1
|
Bilel S, Zamberletti E, Caffino L, Tirri M, Mottarlini F, Arfè R, Barbieri M, Beggiato S, Boccuto F, Bernardi T, Casati S, Brini AT, Parolaro D, Rubino T, Ferraro L, Fumagalli F, Marti M. Cognitive dysfunction and impaired neuroplasticity following repeated exposure to the synthetic cannabinoid JWH-018 in male mice. Br J Pharmacol 2023; 180:2777-2801. [PMID: 37311647 DOI: 10.1111/bph.16164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Psychotic disorders have been reported in long-term users of synthetic cannabinoids. This study aims at investigating the long-lasting effects of repeated JWH-018 exposure. EXPERIMENTAL APPROACH Male CD-1 mice were injected with vehicle, JWH-018 (6 mg·kg-1 ), the CB1 -antagonist NESS-0327 (1 mg·kg-1 ) or co-administration of NESS-0327 and JWH-018, every day for 7 days. After 15 or 16 days washout, we investigated the effects of JWH-018 on motor function, memory, social dominance and prepulse inhibition (PPI). We also evaluated glutamate levels in dialysates from dorsal striatum, striatal dopamine content and striatal/hippocampal neuroplasticity focusing on the NMDA receptor complex and the neurotrophin BDNF. These measurements were accompanied by in vitro electrophysiological evaluations in hippocampal preparations. Finally, we investigated the density of CB1 receptors and levels of the endocannabinoid anandamide (AEA) and 2-arachidonoylglycerol (2-AG) and their main synthetic and degrading enzymes in the striatum and hippocampus. KEY RESULTS The repeated treatment with JWH-018 induced psychomotor agitation while reducing social dominance, recognition memory and PPI in mice. JWH-018 disrupted hippocampal LTP and decreased BDNF expression, reduced the synaptic levels of NMDA receptor subunits and decreased the expression of PSD95. Repeated exposure to JWH-018, reduced hippocampal CB1 receptor density and induced a long-term alteration in AEA and 2-AG levels and their degrading enzymes, FAAH and MAGL, in the striatum. CONCLUSION AND IMPLICATIONS Our findings suggest that repeated administration of a high dose of JWH-018 leads to the manifestation of psychotic-like symptoms accompanied by alterations in neuroplasticity and change in the endocannabinoid system.
Collapse
Affiliation(s)
- Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Erica Zamberletti
- Department of Biotechnology and Life Sciences (DBSV) and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Raffaella Arfè
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Mario Barbieri
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
| | - Federica Boccuto
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Tatiana Bernardi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Sara Casati
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Anna T Brini
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan, Italy
- IRCCS Galeazzi Orthopedic Institute, Milan, Italy
| | - Daniela Parolaro
- Department of Biotechnology and Life Sciences (DBSV) and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
- Zardi-Gori Foundation, Milan, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences (DBSV) and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
- Laboratory for the Technology of Advanced Therapies (LTTA Centre), University of Ferrara, Ferrara, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, Ferrara, Italy
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Rome, Italy
| |
Collapse
|
2
|
Slosky LM, Pires A, Bai Y, Clark NB, Hauser ER, Gross JD, Porkka F, Zhou Y, Chen X, Pogorelov VM, Toth K, Wetsel WC, Barak LS, Caron MG. Establishment of multi-stage intravenous self-administration paradigms in mice. Sci Rep 2022; 12:21422. [PMID: 36503898 PMCID: PMC9742147 DOI: 10.1038/s41598-022-24740-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Genetically tractable animal models provide needed strategies to resolve the biological basis of drug addiction. Intravenous self-administration (IVSA) is the gold standard for modeling psychostimulant and opioid addiction in animals, but technical limitations have precluded the widespread use of IVSA in mice. Here, we describe IVSA paradigms for mice that capture the multi-stage nature of the disorder and permit predictive modeling. In these paradigms, C57BL/6J mice with long-standing indwelling jugular catheters engaged in cocaine- or remifentanil-associated lever responding that was fixed ratio-dependent, dose-dependent, extinguished by withholding the drug, and reinstated by the presentation of drug-paired cues. The application of multivariate analysis suggested that drug taking in both paradigms was a function of two latent variables we termed incentive motivation and discriminative control. Machine learning revealed that vulnerability to drug seeking and relapse were predicted by a mouse's a priori response to novelty, sensitivity to drug-induced locomotion, and drug-taking behavior. The application of these behavioral and statistical-analysis approaches to genetically-engineered mice will facilitate the identification of neural circuits driving addiction susceptibility and relapse and focused therapeutic development.
Collapse
Affiliation(s)
- Lauren M Slosky
- Department of Cell Biology, Duke University, Durham, NC, USA.
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| | - Andrea Pires
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Yushi Bai
- Department of Cell Biology, Duke University, Durham, NC, USA
| | | | - Elizabeth R Hauser
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Joshua D Gross
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Fiona Porkka
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Yang Zhou
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Xiaoxiao Chen
- School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Vladimir M Pogorelov
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Krisztian Toth
- Department of Pharmaceutical Sciences, Campbell University, Buies Creek, NC, USA
| | - William C Wetsel
- Department of Cell Biology, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University, Durham, NC, USA
| | | | - Marc G Caron
- Department of Cell Biology, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
O'Donovan B, Neugornet A, Neogi R, Xia M, Ortinski P. Cocaine experience induces functional adaptations in astrocytes: Implications for synaptic plasticity in the nucleus accumbens shell. Addict Biol 2021; 26:e13042. [PMID: 33864336 DOI: 10.1111/adb.13042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 11/24/2022]
Abstract
Astrocytes have become established as an important regulator of neuronal activity in the brain. Accumulating literature demonstrates that cocaine self-administration in rodent models induces structural changes within astrocytes that may influence their interaction with the surrounding neurons. Here, we provide evidence that cocaine impacts astrocytes at the functional level and alters neuronal sensitivity to astrocyte-derived glutamate. We report that a 14-day period of short access to cocaine (2 h/day) decreases spontaneous astrocytic Ca2+ transients and precipitates changes in astrocyte network activity in the nucleus accumbens shell. This is accompanied by increased prevalence of slow inward currents, a physiological marker of neuronal activation by astrocytic glutamate, in a subset of medium spiny neurons. Within, but not outside, of this subset, we observe an increase in duration and frequency of N-methyl-D-aspartate (NMDA) receptor-mediated synaptic events. Additionally, we find that the link between synaptic NMDA receptor plasticity and neuron sensitivity to astrocytic glutamate is maintained independent of drug exposure and is observed in both cocaine and saline control animals. Imaging analyses of neuronal Ca2+ activity show no effect of cocaine self-administration on individual cells or on neuronal network activity in brain slices. Therefore, our data indicate that cocaine self-administration promotes astrocyte-specific functional changes that can be linked to increased glutamate-mediated coupling with principal neurons in the nucleus accumbens. Such coupling may be spatially restricted as it does not result in a broad impact on network structure of local neuronal circuits.
Collapse
Affiliation(s)
- Bernadette O'Donovan
- Department of Neuroscience, College of Medicine University of Kentucky Lexington Kentucky USA
| | - Austin Neugornet
- Department of Neuroscience, College of Medicine University of Kentucky Lexington Kentucky USA
| | - Richik Neogi
- Department of Neuroscience, College of Medicine University of Kentucky Lexington Kentucky USA
- Integrated Biomedical Sciences University of Kentucky Lexington Kentucky USA
| | - Mengfan Xia
- Department of Neuroscience, College of Medicine University of Kentucky Lexington Kentucky USA
| | - Pavel Ortinski
- Department of Neuroscience, College of Medicine University of Kentucky Lexington Kentucky USA
| |
Collapse
|
4
|
The Role of CaMKII and ERK Signaling in Addiction. Int J Mol Sci 2021; 22:ijms22063189. [PMID: 33804804 PMCID: PMC8004038 DOI: 10.3390/ijms22063189] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Nicotine is the predominant addictive compound of tobacco and causes the acquisition of dependence through its interactions with nicotinic acetylcholine receptors and various neurotransmitter releases in the central nervous system. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) play a pivotal role in synaptic plasticity in the hippocampus. CaMKII is involved in long-term potentiation induction, which underlies the consolidation of learning and memory; however, the roles of CaMKII in nicotine and other psychostimulant-induced addiction still require further investigation. This article reviews the molecular mechanisms and crucial roles of CaMKII and ERK in nicotine and other stimulant drug-induced addiction. We also discuss dopamine (DA) receptor signaling involved in nicotine-induced addiction in the brain reward circuitry. In the last section, we introduce the association of polyunsaturated fatty acids and cellular chaperones of fatty acid-binding protein 3 in the context of nicotine-induced addiction in the mouse nucleus accumbens and provide a novel target for the treatment of drug abuse affecting dopaminergic systems.
Collapse
|