.2020.07.011] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Glutamate transmission efficiency depends on the correct functionality and expression of a plethora of receptors and transporters, located both on neurons and glial cells. Of note, glutamate reuptake by dedicated transporters prevents its accumulation at the synapse as well as non-physiological spillover. Indeed, extracellular glutamate increase causes aberrant synaptic signaling leading to neuronal excitotoxicity and death. Moreover, extrasynaptic glutamate diffusion is strongly associated with glia reaction and neuroinflammation. Glutamate-induced excitotoxicity is mainly linked to an impaired ability of glial cells to reuptake and respond to glutamate, then this is considered a common hallmark in many neurodegenerative diseases, including Parkinson's disease (PD). In this review, we discuss the function of astrocytes and microglia in glutamate homeostasis, focusing on how glial dysfunction causes glutamate-induced excitotoxicity leading to neurodegeneration in PD.
Collapse
Affiliation(s)
- L Iovino
- Department of Biology, University of Padova, Italy
| | - M E Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, Canada
| | - L Civiero
- Department of Biology, University of Padova, Italy; IRCCS San Camillo Hospital, Venice, Italy.
| |
Collapse
|