1
|
Wang D, Xu Y, Hong L, Qi B, Li X, Xie C, Wu J, Zhong C, Ding Y, Geng S. Expose to high doses of folic acid during pregnancy causes adolescent anxiety- and depression-like behaviors in offspring mice. J Affect Disord 2025; 368:770-778. [PMID: 39299590 DOI: 10.1016/j.jad.2024.09.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
The effects of high doses of folic acid (FA) during pregnancy on anxiety- and depression-like behaviors in adolescent offspring mice were determined and the potential underlying mechanisms were elucidated. Pregnant C57BL/6 mice were randomly assigned to Control (2 mg/kg in feed), high FA (20 mg/kg in feed), and ultrahigh FA (40 mg/kg in feed) groups. The physiological development of the offspring, their preweaning neurobehavioral milestones, and adolescent behaviors indicative of anxiety and depression were assessed. High doses of FA during pregnancy delayed key developmental milestones such as pinna detachment, fur appearance, and incisor eruption. Furthermore, it triggered anxiety-like behavior in the passive avoidance test and led to depression-like behavior, as reflected by reduced movement distance in the center zone and decreased shuttling frequency in the light-dark box test and open field test. Additionally, brain tissues of the offspring exhibited increased expression of the microglia marker ionized calcium-binding adaptor molecule 1 and the Nod-like receptor protein 3 inflammasome. These findings suggest that high doses of FA during pregnancy may impair physiological development and increase the susceptibility of the offspring to anxiety- and depression-like behaviors, potentially mediated through the induction of low-grade inflammation in the brain.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yide Xu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lixia Hong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Kangqiao Street Community Health Service Center, Gongshu District, Hangzhou, Zhejiang 310015, China
| | - Bufeng Qi
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jieshu Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ye Ding
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Shanshan Geng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
2
|
Li Y, Yang Y, Ye B, Lin Y. Maternal high fat diet programs spatial learning and central leptin signaling in mouse offspring in a sex-specific manner. Physiol Behav 2024; 281:114580. [PMID: 38714271 DOI: 10.1016/j.physbeh.2024.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
Environmental factors in early life have been demonstrated to increase the risk of neurodevelopmental disorders in offspring, especially the deficiency of the cognitive ability. Leptin has emerged as a key hormone that conveys information on energy stores, but there is growing appreciation that leptin signaling may also play an important role in neurodevelopment. The present study aimed to investigate whether maternal HFD exposure impairs the offspring learning and memory through the programming of central leptin system. We observed that hippocampus-dependent learning and memory were impaired in male but not female offspring from HFD-fed maternal ancestors (C57BL/6 mice), as assessed by novel object recognition and Morris water maze tests. Moreover, the chromatin immunoprecipitation results revealed the maternal HFD consumption led to the increasement in the binding of the histone marker H3K9me3 in male offspring, which mediates gene silencing in the leptin receptor promoter region. Furthermore, there was an increase in the expression of the histone methylase SUV39H1 in male but not female offspring, which regulates H3K9me3. Additionally, it has been observed that IL-6 and IL-1 also could lead to similar alternations when acting on cultured hippocampal neurons in vitro. Taken together, our data suggest that maternal HFD consumption influences male offspring hippocampal cognitive performance in a sex-specific manner, and central leptin signaling may serve as the cross-talk between maternal diet and cognitive impairment in offspring.
Collapse
Affiliation(s)
- YiQuan Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ya Yang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - BoWei Ye
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - YuanShao Lin
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
3
|
Zhang Y, Wei R, Li Z, Li X, Zhang K, Ge Y, Kong X, Liu X, Chen G. Melatonin improves maternal sleep deprivation-induced learning and memory impairment, inflammation, and synaptic dysfunction in murine male adult offspring. Brain Behav 2024; 14:e3515. [PMID: 38702895 PMCID: PMC11069022 DOI: 10.1002/brb3.3515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
INTRODUCTION Maternal sleep deprivation (MSD), which induces inflammation and synaptic dysfunction in the hippocampus, has been associated with learning and memory impairment in offspring. Melatonin (Mel) has been shown to have anti-inflammatory, antioxidant, and neuroprotective function. However, the beneficial effect of Mel on MSD-induced cognitive impairment and its mechanisms are unknown. METHODS In the present study, adult offspring suffered from MSD were injected with Mel (20 mg/kg) once a day during postnatal days 61-88. The cognitive function was evaluated by the Morris water maze test. Levels of proinflammatory cytokines were examined by enzyme-linked immunosorbent assay. The mRNA and protein levels of synaptic plasticity associated proteins were examined using reverse transcription-polymerase chain reaction and western blotting. RESULTS The results showed that MSD impaired learning and memory in the offspring mice. MSD increased the levels of interleukin (IL)-1creIL-6, and tumor necrosis factor-α and decreased the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density protein-95, and synaptophysin in the hippocampus. Furthermore, Mel attenuated cognitive impairment and restored markers of inflammation and synaptic plasticity to control levels. CONCLUSIONS These findings indicated that Mel could ameliorate learning and memory impairment induced by MSD, and these beneficial effects were related to improvement in inflammation and synaptic dysfunction.
Collapse
Affiliation(s)
- Yue‐Ming Zhang
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Ru‐Meng Wei
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Zong‐Yin Li
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Xue‐Yan Li
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Kai‐Xuan Zhang
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Yi‐Jun Ge
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Xiao‐Yi Kong
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Xue‐Chun Liu
- Department of NeurologyThe Second People's Hospital of HefeiHefei Hospital Affiliated to Anhui Medical UniversityHefeiAnhuiChina
| | - Gui‐Hai Chen
- Department of Neurology (Sleep Disorders)The Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
4
|
Elahi M, Ebrahim Soltani Z, Afrooghe A, Ahmadi E, Dehpour AR. Sex Dimorphism in Pain Threshold and Neuroinflammatory Response: The Protective Effect of Female Sexual Hormones on Behavior and Seizures in an Allergic Rhinitis Model. J Neuroimmune Pharmacol 2024; 19:16. [PMID: 38652402 DOI: 10.1007/s11481-024-10114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Our previous research demonstrated that allergic rhinitis could impact behavior and seizure threshold in male mice. However, due to the complex hormonal cycles and hormonal influences on behavior in female mice, male mice are more commonly used for behavioral tests. In this study, we aimed to determine whether these findings were replicable in female mice and to explore the potential involvement of sexual hormones in regulating neuroinflammation in an allergic model. Our results indicate that pain threshold was decreased in female mice with allergic rhinitis and the levels of IL-23/IL-17A/IL-17R were increased in their Dorsal root ganglia. However, unlike males, female mice with AR did not display neuropsychological symptoms such as learning and memory deficits, depression, and anxiety-like behavior. This was along with decreased levels of DNA methyl transferase 1 (DNMT1) and inflammatory cytokines in their hippocampus. Ovariectomized mice were used to mitigate hormonal effects, and the results showed that they had behavioral changes and neuroinflammation in their hippocampus similar to male mice, as well as increased levels of DNMT1. These findings demonstrate sex differences in how allergic rhinitis affects behavior, pain sensitivity, and seizure thresholds. Furthermore, our data suggest that DNMT1 may be influenced by sexual hormones, which could play a role in modulating inflammation in allergic conditions.
Collapse
Affiliation(s)
- Mohammad Elahi
- Center for Orthopedic Trans-disciplinary Applied Research, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Ebrahim Soltani
- Experimental Medicine Research Center, Tehran University of Medical Science, Tehran, Iran
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Arya Afrooghe
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Elham Ahmadi
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Science, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
5
|
Cheng S, Wang W, Zhu Z, Zhao M, Li H, Liu D, Pan F. Involvement of brain-derived neurotrophic factor methylation in the prefrontal cortex and hippocampus induced by chronic unpredictable mild stress in male mice. J Neurochem 2023; 164:624-642. [PMID: 36453259 DOI: 10.1111/jnc.15735] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Early life stress alters brain-derived neurotrophic factor (BDNF) promoter IV methylation and BDNF expression, which is closely related to the pathophysiological process of depression. However, the role of abnormal methylation of BDNF induced by stress during adolescence due to depression has not yet been clarified. In this study, adolescent mice were exposed to chronic unpredictable mild stress (CUMS). Depression-like behaviors, BDNF promoter IV methylation, expression of DNA methyltransferases (DNMTs), demethylation machinery enzymes, BDNF protein levels, and neuronal development in the prefrontal cortex (PFC) and hippocampus (HIP) were assessed in adolescent and adult mice. The DNMT inhibitor, 5-Aza-2-deoxycytidine (5-AzaD), was used as an intervention. Stress in adolescence induces behavioral dysfunction, elevated methylation levels of BDNF promoter IV, changes in the expression of DNMT, and demethylation machinery enzymes in adolescent and adult mice. Additionally, the stress in adolescence induced lower levels of BDNF and abnormal hippocampal doublecortin (DCX) expression in adolescent and adult mice. However, DNMT inhibitor treatment in adolescent-stressed mice relieved the abnormal behaviors, normalized the methylation level of BDNF promoter IV, BDNF protein expression, expression of DNMTs, and demethylation machinery enzymes, and improved the neuronal development of adult mice. These results suggest that stress in adolescence induces short- and long-term hypermethylation of BDNF promoter IV, which is regulated by DNMTs, and leads to the development of depression.
Collapse
Affiliation(s)
- Shuyue Cheng
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Wei Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Zemeng Zhu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Mingyue Zhao
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Hannao Li
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Fang Pan
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
6
|
Yao D, Mu Y, Lu Y, Li L, Shao S, Zhou J, Li J, Chen S, Zhang D, Zhang Y, Zhu Z, Li H. Hippocampal AMPA receptors mediate the impairment of spatial learning and memory in prenatally stressed offspring rats. J Psychiatr Res 2022; 151:17-24. [PMID: 35427874 DOI: 10.1016/j.jpsychires.2022.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/15/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
Numerous studies have shown that prenatal stress (PS) induces learning and memory deficits in offspring, yet the specific mechanisms and effective interventions remain limited. Chewing has been known as one of the active coping strategies to suppress stress, but its effects during PS on learning and memory are unknown. The purpose of this study was to investigate the role of hippocampal AMPA receptors in the adverse effects of PS on spatial learning and memory, and whether chewing during PS could prevent these effects in prenatally stressed adult offspring rats. Prenatal restraint stress with or without chewing to dams during the day 11-20 of pregnancy was used to analyze the impact of different treatments for offspring. The spatial learning and memory were tested by the Morris water maze. The mRNA and protein expression of AMPA receptors in the hippocampus were measured by qRT-PCR and Western blot, respectively. The methylation of AMPA receptors was detected by bisulfite sequencing PCR. Our results revealed that PS impaired spatial learning acquisition and memory retrieval in adult offspring rats, but chewing could relieve this effect. Hippocampal GluA1-4 expression was significantly reduced in prenatally stressed offspring, while there were no changes in the methylation level of GluA2 and GluA4 promoters. Moreover, chewing increased PS-induced suppression of AMPA receptors in the hippocampus. In short, hippocampal AMPA receptors mediate the impairment of spatial learning and memory in prenatally stressed offspring, whereas chewing during PS could ameliorate PS-induced memory deficits.
Collapse
Affiliation(s)
- Dan Yao
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Yingjun Mu
- Central Laboratory, Heze Medical College, 1750 University Road, Heze, Shandong, 274009, China
| | - Yong Lu
- Central Laboratory, Heze Medical College, 1750 University Road, Heze, Shandong, 274009, China
| | - Li Li
- Central Laboratory, Heze Medical College, 1750 University Road, Heze, Shandong, 274009, China
| | - Shuya Shao
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Jiahao Zhou
- Maternal and Infant Health Research Institute, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Jing Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Shengquan Chen
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Dan Zhang
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Yifan Zhang
- Central Laboratory, Heze Medical College, 1750 University Road, Heze, Shandong, 274009, China
| | - Zhongliang Zhu
- Maternal and Infant Health Research Institute, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
7
|
Zhang Y, Liu C. Evaluating the challenges and reproducibility of studies investigating DNA methylation signatures of psychological stress. Epigenomics 2022; 14:405-421. [PMID: 35170363 PMCID: PMC8978984 DOI: 10.2217/epi-2021-0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
Psychological stress can increase the risk of a wide range of negative health outcomes. Studies have been completed to determine if DNA methylation changes occur in the human brain because of stress and are associated with long-term effects and disease, but results have been inconsistent. Human candidate gene studies (150) and epigenome-wide association studies (67) were systematically evaluated to assess how DNA methylation is impacted by stress during the prenatal period, early childhood and adulthood. The association between DNA methylation of NR3C1 exon 1F and child maltreatment and early life adversity was well demonstrated, but other genes did not exhibit a clear association. The reproducibility of individual CpG sites in epigenome-wide association studies was also poor. However, biological pathways, including stress response, brain development and immunity, have been consistently identified across different stressors throughout the life span. Future studies would benefit from the increased sample size, longitudinal design, standardized methodology, optimal quality control, and improved statistical procedures.
Collapse
Affiliation(s)
- Yun Zhang
- Medical Department, Northwest Minzu University, Lanzhou, Gansu, 730000, China
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, Gansu, 730000, China
| | - Chunyu Liu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410078, China
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
8
|
Sex Differences in Anxiety and Depression: What Can (and Cannot) Preclinical Studies Tell Us? SEXES 2022. [DOI: 10.3390/sexes3010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In recent years, the gender perspective in scientific research and sex differences in biological studies on emotional disorders have become increasingly important. However, sex bias in basic research on anxiety and depression is still far from being covered. This review addresses the study of sex differences in the field of anxiety and depression using animal models that consider this issue so far. What can preclinical studies tell us and what are their main limitations? First, we describe the behavioral tests most frequently used in preclinical research to assess depressive-like and anxiety-like behaviors in rodents. Then, we analyze the main findings, strengths, and weaknesses of rodent models of anxiety and depression, dividing them into three main categories: sex chromosome complement-biased sex differences; gonadal hormone-biased sex differences; environmental-biased sex differences. Regardless of the animal model used, none can reproduce all the characteristics of such complex and multifactorial pathologies as anxiety and depressive disorders; however, each animal model contributes to elucidating the bases that underlie these disorders. The importance is highlighted of considering sex differences in the responses that emerge from each model.
Collapse
|
9
|
Dong Y, Chen S, Wang Z, Ma Y, Chen J, Li G, Zhou J, Ren Y, Ma H, Xie J, Li H, Zhu Z. Trends in Research of Prenatal Stress From 2011 to 2021: A Bibliometric Study. Front Pediatr 2022; 10:846560. [PMID: 35874593 PMCID: PMC9298743 DOI: 10.3389/fped.2022.846560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Maternal stress during pregnancy can raise the risk of mental disorders in offspring. The continuous emergence of clinical concepts and the introduction of new technologies are great challenges. In this study, through bibliometric analysis, the research trends and hotspots on prenatal stress (PS) were explored to comprehend clinical treatments and recommend future scientific research directions. METHODS Studies on PS published on the Web of Science Core Collection (WoSCC) database between 2011 and 2021 were reviewed. Bibliometric analysis was conducted according to the number of publications, keywords, journals, citations, affiliations, and countries. With the data collected from the WoSCC, visualization of geographic distribution; clustering analysis of keywords, affiliations, and authors; and descriptive analysis and review of PS were carried out. RESULTS A total of 7,087 articles published in 2011-2021 were retrieved. During this period, the number of publications increased. Psychoneuroendocrinology is the leading journal on PS. The largest contributor was the United States. The University of California system was leading among institutions conducting relevant research. Wang H, King S, and Tain YL were scholars with significant contributions. Hotspots were classified into four clusters, namely, pregnancy, prenatal stress, oxidative stress, and growth. CONCLUSION The number of studies on PS increased. Journals, countries, institutions, researchers with the most contributions, and most cited articles worldwide were extracted. Studies have mostly concentrated on treating diseases, the application of new technologies, and the analysis of epidemiological characteristics. Multidisciplinary integration is becoming the focus of current development. Epigenetics is increasingly used in studies on PS. Thus, it constitutes a solid foundation for future clinical medical and scientific research.
Collapse
Affiliation(s)
- Yankai Dong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Shengquan Chen
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhifei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Yao Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Jinfeng Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Ge Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Jiahao Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Yating Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Hengyu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| | - Juanping Xie
- School of Medicine, Qinba Chinese Medicine Resources R&D Center, Ankang University, Ankang, China
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhongliang Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant Health, Northwest University, Xi'an, China
| |
Collapse
|
10
|
Cahill B, Poelker-Wells S, Prather JF, Li Y. A Glimpse Into the Sexual Dimorphisms in Major Depressive Disorder Through Epigenetic Studies. Front Neural Circuits 2021; 15:768571. [PMID: 34744641 PMCID: PMC8564393 DOI: 10.3389/fncir.2021.768571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Depression is an umbrella term used to describe a mood disorder with a broad spectrum of symptoms including a persistent feeling of sadness, loss of interest, and deficits in social behavior. Epigenetic research bridges the environmental and genetic landscape and has the potential to exponentially improve our understanding of such a complex disorder. Depression is also a sexually dimorphic disorder and variations exist within epigenetic modification sites between sexes. These sex-specific mediators may impact behavioral symptomology and could serve as therapeutic targets for treatments to improve behavioral deficits. This mini review will focus on the social behavior perspective of depression and specifically explore the sexually different epigenetic modifications on depression.
Collapse
Affiliation(s)
- Branden Cahill
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Samuel Poelker-Wells
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Jonathan F Prather
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Yun Li
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|